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SEQUENCING TECHNOLOGIES

3rd-generation &
single-molecule
DNA sequencing

Since ~2010

Sanger DNA
sequencing sequencing

1977-1990s Since mid-1990s Since ~2007

DNA Microarrays 2nd-generation DNA

» Second generation
» Millions of reads per sample
» Each read ~100-300 bp
» Very low error rates
» Third generation
» Much longer reads: up to full RNA molecule
» Not as many reads
» Much higher error rates



RNA SEQUENCING
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RNA-SEQ

» Compared to DNA sequencing, RNA sequencing is more
challenging:

1. While with DNA sequencing it is reasonable to assume a uniform coverage of the
genome, this is not the case for the transcriptome.

Few genes with many
reads and many
genes with few reads
(Z1pf Law).

Expression levels

ression Level [nllmber of reads]

Log scale

Genes ranked by expression

Griebel et al, NAR 2012



RNA-SEQ

» Compared to DNA sequencing, RNA sequencing is more
challenging:

2. A read does not necessarily correspond to a contiguous genomic region.

Chromosome 10, Homo sapiens

FTEN -

ACBE306S., 2 14

Exons of gene PTEN /



RNA-SEQ

» Compared to DNA sequencing, RNA sequencing is more
challenging:

3. Aread can be associated to more than one transcript.

Chromosome 10, Homo sapiens

FTEN m
FTEN
FTEN i}

I

PTEN has three isoforms Unambiguous assignment to
isoform one.
Ambiguous assignment:
The read may arise from any of the isoforms



LIBRARY PREPARATION PROTOCOLS

» One advantage of lllumina sequencing is its versatility.

» Different types of libraries can be used depending on the
biological question at hand.

Single-end sequencing.

We sequence only one of the two ends of each fragment of cDNA.

Read I



ALTERNATIVE SPLICING

» Single-end sequencing provide short-range information
(100-200 bp), while alternative splicing can involve long
exons.

» To quantify isoform expression levels, we need reads that
map to exon-exon junctions.

» Only a small fraction of reads will map to splice junctions.

Pre-mRNA

Mature mRNA

Exonic reads " \

Junction reads



PAIRED-END SEQUENCING

» Paired-end sequencing allows us to simultaneously

measure both ends of each fragment.

Read 1 —

Read 2

» Often the two reads do not “touch” each other

» We simply ignore the internal sequence.

» However, we can infer the relative position of the reads from the average
fragment length.
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READ ALIGNMENT

» Since the technology allows to sequence only short reads,
it is not straightforward to understand where the reads
come from in the genome.

» A necessary step, called alignment, maps the reads to
their origin in either the genome or the transcriptome.

» Once we have aligned the reads, we need to quantify
gene expression by “counting” how many reads mapped
to a given gene.

» The counts are our estimate of the gene expression level.



GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG

Reads

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG




GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC

Reads

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG




GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC
TGTCTTTGATTCCTG CGCGATAGCATTGCG GCATTGCGAGACGCT CCTATGTCGCAGTAT

Reads

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG




Reads

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA

Your genome

TATGTCGCAGTATCT
GGTATGCACGCGATA
CGCGATAGCATTGCG
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT
ACCTACGTTCAATAT
CTATCACCCTATTAA
GCACCTACGTTCAAT
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT

CACCCTATGTCGCAG
TGGAGCCGGAGCACC
GCATTGCGAGACGCT
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG
TATTTATCGCACCTA
CTGTCTTTGATTCCT
GTCTGGGGGGTATGC
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG

GAGACGCTGGAGCCG

CGCTGGAGCCGGAGC
CCTATGTCGCAGTAT
CCTCATCCTATTATT
ACCCTATTAACCACT
CACGCGATAGCATTG
CCACTCACGGGAGCT
ACTCACGGGAGCTCT
AGCCGGAGCACCCTA
CCTCATCCTATTATT
ACCCTATTAACCACT
CACGCGATAGCATTG

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG



Reads

<« 100 nt —

Your genome

100,000,000 nt
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<« 100 nt

Reads
Your genome



READS ARE CHARACTER STRINGS

GTATGCACGCGATAG
TAGCATTGCGAGACG
TGTCTTTGATTCCTG
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
GTATGCACGCGATAG
GCGAGACGCTGGAGC
CCTACGTTCAATATT
GACGCTGGAGCCGGA
TATCGCACCTACGTT
CACGGGAGCTCTCCA
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TATGTCGCAGTATCT
GGTATGCACGCGATA
CGCGATAGCATTGCG
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT
ACCTACGTTCAATAT
CTATCACCCTATTAA
GCACCTACGTTCAAT
GCACCCTATGTCGCA
CAATATTCGATCATG
TGCATTTGGTATTTT
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CACCCTATGTCGCAG
TGGAGCCGGAGCACC
GCATTGCGAGACGCT
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG
TATTTATCGCACCTA
CTGTCTTTGATTCCT
GTCTGGGGGGTATGC
GTATCTGTCTTTGAT
GATCACAGGTCTATC
CGTCTGGGGGGTATG

——
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» Reads are character
strings

» The character
sequence is the only
information that we
have on the origin of
the reads.

» Like a jigsaw puzzle,

we need to
reconstruct the picture
from individual pieces.
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» Many algorithms have been developed in the computer
science literature to solve this problem.



DIFFICULTIES

Reference transcripts
MRNA1 AAAAAAAAAA

ﬁ
MRNA2 AAAAAAAAAA

Nt o

Sequence read =———

MRNA3 AAAAAAAAA

X X_Aa

» An alignment algorithm must support mismatches.

» Mismatches are due to either sequencing errors or
mutations.



GENOME OR TRANSCRIPTOME ALIGNMENT?

Reference : % EEE =... 555

AAAAAAAAAA genome A P

MRNAS AAAAAAAAAA EE . gi gg Eé E? gg EE 55 EE

AAAAAAAAAA

Sequence read =——

Reference transcriptome

» Reads can be aligned either to the genome or the transcriptome, i.e., the set of all
transcripts.

» Only about 5-10% of the genome is transcribed; hence transcript alignment is faster
computationally.

» However, because of alternative splicing, many transcripts share large portions of their
sequences, leading to multiply mapped reads (o multi-reads), i.e., reads that map to
more than one transcript.

» On the other hand, mapping reads to the genome is complicated by splicing, i.e. reads
consist of non adjacent regions in the genome.



GENOME ALIGNMENT

» We do not have time to go into the algorithmic details, but
many modern software packages (e.g., BWA, Bowtie) use
the Burrows-Wheeler transformation to speed up the
search for matching sequences.

» They also implement a backtracking algorithm to allow
for mismatches.

» More details:

» https://langmead-lab.org/teaching-materials/

» https://kingsfordlab.cbd.cmu.edu/teaching/


https://langmead-lab.org/teaching-materials/
https://kingsfordlab.cbd.cmu.edu/teaching/

GENOME ALIGNMENT (WITH SPLICING)

Exon 1 Intron Exon 2

D = T RNA withintron

l

Exon 1 Exon 2

—— T RNA with intron

removed
1

RNA-seq read

First half of Second half of

read aligns read aligns

here here
O O

DNA

https://discoveringthegenome.org/discovering-genome/rna-sequencing-up-close-data/spliced-alignment



TOPHAT

One strategy is that employed by TopHat

Map reads to whole
genome with Bowtie

N

Collect initially
unmappable reads

|

» In the first step it aligns the reads to the
genome.

it

iAW

» It collects all the non-aligned reads o
(potentially caused by splicing).

covered regions

» It groups the genomic regions covered by - e sy
. T P gt 2g ag neighboring
alignments in “islands”. '
Build seed table
. . indexfrotm
» It enumerates all possible canonical unmappable reads
splicing patterns (GT-AG) among islands. /
Map read§ to possible
» Non-aligned reads are compared to o R
potential splicing sites.

Trapnell et al, 2009



STAR

» An alternative approach is STAR.

» It searches for the Maximal Mappable Prefix (MMP) of each
read against the genome.

» In (a) the first part of the read corresponds to an exon
» The alignment stops at the exon-intron boundary

» The mapping is resumed for the read part not yet
mapped.

» Very efficient search based on a pre-computed suffix array.

(a) Map Map again
MMP1 i MMP2

] RNA-seq read
]
!

exon€the genome
Stopped alignment

Dobin et al, 2013



QUANTIFICATION

Mangul et al, BMC Genomics 2014

MmRNA

Fragments

Reads

ENSOARG00000012206
ENSOARG00000013019
ENSOARG00000003744
ENSOARG00000010688
ENSOARG00000013111

ENSOARG00000002590

ENSOARG00000004595

ENSOARG00000006889

ENSOARG00000019083

ENSOARG00000015144
ENSOARG00000017942
| |ENSOARG00000014097
ENSOARG00000009793
ENSOARG00000009377
| | |ENSOARG00000012340

| ENSOARG00000002247

| ENSOARG00000006362

ENSOARG00000020977
| ENSOARG00000026415



DIRECT COUNTING

The simplest method we can think of:

Align the reads to the genome
ldentify regions corresponding to exons

Count the number of reads mapped to each exon

B w o=

Sum the counts for all exons of a given gene
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Shamimuzzaman et al, Plos ONE. 2018



AMBIGUOUS READS

This simple strategy is not sufficient to deal with alternative
splicing.

» Aread can be aligned to an exon shared by more transcripts.

» In quantifying transcript expression to which isoform do we assign the read?

) ;_;‘_\ Reads from first isoform
| E— S |
Three hypOthetical o -—; Reads from second isoform
examples
L—
- I
E E

Trapnell et al, Nature Biotech. 2012 Unique Ambiguous



GENE- OR TRANSCRIPT-LEVEL SUMMARIES?

.|
Corporate needs you to find the differences

between this picture and this picture.




A STATISTICAL MODEL

» A more proper solution is to develop a statistical
approach.

» We define and estimate a set of parameters, some latent,
that allow us to fully leverage the information present in
the data to infer gene expression.

’ ;_;‘—\ Reads from first isoform
Co— —

Three hypothetical e —— Reads from second isoform
examples e —

B

. I
_E

Trapnell et al, Nature Biotech. 2012 Unique Ambiguous



RNA-SEQ BY EXPECTATION-MAXIMIZATION (RSEM)

Genome Transcript RNA-Seq reads
sequences and OR sequences (FASTA/
gene annotation (FASTA) FASTQ)

. (FASTA,GTF)
» An example of such approach is &/
RSEM
rsem-
prepare-
reference

» Available as open-source
software:

User-
RSEM provided
references read
: aligner

Read .

» It starts from a set of aligned
reads (typically aligned to the
transcriptome).

gene_1id effective_length expected_count

rsem-
calculate- - alignments simulate-
expression

(SAMBAM) . %] reads

ESG000001 829.31 128.00 Probabilistically- ~ Sequencing Genelisoform
ESG000002 317.31 14.00 weighted model abundance
ESG000002 223.32 0.00 alignments parameter estimates and
ESG000002 282.31 4.00 (BAM) estimates credibility

ESG000003 1496.31 22.26
ESG000003 1524 .31 10.32
ESGO00003 1596.31 22.10
ESG000003 1118.31 18.32
ESGO00004 65.33 0.00
ESG000004 56.33 0.00
ESG000004 218.32 38.00
ESG000004 158.32 0.00
ESGO0000S5 1941.31 0.00

intervals
rsem-
bam2wig

Expected read Model parameter
count distribution  diagnostic plots
(UCSC Wiggle) (PDF)

SRR ESEE SRS ESE SRR I o))

Li et al, Bioinformatics 2011


https://deweylab.github.io/RSEM/

RSEM GENERATIVE MODEL

» We focus on the initial, simpler version of RSEM (Li et al. 2009)

» R, represents the observed reads (n = 1,..., N) and is the only observed
quantity.

» 0 =10,,...,0,] is the vector of transcript abundances, which we want to
estimate.

» There are several latent variables:

» G : the isoform that generates R,..
» S, : the position in the isoform.

» O, : the strand.



LIKELIHOOD

o

N
P(g,s,0,r|0) = HP(gn |O)P(s, | 8,)P(0, | 8,)P (1, | &> 8, 0p) -

n=1

» We only observe R, and we cannot directly compute the
likelihood.

» RSEM uses an Expectation-Maximization (EM) algorithm to
maximize the likelihood.



E STEP

» Assume that we know 0.

» We define the indicator Z:

V4

nijk — l <= ( On) — (iaja k)

» Compute the probability that read n comes from transcript
i.
Transcript length -———/(-)\ ’—A Read alignments
O /1)P(r,
11 gy - 2O DP 12 = 1)

Transcript abundance Z (Q(t)/l )P (l" ‘

P(Z

ny —
ni'j' )



E STEP — EXAMPLE

|
t

Transcript i=1

Transcript i=2

\- Read 5

P(”s Zs 11 —1>=O
P(r5 Zs 1100 = 1) =0
P(”s Zsh) —1>=O
P(f’s Lspgs = 1) =1

0 /6:)P(rn|Zni; = 1)

_ 1)y =
P =) = S @ 1) Pl Zury =1




E STEP — EXAMPLE

Transcript i=1

C
Transcript i=2 I —

\- Read 9

P(Znij = 1|’I°,9(t)) —

(65 /0)P(rp| Zni; = 1)

S0 (00 [£) P(rn| Zniryr = 1)




M STEP

» Assume you have a current estimate of the probabilities
(from the E step)

» We look for the values of 8 that explain the most of those

probabilities.
P(Zni; = 1r,0) (1)

[— Estimated count for transcript i, based on (1)

C.lr,0W
i+ — \
’ N

... dipends on the estimate at the

previous iteration (1)
Estimate at iteration t+1

Normalization factor




M STEP — EXAMPLE

Transcript i=1 I —
Transcript i=2 I s I
9 5
P("5|ZS,2,75 =1>=1
P(:» Zo 120 = 1) =0.5
o| Zosax C,=14+05=15
Assumptions: " Ci r, H(t)
1. No sequencing errors 91'( +) —

2. All transcripts have the same length N




CONVERGENCE

» The E and M steps are alternated until convergence.

» l.e., at each step until the estimates of 8% and 8! are so
close that are almost indistinguishable.

» By default the relative difference is setto 107°.






SALMON

» An alternative faster
approach

» Available as open-source
software:

https://github.com/COMBINE-lab/salmon

» It uses quasi-mapping to
speed up computations

» It can process 600M
paired-end reads in 20
minutes.

raw reads input transcripts

(e.qg. fastq files)

[quasi-mapping J

online inference
[SCVBO0]

Salmon execution timeline

aligned reads (e.g. bam file) &

reference transcripts
J‘- —

initial abundances &
fragment eijiv. classes

Online inference of abundance

Estimation of "foreground" bias models

Computation of equivalence class weights

Estimation of background bias models _ |
Recomputation of effective lengths o[fgm:n\fggn&e
Offline algorithm runs until convergence

converged abundances &
fragment e$iv. classes

Draw and save estimates from the
posterior distribution of read counts
(if requested)
|

W
Y

A \
' Optional |

Posterior sampling |
'\ (Gibbs or bootstrap) |

Patro et al, Nature Methods 2017


https://github.com/COMBINE-lab/salmon

QUASI-MAPPING

» Alignment is the step with the main computational cost:

» High computational time

» High memory consumption

» In some cases we do need the full read alignments
» E.g., variant calling (SNPs).

» If we are only interested in expression quantification, it is
possible to leverage alternative algorithms that do not

require the full mapping.

» There are several alternative strategies called quasi-
mapping or pseudo-alignment.



QUASI-MAPPING

» We start from the sequences of all transcripts.

» We concatenate the sequences.

» Separated by a special character (e.g., «$»).
We construct two structures:

» Asuffix array SA, similar to STAR.

» Atable (hash map) that maps all the sequences of a fixed length (k-mers) to the
positions in the SA.

Transcriplome (T) with separaior
18] I$] 18! IS Isl____IS|

L] t & LN fs fe

|
'
'
'
: Maerum Mappabie Profa _uu\ Next Informative Positon — NIP(MMP)
' ¥
'
'

Al — Ko | g
Aad / P
‘.
\ ...-
) Yable —
y ahTede h-.* K [b.o)\
.
. \
.
-

-
Suttix Array(T) by ¥ ¢ e

“.aap

o
Sk
- >
=~

=

PO >0 > ;

Srivastava et al, Bioinformatics 2016
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SEARCH PHASE

» Givenaread R

» We select the first k nucleotides.
» We search for them in the hash map.
» We find the corresponding interval in the SA.

» We expand the search to the following positions, until we find exact matches.

» Every time that we find a mismatch the procedure starts
again from the next position in the read.

» Once the process is complete, we have a map:

Transcriplome (T) with Separ e

{ 18] I$1 18 18] I$l___IS|
L] t L1 I fy fe

» R, — Tj, P, (\' Read i is compatible with ' g oA e -

transcript | at position k ~

» R—=T,P . =

, ! “h'-* k | [b.e)
-
-

-~ S .
Suttc Arra(T) by b e
- -

-->




CONSENSUS PHASE

» Given the map:
» Ry = Ts5, Py
» Ry = 15, Psg
» Ry = Ts, Piogo
» Ry = To, Pyqg

» The only transcript compatible with all positions is T«.

» We take the intersection of all transcripts associated to R.

» This procedure is computationally very efficient.



COMPUTATIONAL TIME

Quasi-mapping is much faster than full mapping.

» «RapMap» indicates quasi-mapping here.

450

A bowtie-2
440
B STAR
430 [ @ RapMap
2 | index loading (RapMap) A
—
&
2 410
-
.a 400 .2~
~— 140 .
@ 120 -
.g 100
—
80
60 O
40
20| o u I
* K T e YRR S
1 2 4 8 10

# of threads

Srivastava et al, Bioinformatics 2016



ACCURACY

Metric Bowtie 2 RapMap STAR
Reads aligned 47579 567 47613536 44711604
Recall 97.41 97.49 91.35
Precision 98.31 98.48 97.02
F1-score 97.86 97.98 94.10

FDR 1.69 1.52 2.98

Hits per read 5.98 4.30 3.80

Srivastava et al, Bioinformatics 2016 As accurate as mapping



EXPRESSION QUANTIFICATION

» Once we have the quasi-alignment results, we need to
quantify each transcript expression.

» Salmon uses a statistical model conceptually similar to that
of RSEM.

» Compared to the simplified version that we considered, it
models:

» Fragment size.

» Positional bias and transcript coverage.
» 3'and 5’ bias.

» GC-content.
» Strand-specificity.

See Patro et al. (2017) for details



https://www.nature.com/articles/nmeth.4197

OUTPUT

4

TS ambig_infoutsv
cmd_info.json eg_classes.txt
lib_format_counts.json E exp_gc.gz
libParams » exp3_seq.gz

wTogs e, » | exp5_seq.gz
quant.sf E expected_bias.gz
E fld.gz

Name ” EffectiveLength TPM NumReads
gl FBtr0300689 1778.091 0.313895 108.834419
N B+t 0300690 1679.369 .000000 0.000000
FBtr0330654 1745.416 .388321 132.165581
FBtro078170 5524.612 .794682 3010.663799
FBtro078171 5701.112 .489761 2767.867139
FBtro078166 5407 .390 946784 2052.738297
.002253 2.415510
.347060 371.823352
216444 225.067139
.034544  37.720822
.030890 32.765518

FBtro0/8167/ 5498 .154
FBtro0/81638 5494 .193
FBtrod/78169 5332.590
FBtr0306589 5599.851
FBtro306590 5439.720

SO OSSO PP NNOS



NORMALIZED EXPRESSION

» Both RSEM and Salmon return, in addition to expected
counts, two expression measures:

» FPKM
» TPM

» They are both attempts at normalizing gene expression.

» Intuitively, the number of reads for each gene depends, in
addition to its gene expression, on:

1. Sequencing depth. E.g., if we sequence twice as many total reads, we will have
on average double counts.
2. Transcript length. l.e., the longer the transcript the more reads we are likely to

sequence.



FPKM

» Acronym of:

fragments per kilobase of exon model per million mapped reads

Number of reads Transcript length Sequencing depth
» l.e., for each transcript I: ]
0 r; 10°
r; 10 n
Jpkm, = - = x
I 106
R = r



Wagner et al, Theory Biosci. 2012

TPM

Acronym of transcripts per million.

6
r; X L X‘,IO\ Read length

[ X R

R=Zri7L

Ipm, =

ieT ’
Constant average value across
experiments
Species Tissue/cell type Replicate AvTPM AVFPKM
Human Differentiated decidual cells 1 46.518 15.94
2 46.518 16.13
Human Un-differentiated dec. cells 1 46.518 15.27
2 46.518 15.22
Human Myofibroblast cells 1 46.518 17.66
2 46.518 17.65
Human Chondrocyte cells 1 46.518 16.57
2 46.518 16.57
Human Myometrial cells 1 46.518 17.77
2 46.518 17.79



DATA REPRESENTATION

» At the end of the quantification process, the data can be
represented as a numeric matrix, which contains non-negative
Integers.

» Very oftenn < p



DATA REPRESENTATION

» Columns correspond to statistical units (samples, individuals,
cell lines, ...)

» Rows correspond to features (genes, transcripts)

» Furthermore, we often have additional information on genes
and/or samples, often referred to metadata.



DATA REPRESENTATION IN R/BIOCONDUCTOR

se <-SummarizedExperiment (
assays,
rowData,
colData,
exptData

)

colData (se)

colData (se) Stissue
seStissue

Samples

se %in% CNVs

) (7))
() ()
=
() ()]
LS, LS
7)) N
) ()}
! —
=5 | )
+— +—
(4)) ()]
() (D)
L EE

rowData (se) assays (se) exptData (se)

rowData (se) $SentrezId assays(se) Scount exptData(se)S$projectld






