Package ‘harbChIP’

February 22, 2024

Title Experimental Data Package: harbChIP
Description data from a yeast ChIP-chip experiment
Version 1.40.0
Author VJ Carey
Maintainer VJ Carey <stvjc@channing.harvard.edu>
Depends R (>= 2.10.0), tools, utils, IRanges, Biobase (>= 2.5.5), Biostrings
Imports methods, stats
License Artistic-2.0
biocViews ExperimentData, Saccharomyces_cerevisiae_Data, SequencingData
git_url https://git.bioconductor.org/packages/harbChIP
git_branch RELEASE_3_18
git_last_commit 8611d17
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-02-22

R topics documented:

allhex .. 2
buildUpstreamSeqs2 2
chkMotif4TF ... 3
harbChIP ... 4
sceUpstr ... 5
upstreamSeqs-class 6

Index 7
allhex utility function: get all hexamers in upstream sequence for an ORF

Description
utility function: get all hexamers in upstream sequence for an ORF

Usage
allhex(orf, usobj)

Arguments
orf character string, ORF name
usobj upstreamSeqs object

Details
computes Biostrings Views

Value
computes Biostrings Views

Author(s)
Vince Carey <stvjc@channing.harvard.edu>

Examples
data(sceUpstr)
allhex("YAL001C", sceUpstr)

buildUpstreamSeqs2 workflow component – build an upstreamSeqs instance from a FASTA read

Description
workflow component – build an upstreamSeqs instance from a FASTA read

Usage
buildUpstreamSeqs2(fastaRead, organism="sce", provenance="harmen")
chkMotif4TF

Arguments

- `fastaRead`: results of a readFASTA from Biostrings
- `organism`: string naming organism
- `provenance`: string or structure describing provenance

Details

generates an instance of upstreamSeqs

Value

generates an instance of upstreamSeqs

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
# x = readFASTA(...)  
# y = buildUpstreamSeqs2(x)
```

chkMotif4TF

analyze relationship between motif frequency and binding intensity for selected motif and TF

Description

analyze relationship between motif frequency and binding intensity for selected motif and TF

Usage

```r
chkMotif4TF(motif, TF, chset, upstr, bthresh=2, countthresh=0)
```

Arguments

- `motif`: character string in alphabet known to Biostrings
- `TF`: name of a TF (sample name in the ChIP-chip data structure chset
- `chset`: an ExpressionSet instance harboring ChIP-chip data
- `upstr`: an instance of upstreamSeqs
- `bthresh`: threshold for binding intensity results to declare TF 'bound' to the upstream region
- `countthresh`: threshold for motif count to be considered 'present' in upstream region
Details

Uses countPattern to perform motif count.

Value

a list with elements call, table, and test, the latter providing the result of fisher.test

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

slow
Not run:
data(harbChIP)
data(sceUpstr)
chkMotif4TF("CGGCCG", "RDS1", harbChIP, sceUpstr)
End(Not run)

harbChIP

Experimental Data Package: harbChIP

Description

binding ratios and intergenic region data from a ChIP-chip experiment in yeast

Usage

data(harbChIP)

Format

The format is: An ExpressionSetObject with covariates:

- txFac: transcription factor symbol from Harbison website CSV file columnnames

Note

derived from web site jura.wi.mit.edu/young_public/regulatory_code/GWLD.html, binding ratios
Examples

```r
data(harbChIP)
harbChIP
experimentData(harbChIP)
exprs(harbChIP)[1:6,1:7]
dim(exprs(harbChIP))
pData(featureData(harbChIP))[1:6,]
```

sceUpstr
Biostrings representations of S. cerevisiae upstream regions

Description

Biostrings representations of S. cerevisiae upstream regions

Usage

```r
data(sceUpstr)
```

Details

environment-based S4 object with DNAstring elements

Value

environment-based S4 object with DNAstring elements

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
data(sceUpstr)
sceUpstr
getUpstream("YAL001C", sceUpstr)
```
upstreamSeqs-class

Description

Container for a collection of upstream sequences

Objects from the Class

Objects can be created by calls of the form `new("upstreamSeqs", ...`). Environments are used to store collections of DNA strings.

Slots

- `seqs`: Object of class "environment"
- `chrom`: Object of class "environment"
- `revComp`: Object of class "environment"
- `type`: Object of class "environment"
- `organism`: Object of class "character"
- `provenance`: Object of class "ANY"

Methods

- `Nmers` signature(n = "numeric", orf = "character", usobj = "upstreamSeqs"): obtain all subsequences of length n as view elements of a DNA string
- `keys` signature(x = "upstreamSeqs"): ...
- `organism` signature(x = "upstreamSeqs"): ...
- `seqs` signature(x = "upstreamSeqs"): ...
- `show` signature(object = "upstreamSeqs"): ...

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

`showClass("upstreamSeqs")`
`data(sceUpstr)`
`sceUpstr`
`keys(sceUpstr)[1:5]`
Index

* classes
 upstreamSeqs-class, 6
* datasets
 harbChIP, 4
* models
 allhex, 2
 buildUpstreamSeqs2, 2
 chkMotif4TF, 3
 sceUpstr, 5
 allhex, 2
 buildUpstreamSeqs2, 2
 chkAllUS (chkMotif4TF), 3
 chkMotif4TF, 3
 countPattern, 4
 fisher.test, 4
 getUpstream (upstreamSeqs-class), 6
 harbChIP, 4
 keys (upstreamSeqs-class), 6
 keys, upstreamSeqs-method
 (upstreamSeqs-class), 6
 Nmers (upstreamSeqs-class), 6
 Nmers, numeric, character, upstreamSeqs-method
 (upstreamSeqs-class), 6
 organism (upstreamSeqs-class), 6
 organism, upstreamSeqs-method
 (upstreamSeqs-class), 6
 sceUpstr, 5
 seqs (upstreamSeqs-class), 6
 seqs, upstreamSeqs-method
 (upstreamSeqs-class), 6
 show, upstreamSeqs-method
 (upstreamSeqs-class), 6
 upstreamSeqs-class, 6