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SINGLE-CELL RNA-SEQ

Healthy Pathological

Tissues

Cell-type
maps

Types of analyses

. >

Within cell type Between cell types Between tissues

» Stochasticity, variability of transcription * |dentify biomarkers * Cell-type compositions
* Regulatory network inference * (Post)-transcriptional * Altered transcription

* Allelic expression patterns differences in matched cell types

* Scaling laws of transcription

Sandberg (2014). Nature Methods.



SEVERAL PROTOCOLS AND PLATFORMS
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DIFFERENT PROTOCOLS HAVE DIFFERENT PROPERTIES




DIFFERENT PROTOCOLS HAVE DIFFERENT PROPERTIES
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SINGLE-CELL RNA-SEQ IN A NUTSHELL
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AMPLIFICATION BIAS LEADS TO.. .

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
those from multiple cells — but errors are more likely.

» Standard genome sequencing

Loads of

e o
........ I |
......................... Dyl
A sample containing thousands to DNA is extracted from all the nuclei. DNA is broken into fragments The sequences are assembled to give a
and then sequenced. common, ‘consensus’ sequence.

millions of cells is isolated.

» Single-cell sequencing

DNA amplification

Errors introduced in earlier steps make
sequence assembly difficult; the final
sequence can have gaps.

A single cell is difficult to isolate, but The DNA is extracted and amplified, Amplified DNA is sequenced.
it can be done mechanically or with during which errors can creep in.
an automated cell sorter.

Owens (2012). Nature.



INCREASED VARIABILITY COMPARED T0 “BULK™ RNA-SEQ
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EXCESS OF ZERO COUNTS

d. Cell Profiles e. Cell Profiles f. Cell Profiles
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UNIQUE MOLECULAR IDENTIFIERS
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HIGH COMPLEXITY
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HIGH DIMENSIONALITY AND SAMPLE SIZE
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Single-cell transcriptomics can provide quantitative molecular signatures for large,
unbiased samples of the diverse cell typesin the brain' >, With the proliferation of
multi-omics datasets, amajor challenge isto validate and integrateresultsintoa
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cortex, astructure that has an evolutionarily conserved role in locomotion. We
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A TYPICAL WORKFLOW

Workflow Description

| Experimental metadata
IS recorded for downstream
annotation

Experimental Design

Planning

Sample Processing & Sequencing

Read Alignment sequencing data into

Preprocessing of raw
primary data (counts matrix)

Pre-
processing

| Quantification into Raw Counts Matrix

Sample metadata
specified as colData(sce)
Reference genome
specified as rowData(sce)
Primary data specified

as assay(sce, “counts”)

% | Construction of SingleCellExperiment

Import

Amezquita et al. (2020). Nature Methods.



A TYPICAL WORKFLOW

Quality control metrics
added to colData(sce)
and rowData(sce)

:

Quality Control Metrics

Normalizing Data
Normalized data

added into assays slot as
assay(sce, “logcounts”)

Feature selection

Data
Processing

Integrating Datasets
| Dimensionality Reduction |

Dimension reductions added
into reducedDims slot as
reducedDims(sce, “PCA") and
reducedDims(sce, “UMAP")

N i i

% o | Clustering I Cell-level results such as clusters,
O On : : : B cell labels, trajectory-based
? g %’ Differential Expression cell order added to colData(sce)
C;) % = Trajectory Analysis Gene-level results such as

: differential expression and pathwa
- | AT | annotations agded to rowDapta( SC y)
oy O
o Q9 n .
289 | Interactive Data Visualization | s
25 = _ Visualization & |
2 g = Report Generation | Report Generation
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Amezquita et al. (2020). Nature Methods.



THE SINGLECELLEXPERIMENT CLASS

Feature Primary and Cell Dimension
Metadata|| Transformed Data | Metadata |Reductions
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rowData assays ' . colData reducedDims
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SingleCellExperiment
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Amezquita et al. (2020). Nature Methods.



DATA PROPERTIES
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READ COUNT DISTRIBUTION
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UMI COUNT DISTRIBUTION
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LOG TRANSFORMATION DOES NOT HELP!
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Townes et al. (2019). Genome Biology.



SHOULD WE MODEL ZERO INFLATION?

Probability of zero count

Probability of zero count
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SHOULD WE MODEL ZERO INFLATION?

» Non-UMI data: very likely.
» UMI data: probably not.

EXPLORATORY DATA ANALYSIS!

» Measurement vs expression models (Sarkar & Stephens
2021)

Table 1| Single-gene models for scRNA-seq data Table 2 | Multigene models for scRNA-seq data
Expression model Observation model Method® Link function Noise distribution Method®
Point mass (no variation) Poisson Analytic Identity None NMF*, scHPF*®
Gamma Negative binomial MASS*, edgeR*, Identity Gamma NBMF=°
plESEp (i ) log None GLM-PCA”
SAVER?°, BASICS*
) log Gamma scNBMF*', GLM-PCA™
Point-Gamma ZINB PSCL* I - N
0 oint-Gamma -Wa
Unimodal (nonparametric) Unimodal ashr?#4¢ &
) ) ) ) Neural network Point-Gamma scVI?°, DCA?
Point-exponential family Flexible DESCEND*
- . Multigene models partition variation in true expression into structured and stochastic components.
Fu“y nonparametric Flexible ashr The link function describes a transformation and the noise distribution indicates an assumption

about the stochastic component. *Previously published methods and software packages that use

Different expression models, when combined with the Poisson measurement model, yield ) )
the corresponding observation model to analyze data.

different observation models. *Previously published methods and software packages that use the
corresponding observation model to analyze data.


https://www.nature.com/articles/s41588-021-00873-4
https://www.nature.com/articles/s41588-021-00873-4

SHOULD WE MODEL ZERO INFLATION?

Table 1: Hellinger distance between zinb and NB distribution

6o o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5 | 05 | 00O 0.02 005 007 010 0.13 0.16 0.19 0.23 0.28
5 | 000 005 0.10 0.15 020 0.25 030 036 0.42 0.50
10 | 0.00 0.06 0.12 0.18 0.23 0.29 034 040 047 0.55
15 | 0.00 o©0.07 0.13 0.19 025 031 037 043 050 0.58
20 | 000 007 0.14 020 0.26 032 038 044 0.51 0.60
25 | 0,00 008 0.15 0.21 027 033 039 046 052 0.61

5| 05 | 000 003 006 009 012 0.15 0.19 0.23 0.27 0.33

5 | 0.00 0.13 0.22 030 037 043 050 057 0.64 0.72
10 | 0,00 0.19 028 036 043 050 057 063 070 0.79
15 | 0,00 0.21 030 038 045 0.52 059 065 0.72 0.81
20 | 000 0.21 031 039 046 053 059 066 073 0.82
25 | 000 0.22 032 040 047 053 060 0.67 0.74 0.82

Nguyen et al. (2020). arXiv.



QUALITY CONTROL AND FILTERING
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DIMENSIONALITY REDUCTION
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DIMENSIONALITY REDUCTION

We talk about “dimensionality reduction” when referring to
two different goals:

1. Visualize high-dimensional data
» Usually 2-3 dimensions
» Non-linear, local techniques

2. Infer low-rank signal from high-dimensional data
» Usually 10-50 dimensions

» Factor analysis models



PRINCIPAL COMPONENT ANALYSIS (PCA)

» PCA is the starting point and baseline approach for both
types of analysis.

» PCA can be used to visualize high-dimensional data in 2-3
dimensions.

» PCA can be seen as a solution of a factor analysis model
for Gaussian data.



DESIRED PROPERTIES OF DIMENSIONALITY REDUCTION MODELS

» Accounting for the count nature of the data, over-
dispersion, and possibly zero inflation.

» General and flexible.
» Extract low-dimensional signal from the data.
» Adjust for complex effects (batch effects, sample quality).

» Scalable.



EXAMPLE: TABULA MURIS DATA

Tabula Muris is a project aimed at charcaterizing all cell
types in the mouse.

The droplet dataset comprised 70,000 cells from 12
tissues.

We see here a random subset of 5,000 cells, limiting the
dataset to the 1,000 most variable genes.

TabulaMurisData Bioconductor package.



http://bioconductor.org/packages/release/data/experiment/html/TabulaMurisData.html
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PCA 2 (9%)
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TSNE 2

TABULA MURIS: T-SNE
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TABULA MURIS: UMAP (ALL CELLS)
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PCA IS A LINEAR METHOD

» One way to define the first principal component is: the
linear combination of the original variables that explain the
most variability in the data.

» Similarly, subsequent PCs are linear combinations of the
original variables that are orthogonal to the first and explain
the most variance among the orthogonal combinations.

» Are we limiting ourselves by only looking at linear
combinations?

» Would a non-linear method have more flexibility in
explaining our data?



T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

» One option, very popular in single-cell genomics, is t-
distributed Stochastic Neighbor Embedding (t-SNE).

» Briefly, the problem that we want to solve is to represent in
a 2-3 dimensional map (embedding) the observations
from a high-dimensional space preserving as much as
possible the distance between points.



STOCHASTIC EMBEDDING: PROBABILISTIC REPRESENTATION OF DISTANCES

» Similarity between two points, x; and x; in the original high-
dimensional space is given by

— - —
- -——
- -
- -

~ -
- -

S 21 €Xp (— |1 — x¢12/262) o ¢

The denominator scales the sum of all the scores to 1

» Essentially, the probability that x; would pick x; as its
neighbor.

» We set p;; = 0 and actually use a symmetrized version that

Hinton and Roweis (2002)



STOCHASTIC EMBEDDING: PROBABILISTIC REPRESENTATION OF DISTANCES

» We could define a similar density in the low-dimensional
space, but we use a t-distribution instead of a Gaussian
kernel

(L+ b=l

ij = g
Yt (L4 |k —1]2) ™"

» The t distribution has heavier tails and partially account for
the crowding problem.

® o ®
V2 X1 ) X3
N 2d instead of v2d




T-SNE ALGORITHM

C=KL(P||Q) =Y ¥ pilog 2L,

i ij
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¥ E ’ & dae - 2\ 9
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» We minimize the Kullback-Leibler (KL) divergence
hetween the two distributions with gradient descent.

! ¢ 4
% 8 —0e0e 0000 00> 6
C e 8 8
% ;
0O
% 3 4
° &
ONM o® oy &
[ [ |
Position of points in RP Position of points in R

van der Maaten et al. (2008)



CHOICE OF 5

» It's not appropriate to have a single value of 62 as you
need a smaller value in more dense regions.

» The user controls it through a parameter called perplexity

» Perplexity can have a big impact on the result!

Original space

® OF

© 00 O
.A E G F HDB AC BAC E G

Perp(P;) = 2H(F:) : H(P)=-— ZP jli log, p jli-  H(Pi) is the Shannon entropy of Pi measured in bits
J



T-SNE ART, OR THE CHOICE OF THE PERPLEXITY PARAMETER

https://distill.pub/2016/misread-tsne/

Perplexity=100

A= see, r ﬁ’j ) ‘:o.... pogp, -
]| e SR
EAAT A ANl ARLP2
-ooz‘. ..‘. 1 J C 4 - ‘o:o.&’l:‘:‘ ....l ‘.‘. oo N
1 et ea®® L2 il L

Perplexity=100

.........
..........
T T

'Pe plexity=5 ' Perplexity=30
00® .\ R i o .
/ % 1 \‘. S | .w b‘&‘ | &’&
\ I L o # ©
\ LT 1 .‘ , B J
N TS b IR A
=5 5| (e
4 L o
B . R
l Perple;(ity=5 ' ' Perpllexity=3l0 Perplexit':y=50 l Perplex'ity=100 '
leecccccss - %o
lesssscees ' o*.‘.‘-}f'- | s}.‘}':?f:':’.- % Soees e,
g (S | @b wm | | SRT
gairoziiiicl | R SRR XY LI
lsesssssss XX “ XA esess
o o ‘ %“.‘“% 0%




LIMITATIONS OF T-SNE (AND UMAP)

» Unlike PCA, we do not have a simple interpretation for our
low-dimensional embedding (the axes have “no
meaning”).

» t-SNE preserves only the local structure (who is neighbor
of whom) but not the global structure

» There is no guarantee of convergence to the global
minimum (non-convex problem), hence different runs will
lead to different embeddings.

» Some argue that t-SNE and UMAP do not even preserve
the local structure or the neighbors (Chari et al. 2021)



LIMITATIONS OF T-SNE (AND UMAP)

» The “shape” of the data in the embedding is arbitrary.

R e ’
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FACTOR ANALYSIS

From a statistical model’s perspective, we can state the
problem using the following model

Y=Wa+¢

k xJ

n cells x J genes n x k factors



FACTOR ANALYSIS

The goal is to find k < J factors that descrive, with the
minimum possible loss of information, the J original
variables (genes).

We can show that if € (or equivalently Y) is Gaussian, a
solution of the model is PCA.



ADVANTAGES OF PCA

In one word: interpretability!

» The first principal component is the direction of greater
variability in the data.

» It is easy to compute the variance explain by the first m
principal components.

» Very computationally efficient.



50... WHY NOT PCA?

The main issue of PCA for single-cell data is that the data
are non-negative integer counts, which exhibit skewed
distributions and are not well fit by a Gaussian model.

A simple, and somewhat effective, solution is to transform

the data, e.g., by log(x + 1), but this is not always
straightforward:

» Which transformation to use?

» Do we need to normalize the data for sequencing depth
and other cell-specific effects?

» Zero counts complicate the analysis.



REMEMBER THE EFFECT OF LOG TRANSFORMATION. ..
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Townes et al. (2019). Genome Biology.



GLM-PCA

One alternative to transforming the data, is to generalize
our model to non-Gaussian data.

This can be done by defining a set of models, known as
GLM-PCA () that extend the framework to a set of well
behaving distributions (exponential family) similar to how
GLM extends the linear model.

In particular, since we have count data, we can use the
Poisson or negative binomial model, which has a log link
function.

E[Y|W] = pu, logu = Wa

Townes et al. (2019). Genome Biology.
scry package



http://bicoonductor.org/packages/scry

GLM-PCA / WANTED VARIATION EXTRACTION

A further generalization allows us to include observed
covariates in the model. These can be covariates at the cell

and gene level and it is useful for normalization and batch
effect correction.

n samples

J genes

Known sample-level covariates =~ Known gene-level covariates Unknown sample-level covariates

n

Observed Unknown Unknown Observed Unobserved  Unknown
random parameter parameter random random parameter
variable variable variable

X intercept acts as a Vintercept acts as a sample-
gene-specific scaling factor specific scaling factor

Risso et al. (2018). Nature Communications.
NewWave package



http://bioconductor.org/packages/NewWave
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GLMPCA 2

TABULA MURIS: GLM-PCA (POISSON)
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TABULA MURIS: NEWAVE (NEGATIVE BINOMIAL)
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SCALABILITY
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SCALABILITY

» Townes et al. (2019) propose an approximate approach to
speed up computations.

» Essentially, they compute Pearson or deviance residuals of

a GLM fit on each gene independently, and then compute
PCA of the rediduals.

» A similar approach, correspondence analysis, uses chi-
squared Pearson residuals + PCA/SVD.

» These methods are implemented in the scry and corral
Bioconductor packages, respectively.



http://bioconductor.org/packages/scry
http://bioconductor.org/packages/corral

WHICH SHOULD | USE?
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MORE QUESTIONS THAN ANSWERS

» How many factors should | estimate?

» Should | include covariates? Which ones?

» If PCA, should | center/scale?

» Which data transformations should | use?

» Which normalization should | use?

» Why not deep neural networks? (That should take care of it!)

» Importance of simple models and interpretability of the
solutions.



TAKE-HOME MESSAGE

» t-SNE / UMAP are fine for visualization
» Do not use them for inference (e.g., clustering)

» Linear/more interpretable techniques should be preferred
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