Data for DExMA package

Juan Antonio Villatoro-García1,2 and Pedro Carmona-Sáez*

1Department of Statistics and Operational Research. University of Granada
2Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research

*pedro.carmona@genyo.es

May 2, 2024

packageVersionDExMAdata 1.12.0

Contents

1 Package contents 2
2 Sources .. 6
3 Session info 6
1 Package contents

```r
> library(DExMAdata)
> data(IDsDExMA)
> data(SynonymsDExMA)
> data(availableIDs)
> data(availableOrganism)
> data(DExMAExampleData)
```

Firstly, `DExMAExampleData` contains the objects required to perform the DExMA package examples:

- **listMatrixEX**: a list of four expression matrices. The first two matrices contain 200 genes annotated in entrez and the other two contains 175 genes annotated in Official Gene Symbol.
  ```r
  > class(listMatrixEX)
  [1] "list"
  > head(listMatrixEX$Study1)
  Sample1  Sample2  Sample3  Sample4
  100859927  5.439524  6.253319  2.926444  4.4304023
  8086  5.769823  5.971453  1.831349  4.0466288
  8212  7.558708  5.957130  2.365252  3.4352889
  65985  6.070508  7.368602  2.971158  3.7151784
  729522  6.129288  5.774229  3.670696  3.9171749
  13  7.715065  7.516471  1.349453  0.3390772
  ```

- **listPhenodatas**: a list of four phenodatas corresponding to the four expression matrices of the listMatrixEX object.
  ```r
  > class(listPhenodatas)
  [1] "list"
  > head(listPhenodatas$Study1)
  condition gender organism race
  Sample1 Diseased Female Homo Sapiens AA
  Sample2 Diseased Female Homo Sapiens AA
  Sample3 Healthy Female Homo Sapiens AA
  Sample4 Healthy Female Homo Sapiens H
  ```

- **listExpressionSets**: a list of four ExpressionSets objects. It contains the same information as listMatrixEX and listPhenodatas objects.
  ```r
  > class(listExpressionSets)
  [1] "list"
  > listExpressionSets$Study1
  ExpressionSet (storageMode: lockedEnvironment)
  assayData: 200 features, 4 samples
  element names: exprs
  ```
ExpressionSetStudy5: an ExpressionSet object similar to the ExpressionSets objects of `listExpression`

```r
> class(ExpressionSetStudy5)
[1] "ExpressionSet"
attr("package")
[1] "Biobase"
```

ExpressionSet (storageMode: lockedEnvironment)
assayData: 200 features, 6 samples
element names: exprs
protocolData: none
phenoData
rowNames: newSample1 newSample2 ... newSample6 (6 total)
varLabels: condition gender organism race
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
```

**maObjectDif**: the meta-analysis object (`ObjectMA`) created from the `listMatrixEX` and `phenodata` objects information. An `ObjectMA` is the object type used in the DExMA package. This type of object is better explained in the DExMA package.

```r
> str(maObjectDif)
List of 4
$ Study1:List of 2
 ... mExpres : num [1:200, 1:4] 5.44 5.77 7.56 6.07 6.13 ...
 ... attr(*, "dimnames")=List of 2
 $: chr [1:200] "100859927" "8086" "8212" "65985" ...
 $: chr [1:4] "Sample1" "Sample2" "Sample3" "Sample4"
 ... $ condition: num [1:4] 1 1 0 0
$ Study2:List of 2
 ... mExpres : num [1:200, 1:6] 4.37 5.94 5.29 5.69 5.73 ...
 ... attr(*, "dimnames")=List of 2
 $: chr [1:200] "100859927" "8086" "8212" "65985" ...
 $: chr [1:6] "Sample5" "Sample6" "Sample7" "Sample8" ...
 ... $ condition: num [1:6] 1 1 1 0 0 0
$ Study3:List of 2
 ... mExpres : num [1:175, 1:4] 4.5 7.24 6.04 4.96 6.15 ...
 ... attr(*, "dimnames")=List of 2
```
DExMAdata package

• maObjetc: an ObjectMA after setting all the studies of maObjectDif in Official Gene Symbol annotation.

> str(maObject)
List of 4
$ Study1:List of 2
..$ mExpres : num [1:144, 1:4] 5.44 5.77 7.56 6.07 ... attr(*, "dimnames")=List of 2 ..$ : chr [1:144] "AAA4" "AAAS" "AABT" "AACS" ...
..$ : chr [1:4] "Sample1" "Sample2" "Sample3" "Sample4" ...
..$ condition: num [1:4] 1 1 0 0

$ Study2:List of 2
..$ mExpres : num [1:144, 1:6] 4.37 5.94 5.29 5.69 5.73 ... attr(*, "dimnames")=List of 2 ..$ : chr [1:144] "AAA4" "AAAS" "AABT" "AACS" ...
..$ : chr [1:6] "Sample5" "Sample6" "Sample7" "Sample8" ...
..$ condition: num [1:6] 1 1 1 0 0 0

$ Study3:List of 2
..$ mExpres : num [1:175, 1:4] 6.37 6.28 4.59 4.6 ... attr(*, "dimnames")=List of 2 ..$ : chr [1:175] "AARS1" "AATF" "ABCC2" "ABCD1P4" ...
..$ : chr [1:4] "Sample11" "Sample12" "Sample13" "Sample14" ...
..$ condition: num [1:4] 1 1 0 0

$ Study4:List of 2
..$ mExpres : num [1:175, 1:6] 5.79 5.59 4.61 4.6 ... attr(*, "dimnames")=List of 2 ..$ : chr [1:175] "AARS1" "AATF" "ABCC2" "ABCD1P4" ...
..$ : chr [1:6] "Sample15" "Sample16" "Sample17" "Sample18" ...
..$ condition: num [1:6] 1 1 1 0 0 0

On the other hand, IDsDExMA and SynonymsDExMA are the necessary objects to be able to apply the allSameID() function of the package DExMA.

IDsDExMA is a dataframe that contains the equivalences between the different types of IDs. It also contains a column with the organism to which the annotation refers.

> class(IDsDExMA)
[1] "data.frame"

> length(IDsDExMA)
[1] 4
DExMAdata package

> names(IDsDExMA)
[1] "GeneSymbol" "Entrez" "Ensembl" "Organism"

> head(IDsDExMA$Entrez)
[1] "53288" "27777" "27778" "71661" "76253" "78297"

> head(IDsDExMA$Genesymbol)
NULL

> class(SynonymsDExMA)
[1] "data.frame"

> head(SynonymsDExMA)
   Name GeneSymbol Organism
1   A1m    Pzp Mus musculus
2 AI893533 Pzp Mus musculus
4       MAM Pzp Mus musculus
5       Pzp    Pzp Mus musculus
9      Nat-2    Aanat Mus musculus
10  AA-NAT    Aanat Mus musculus

SynonymsDExMA is a data.frame of 3 columns that contains other possible names that a
gene can have in a organism and its equivalent annotation in Official Gene Symbol.

> class(SynonymsDExMA)
[1] "data.frame"

> head(SynonymsDExMA)
   Name GeneSymbol Organism
1   A1m    Pzp Mus musculus
2 AI893533 Pzp Mus musculus
4       MAM Pzp Mus musculus
5       Pzp    Pzp Mus musculus
9      Nat-2    Aanat Mus musculus
10  AA-NAT    Aanat Mus musculus

availableIDs is a character vector that contains the different IDs that are available to use in
allSameID function. It is recommended to look this object before making use of allSameID
function.

> availableIDs
[1] "Entrez" "Ensembl" "GeneSymbol"

availableOrganism is a character vector that contains the different organism that are avail-
able to use in allSameID function. Like availableIDs object, it is recommended to look this
object before making use of allSameID function.

> availableOrganism
[1] "Bos taurus" "Caenorhabditis elegans"
[3] "Canis familiaris" "Danio rerio"
DExMAdata package

[5] "Drosophila melanogaster" "Gallus gallus"
[7] "Homo sapiens" "Mus musculus"
[9] "Rattus norvegicus" "Arabidopsis thaliana"

2 Sources

listMatrixEX, lisPhenodatas, listExpressionSets and ExpressionSetStudy5 example objects are synthetic.

The maObjectDif example object have been created after applying createObjectMA() function from DExMA package to listMatrixEX and listPhenodatas objects.

The maObject example object have been obtained after applying allSameID() function from DExMA package to maObjectDif

IDsDExMA and SynonymsDExMA objects have been constructed using the information available in NCBI GEO [1] and in the NCBI’s gene database [2]

3 Session info

R version 4.4.0 beta (2024-04-15 r86425)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] DExMAdata_1.12.0

loaded via a namespace (and not attached):
[1] BiocManager_1.30.22 compiler_4.4.0 fastmap_1.1.1
[4] BiocStyle_2.32.0 cli_3.6.2 htmltools_0.5.8.1
DExMAdata package

<table>
<thead>
<tr>
<th>Reference</th>
<th>Package</th>
<th>Version</th>
<th>Package</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7]</td>
<td>tools_4.4.0</td>
<td>yaml_2.3.8</td>
<td>Biobase_2.64.0</td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>rmarkdown_2.26</td>
<td>knitr_1.46</td>
<td>BiocGenerics_0.50.0</td>
<td></td>
</tr>
<tr>
<td>[13]</td>
<td>digest_0.6.35</td>
<td>xfun_0.43</td>
<td>rlang_1.1.3</td>
<td></td>
</tr>
<tr>
<td>[16]</td>
<td>evaluate_0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

https://doi.org/10.1093/nar/gks1193