CSAMA'22
Statistics and Computing in Genome Scale Biology
All teaching materials can be found on the
CSAMA Github repo
.
Friday (Day5)
Lecture slides
Linear Model Design
- Robert Gentleman
Design of analysis
- Wolfgang Huber
Immunoinformatics
- Katharina Imkeller
Thursday (Day4)
Lecture slides
Mass spectrometry-based proteomics
- Laurent Gatto
Visualization
- Wolfgang Huber
Supervised machine learning
- Robert Gentleman
Mass spectrometry-based metabolomics
- Johannes Rainer
Lab materials
Proteomics
- Laurent Gatto and Johannes Rainer
Basic Testing
- Wolfgang Huber
Multiple Testing and Independent Hypothesis Weighting
- Wolfgang Huber
Multi Assay Experiment
- Levi Waldron
Lab9 - Annotation of untargeted metabolomics data
- Johannes Rainer
Lab 9A - Spectra
Lab 9B - MetaboAnnotation
Wednesday (Day3)
Lecture slides
Human Cell Atlas | Ontologies | Shiny
- Vincent Carey
Statistical tests II
- Wolfgang Huber
Annotation Resources
- Johannes Rainer
Group Project
Group Project Slides
BioPlex Vignettes
Tuesday (Day2)
Lecture slides
Basics of RNA-Seq
- Davide Risso
Regression II
- Charlotte Soneson
Single-cell RNA-seq: data properties, embeddings
- Davide Risso
Distances, nearest-neighbour graphs and clustering
- Vincent Carey
Lab materials
End-to-end RNA-Seq workflow
- Charlotte Soneson
Single-cell transcriptomics
- Davide Risso
Evening Session
Open and reproducible research
- Laurent Gatto & Charlotte Soneson
Introduction to Cloud and GPU Computing
- Martin Morgan and Nitesh Turaga
Monday (Day1)
Lecture slides
Introduction to Bioconductor
- Martin Morgan
PCA and other low-dimensional embeddings
- Levi Waldron
Statistical tests I
- Wolfgang Huber
Regression I
- Robert Gentleman
Lab materials
Lab 1 - R and Bioconductor Basics
- Martin Morgan
Evening session
Isee Overview
- Charlotte Soneson
Isee Slides
- Charlotte Soneson
Introduction to Docker
- Nitesh Turaga