Immunoinformatics

Computational approaches to study the human immune system

Katharina Imkeller

University Hospital Frankfurt and Frankfurt Cancer Institute

CSAMA 2022

FRANKFURT CANCER INSTITUTE

Goals for this lecture

Get to know computational approaches to study:

- 1. Cell types and phenotypes
- 2. Interactions of immune cells
- 3. Antigen specificity

1. Cell types and phenotypes

- 2. Interactions of immune cells
- 3. Antigen specificity

How immunologists usually define cell types

FACS gating for cell type identification

Identification of cell types by clusters of differentiation (CD)

371 defined clusters of differentiation

Historical origin: grouping of antibodies that bind to the same cell surface antigen.

Challenges for immunoinformatics:

- consistent usage of CD nomenclature dependent on field of immunology
- CD nomenclature does not always correspond to protein name/gene name
- antibody binding != surface marker expression
 != gene expression

Cell type assignment in the single cell transcriptomics analysis workflow

Very likely: scRNA cell type not exactly identical to FACS cell type scSeq analysis workflow (see single-cell lecture by D. Risso)

Amezquita et al 2022

Manual annotation using marker gene detection

Bioconductor package: scran Functions: scoreMarkers(), findMarkers()

Expression of marker genes

Automated cell type annotation using Bioconductor

Bioconductor packages: SingleR, celldex Documentation: http://bioconductor.org/books/release/SingleRBook/

SingleR returns prediction scores and cell type labels

Scores for cell type assignment Scores for assigned labels are indicated in red

Reference: BlueprintEncodeData()

Dependent on the reference, the predictions may change

sc-seq datasets generated using different experimental method

10x genomics 3` Whole transcriptome, poly(A)-enrichment

Amplified cDNA processing (dual index) Read 1 UMI Poly(dT)VN TS0 10x Barcode **Enzymatic Fragmentation** End Repair, A-tailing, Ligation Read 2 Cleanup & Priming Sample Index (i7) P7 P5 Sample Sample Index PCR Index (i5) P5 Read 1 10x UMI Poly(dT)VN Barcode

BD Rhapsody targeted Panel sequencing (primers for ~ 4000 genes)

cDNA archived on bead and tagged with cell label and molecular index

Whole transcriptome reference to annotate a targeted sequencing dataset

cell_type

- CD4+ CD25+ FOXP3+ Tregs
- CD4+ CD26+ CD45RO+ KLRB1+ memory
- CD4+ CD5+ CD6+ cytotoxic
- CD4+ naive
- CD4+ NK-like FCGR3A+
- CD4+ RGS1+ ICOS+ memory
- CD8+ CD45RA+ FCGR3A+ effector memory
- CD8+ effector memory
- CD8+ naive
- CD8+ tissue resident memory
- CD8+ TNF+ IFNG+ effector memory
- gamma/delta T cell
- NKT cells

Take home messages for cell type assignment

Automated cell type assignment:

- Works well for common cell populations sequenced with whole transcriptome sequencing.
- Does not work well if you enrich for rare cell populations (NKT cells, atypical B cells)
- Does not work well for other sequencing approaches.

Recommendations from my own experience:

- Check that the markers you expect are also expressed in the clusters.
- If you have many different cell types, split the data into subpopulations (B cells, T cells, tumor cells...). Independent subsequent analysis.
- After annotating, save an annotated intermediate object for downstream analysis.

Outline of the lecture

1. Cell types and phenotypes

2. Interactions of immune cells

3. Antigen specificity

Ligand - Receptor interactions

Here: Receptors and ligands encoded in the germline

Experimental measurements:

- Mass spectrometry of complexes
- Binding assays
- Affinity measurements

Databases of ligands and receptors:

- Cellinker
- CellChat
- CellPhoneDB
- iCELLNET

Workflow for scoring receptor-ligand interactions

Armingol et al. Nat Rev Genetics (2021)

Please see reference for complete list of tools and methods...

Armingol et al. Nat Rev Genetics (2021)

Application: Identifying receptor-ligand interactions between cell types

Vento-Tormo (2018)

Outline of the lecture

- 1. Cell types and phenotypes
- 2. Interactions of immune cells
- 3. Antigen specificity

Adaptive immune receptors are specific for a particular antigen

Annotating immunoglobulin sequences

					CDR3-IMGT>																											
				Т	A V	Y	F	С	A	R	D	L	S	С	Т	S	Т	Т	Т	CI	- I	R P	L	K	Т	N	Υ	G	Μ	D	V	
		Query_1	362	ACG	CTGT	TTA	ГТТС	TGT	GCG	AGA	GAT	TTG	AGT	TGT	ACT	AGT	ACT	ACCA	ACCT	GCC	ATA	GCC	GTT	GAA	GACA	AAC	TAC	GGT	ATG	GAC	GTC	451
V	94.9% (280/295)	IGHV1-3*04	271			G	A.																									295
				Т	A V	Y	Y	С	A	R																						
D	85.0% (17/20)	IGHD2-2*02	10														.G.		G	T												29
J	100.0% (50/50)	IGHJ6*02	13																										• • •			29
D J	85.0% (17/20) 100.0% (50/50)	IGHD2-2*02 IGHJ6*02	10 13														.G.		G	T									 		 	

Features:

- V,D,J usage
- CDR/FWR
- Somatic hypermutations

Annotation tools: IgBLAST, Immcantation, ...

AIRR exchange format

Standard format for annotating adaptive immune receptor sequences

AIRR common repositories

Archives for AIRR sequences and metadata e.g. iReceptor public archive

<u>_</u>			
Input	Alignment Annotations	Alignment Positions	Region
 sequence_aa 	sequence_alignment sequence_alignment_aa	v_sequence_start v_sequence_end	• fwr1
Identifiers	germline_alignment_aa	v_germline_start v_germline_end	fwr1_aa cdr1 cdr1
sequence_id rearrangement_id rearrangement_set_id cell_id clone_id germline_database	 v_cigar v_identity v_score v_support d_cigar d_identity d_score 	 v_alignment_start v_alignment_end d_sequence_start d_sequence_end d_germline_start d_germline_end d_alignment_start 	• fwr2 • fwr2_aa • cdr2 • cdr2_aa • fwr3 • fwr3_aa • cdr3
Primary Annotations	 d_support j_cigar j_identity j_score 	 j_sequence_start j_sequence_end j_germline_start 	cdr3_aa fwr4 fwr4_aa np1
 locus v_call d_call i.coll 	 j_support c_cigar c_identity c_score 	j_germline_end j_alignment_start j_alignment_end	• np1_aa • np2 • np2_aa
 c_call rev_comp productive 	 c_support v_sequence_alignment v_sequence_alignment_aa 	Junction Lengths	Region Positions
 vj_in_frame stop_codon junction junction_aa duplicate_count consensus_count 	 d_sequence_alignment_aa j_sequence_alignment_aa j_sequence_alignment_aa c_sequence_alignment_aa c_sequence_alignment_aa v_germline_alignment_aa d_germline_alignment_aa j_germline_alignment_aa j_germline_alignment_aa c_germline_alignment_aa c_germline_alignment_aa c_germline_alignment_aa 	 junction_length np1_length np2_length n1_length n2_length p3v_length p5d_length p3d_length p5j_length 	 fwr1_start fwr1_end cdr1_start cdr1_end fwr2_start fwr2_end cdr2_start cdr2_start cdr3_start fwr3_end cdr3_start cdr3_end fwr4_start fwr4_end

AIRR Rearrangement Schema

Adaptive immune receptor repertoire (AIRR)

Repertoire:

All B or T cells with their antigen receptor present in an individual at a given time

- ~10¹² possible combinations
- "Public" receptors are extremely rare

Single-cell sequencing including AIRR (VDJ-seq)

First single-cell receptors sequenced long before the single-cell era!

Challenge: maintain heavy/light chain association.

Wardemann, Busse (2017)

Trends in Immunology

10x genomics VDJ sequencing: Linking heavy and light chain via the cellular barcode

10x genomics VDJ - read annotation

Algorithm overview

TCR Clonotypes and single cell transcriptomic data

Azizi et al. Cell (2018)

Summary

Immune cell types and interactions

- How to automatically annotation immune cell types (or not).
- How to score receptor ligand-receptor interactions in expression datasets.

Antigen specificity and adaptive immune receptor repertoires

- How to annotate adaptive immune receptor repertoires (bulk and single-cell).

Further reading

OSCAR: https://bioconductor.org/books/release/OSCA/

SingleR book: http://bioconductor.org/books/release/SingleRBook/

Review cellular interactions:

Armingol, E., Officer, A., Harismendy, O. *et al.* Deciphering cell–cell interactions and communication from gene expression. *Nat Rev Genet* 22, 71–88 (2021). https://doi.org/10.1038/s41576-020-00292-x

Review B/T cell repertoires:

Philip Bradley and Paul G. Thomas. Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annual Reviews Immunology (2019). https://doi.org/10.1146/annurev-immunol-042718-041757

Katharina Imkeller, Hedda Wardemann. Assessing human B cell repertoire diversity and convergence. Immunological Reviews (2018). https://doi.org/10.1111/imr.12670