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SINGLE-CELL RNA-SEQ

Sandberg (2014). Nature Methods.



SEVERAL PROTOCOLS AND PLATFORMS

Svensson, Vento-Tormo, Teichmann (2018). Nature Protocols.



DIFFERENT PROTOCOLS HAVE DIFFERENT PROPERTIES



DIFFERENT PROTOCOLS HAVE DIFFERENT PROPERTIES

Ziegenhain et al. (2017). Molecular Cell.



SINGLE-CELL RNA-SEQ IN A NUTSHELL



AMPLIFICATION BIAS LEADS TO…

Owens (2012). Nature.



INCREASED VARIABILITY COMPARED TO “BULK” RNA-SEQ 



EXCESS OF ZERO COUNTS

Cole et al. (2019). Cell Systems.



UNIQUE MOLECULAR IDENTIFIERS



HIGH COMPLEXITY



HIGH DIMENSIONALITY AND SAMPLE SIZE



A TYPICAL WORKFLOW

Amezquita et al. (2020). Nature Methods.



A TYPICAL WORKFLOW

Amezquita et al. (2020). Nature Methods.



THE SINGLECELLEXPERIMENT CLASS

Amezquita et al. (2020). Nature Methods.



DATA PROPERTIES



READ COUNT DISTRIBUTION

Townes et al. (2019). Genome Biology.



UMI COUNT DISTRIBUTION

Townes et al. (2019). Genome Biology.



LOG TRANSFORMATION DOES NOT HELP!

Townes et al. (2019). Genome Biology.



SHOULD WE MODEL ZERO INFLATION?

Svensson (2020). Nature Biotechnology.



SHOULD WE MODEL ZERO INFLATION?

▸ Non-UMI data: very likely. 

▸ UMI data: probably not. 

EXPLORATORY DATA ANALYSIS! 

▸ Measurement vs expression models (Sarkar & Stephens 
2021)

https://www.nature.com/articles/s41588-021-00873-4
https://www.nature.com/articles/s41588-021-00873-4


SHOULD WE MODEL ZERO INFLATION?

Nguyen et al. (2020). arXiv.



QUALITY CONTROL AND FILTERING





DIMENSIONALITY REDUCTION

Wagner, Regev, Yosef (2016). Nature Biotechnology.



DIMENSIONALITY REDUCTION

We talk about “dimensionality reduction” when referring to 
two different goals: 

1. Visualize high-dimensional data 

▸ Usually 2-3 dimensions 

▸ Non-linear, local techniques 

2. Infer low-rank signal from high-dimensional data 

▸ Usually 10-50 dimensions 

▸ Factor analysis models 



PRINCIPAL COMPONENT ANALYSIS (PCA)

▸ PCA is the starting point and baseline approach for both 
types of analysis. 

▸ PCA can be used to visualize high-dimensional data in 2-3 
dimensions. 

▸ PCA can be seen as a solution of a factor analysis model 
for Gaussian data.



DESIRED PROPERTIES OF DIMENSIONALITY REDUCTION MODELS

▸ Accounting for the count nature of the data, over-
dispersion, and possibly zero inflation. 

▸ General and flexible.  

▸ Extract low-dimensional signal from the data.  

▸ Adjust for complex effects (batch effects, sample quality). 

▸ Scalable.



EXAMPLE: TABULA MURIS DATA

Tabula Muris is a project aimed at charcaterizing all cell 
types in the mouse.  

The droplet dataset comprised 70,000 cells from 12 
tissues. 

We see here a random subset of 5,000 cells, limiting the 
dataset to the 1,000 most variable genes.  

TabulaMurisData Bioconductor package. 

http://bioconductor.org/packages/release/data/experiment/html/TabulaMurisData.html


TABULA MURIS: PCA (LOG SCALE)



TABULA MURIS: PCA AFTER SCRAN NORMALIZATION (LOG SCALE)



TABULA MURIS: T-SNE



TABULA MURIS: UMAP (ALL CELLS)



PCA IS A LINEAR METHOD

▸ One way to define the first principal component is: the 
linear combination of the original variables that explain the 
most variability in the data. 

▸ Similarly, subsequent PCs are linear combinations of the 
original variables that are orthogonal to the first and explain 
the most variance among the orthogonal combinations. 

▸ Are we limiting ourselves by only looking at linear 
combinations?  

▸ Would a non-linear method have more flexibility in 
explaining our data?



T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

▸ One option, very popular in single-cell genomics, is t-
distributed Stochastic Neighbor Embedding (t-SNE). 

▸ Briefly, the problem that we want to solve is to represent in 
a 2-3 dimensional map (embedding) the observations 
from a high-dimensional space preserving as much as 
possible the distance between points.



STOCHASTIC EMBEDDING: PROBABILISTIC REPRESENTATION OF DISTANCES

▸ Similarity between two points,  and  in the original high-
dimensional space is given by 

▸ Essentially, the probability that  would pick  as its 
neighbor. 

▸ We set  and actually use a symmetrized version that 
ensures . 

xi xj

xi xj

pi|i = 0
pij = pji

Hinton and Roweis (2002)



STOCHASTIC EMBEDDING: PROBABILISTIC REPRESENTATION OF DISTANCES

▸ We could define a similar density in the low-dimensional 
space, but we use a t-distribution instead of a Gaussian 
kernel 

▸ The t distribution has heavier tails and partially account for 
the crowding problem.



T-SNE ALGORITHM 

▸ We minimize the Kullback-Leibler (KL) divergence 
between the two distributions with gradient descent.

van der Maaten et al. (2008) 



CHOICE OF σ2

▸ It’s not appropriate to have a single value of  as you 
need a smaller value in more dense regions. 

▸ The user controls it through a parameter called perplexity  

▸ Perplexity can have a big impact on the result!

σ2



T-SNE ART, OR THE CHOICE OF THE PERPLEXITY PARAMETER

https://distill.pub/2016/misread-tsne/



LIMITATIONS OF T-SNE (AND UMAP)

▸ Unlike PCA, we do not have a simple interpretation for our 
low-dimensional embedding (the axes have “no 
meaning”). 

▸ t-SNE preserves only the local structure (who is neighbor 
of whom) but not the global structure  

▸ There is no guarantee of convergence to the global 
minimum (non-convex problem), hence different runs will 
lead to different embeddings. 

▸ Some argue that t-SNE and UMAP do not even preserve 
the local structure or the neighbors (Chari et al. 2021)



LIMITATIONS OF T-SNE (AND UMAP)

▸ The “shape” of the data in the embedding is arbitrary.

Chari et al (2021). bioRxiv.



FACTOR ANALYSIS

From a statistical model’s perspective, we can state the 
problem using the following model 

Y = Wα + ε

Y

n cells x J genes 

= W

n x k factors

k x J 

α



FACTOR ANALYSIS

The goal is to find  factors that descrive, with the 
minimum possible loss of information, the J  original 
variables (genes). 

We can show that if  (or equivalently ) is Gaussian, a 
solution of the model is PCA.

k ≪ J

ε Y



ADVANTAGES OF PCA

In one word: interpretability! 

▸ The first principal component is the direction of greater 
variability in the data. 

▸ It is easy to compute the variance explain by the first m 
principal components. 

▸ Very computationally efficient.



SO… WHY NOT PCA?

The main issue of PCA for single-cell data is that the data 
are non-negative integer counts, which exhibit skewed 
distributions and are not well fit by a Gaussian model. 

A simple, and somewhat effective, solution is to transform 
the data, e.g., by , but this is not always 
straightforward: 

▸ Which transformation to use? 

▸ Do we need to normalize the data for sequencing depth 
and other cell-specific effects? 

▸ Zero counts complicate the analysis.

log(x + 1)



REMEMBER THE EFFECT OF LOG TRANSFORMATION…

Townes et al. (2019). Genome Biology.



GLM-PCA

One alternative to transforming the data, is to generalize 
our model to non-Gaussian data. 

This can be done by defining a set of models, known as 
GLM-PCA () that extend the framework to a set of well 
behaving distributions (exponential family) similar to how 
GLM extends the linear model. 

In particular, since we have count data, we can use the 
Poisson or negative binomial model, which has a log link 
function. 

 E[Y |W] = μ, log μ = Wα

Townes et al. (2019). Genome Biology. 
scry package

http://bicoonductor.org/packages/scry


GLM-PCA / WANTED VARIATION EXTRACTION

A further generalization allows us to include observed 
covariates in the model. These can be covariates at the cell 
and gene level and it is useful for normalization and batch 
effect correction.

Risso et al. (2018). Nature Communications.

NewWave package

http://bioconductor.org/packages/NewWave


TABULA MURIS: PCA AFTER SCRAN NORMALIZATION (LOG SCALE)



TABULA MURIS: GLM-PCA (POISSON)



TABULA MURIS: NEWAVE (NEGATIVE BINOMIAL)



SCALABILITY

Agostinis et al. (2022). Bioinformatics.



SCALABILITY

▸ Townes et al. (2019) propose an approximate approach to 
speed up computations. 

▸ Essentially, they compute Pearson or deviance residuals of 
a GLM fit on each gene independently, and then compute 
PCA of the rediduals. 

▸ A similar approach, correspondence analysis, uses chi-
squared Pearson residuals + PCA/SVD. 

▸ These methods are implemented in the scry and corral 
Bioconductor packages, respectively.

http://bioconductor.org/packages/scry
http://bioconductor.org/packages/corral


WHICH SHOULD I USE?

Sun et al. (2019). Genome Biology.



MORE QUESTIONS THAN ANSWERS

▸ How many factors should I estimate? 

▸ Should I include covariates? Which ones? 

▸ If PCA, should I center/scale? 

▸ Which data transformations should I use? 

▸ Which normalization should I use? 

▸ Why not deep neural networks? (That should take care of it!) 

▸ Importance of simple models and interpretability of the 
solutions.



TAKE-HOME MESSAGE

▸ t-SNE / UMAP are fine for visualization 

▸ Do not use them for inference (e.g., clustering) 

▸ Linear/more interpretable techniques should be preferred 



THANKS FOR YOUR ATTENTION!


