Package ‘grndata’

March 14, 2024

Type Package
Title Synthetic Expression Data for Gene Regulatory Network Inference
Version 1.34.0
Date 2014-12-01
Author Pau Bellot, Catharina Olsen, Patrick E Meyer
Maintainer Pau Bellot <pau.bellot@upc.edu>
Description Simulated expression data for five large Gene Regulatory Networks from different simulators
LazyLoad yes
LazyData yes
License GPL-3
Suggests RUnit, BiocGenerics, knitr
VignetteBuilder knitr
biocViews ExperimentData, NetworkInference, GeneExpression, Microarray, GeneRegulation, Network
Depends R (>= 2.10)
git_url https://git.bioconductor.org/packages/grndata
git_branch RELEASE_3_18
git_last_commit 21a662e
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-14

R topics documented:

 Availabledata ... 2
 getData .. 3
 gnw1565.data ... 4
 gnw1565.net .. 5
Description

Availabledata contains a character vector with the names of the datasources that the package contains.

Usage

data("Availabledata")

Format

A character vector with the names of the datasources.

Value

character vector with the names of the datasources.

Examples

data(Availabledata)
cat(Availabledata)
getData
Datasource and underlying network loading

Description

Function to load a gene expression datasource and the network that have generate it.

Usage

```r
dataGet(datasource.name=NULL,getNet=TRUE)
```

Arguments

- `datasource.name`
 A character containing the name of network datasources to (default: NULL).

- `getNet`
 Logical specifying if the true underlying network should be returned (default: TRUE).

Details

If `getNet` is TRUE the function will return a list with two components:

1. A data.frame with the specified datasource.
2. A matrix with the true underlying network.

Value

The function `getData` loads the specified datasource by `datasource.name` and its true underlying network if it is specified by `getNet`.

Examples

```r
# Get only datasource
data <- getData(datasource.name="syntren300",getNet=FALSE)
# Get the datasource and network in a list
mydata <- getData(datasource.name="syntren1000")
data <- mydata[[1]]
net <- mydata[[2]]
```
Simulated Gene Expression Data

gnw1565.data

Description
Dataset containing 1565 samples and 1565 genes generated by the publicly available GNW generator using an ecoli source network with no added noise.

Usage
data(gnw1565.data)

Format
gnw1565.data is a data frame containing 1565 rows and 1565 columns. Each row contains a simulated microarray experiment and each column contains a gene. The dataset was generated with GNW generator which relies on ODEs for modeling gene regulation.

Value
data.frame containing the data.

Source
GNW v3.1 with source network : Ecoli

References

See Also
gnw1565.net, gnw2000.data, rogers1000.data, syntren300.data, syntren1000.data

Examples
data(gnw1565.data)
Print size
print(dim(gnw1565.data))
Description

True underlying network used to generate the dataset at `gnw1565.data`.

Usage

```r
data(gnw1565.net)
```

Format

`true.net` is the true underlying network used to generate the dataset loaded at `gnw1565.data`.

Value

`matrix` containing underlying network.

Source

GNW v3.1 with source network: Ecoli

References

See Also

`gnw1565.data, gnw2000.data, rogers1000.data, syntren300.data, syntren1000.data`

Examples

```r
data(gnw1565.net)
# Number of directed edges
nEdges<- sum(gnw1565.net)
```
gnw2000.data

Simulated Gene Expression Data

Description
Dataset containing 2000 samples and 2000 genes generated by the publicly available GNW generator using a yeast source network with no added noise.

Usage

data(gnw2000.data)

Format

gnw2000.data is a data frame containing 2000 rows and 2000 columns. Each row contains a simulated microarray experiment and each column contains a gene. The dataset was generated with GNW generator which relies on ODEs for modeling gene regulation.

Value

data.frame containg the data.

Source

GNW v3.1 with source network : Yeast

References

See Also

gnw2000.net, gnw1565.data, rogers1000.data, syntren300.data, syntren1000.data

Examples

data(gnw2000.data)
Print size
print(dim(gnw2000.data))
Simulated Gene Expression Data

Description
True underlying network used to generate the dataset at `gnw2000.data`.

Usage
`data(gnw2000.net)`

Format
`true.net` is the true underlying network used to generate the dataset loaded at `gnw2000.data`.

Value
matrix containing underlying network.

Source
GNW v3.1 with source network: Yeast

References

See Also
`gnw2000.data, gnw1565.data, rogers1000.data, syntren300.data, syntren1000.data`

Examples
```r
data(gnw2000.net)
# Number of directed edges
nEdges<- sum(gnw2000.net)
```
dataset containing 1000 samples and 1000 genes generated by the publicly available generator using a power-law tail topology network with no added noise.

Usage

```r
data(rogers1000.data)
```

Format

`rogers1000.data` is a data frame containing 1000 rows and 1000 columns. Each row contains a simulated microarray experiment and each column contains a gene.

Value

data.frame containg the data.

Source

`sRogers with Power-law tail topology`

References

See Also

`rogers1000.net`, `gnw1565.data`, `gnw2000.data`, `syntren300.data`, `syntren1000.data`

Examples

```r
data(rogers1000.data)
# Print size
print(dim(rogers1000.data))
```
Simulated Gene Expression Data

Description

True underlying network used to generate the dataset at rogers1000.data.

Usage

data(rogers1000.net)

Format

true.net is the true underlying network used to generate the dataset loaded at rogers1000.data.

Value

Matrix containing underlying network.

Source

sRogers with Power-law tail topology

References

See Also

rogers1000.data, gnw1565.data, gnw2000.data, syntren300.data, syntren1000.data

Examples

data(rogers1000.net)

Number of directed edges
nEdges<- sum(rogers1000.net)
syntren1000.data Simulated Gene Expression Data

Description

Dataset containing 1000 samples and 1000 genes generated by the publicly available SynTReN generator using an ecoli source network.

Usage

data(syntren1000.data)

Format

syntren1000.data is a data frame containing 1000 rows and 1000 columns. Each row contains a simulated microarray experiment and each column contains a gene.

Value

data.frame containg the data.

Source

SynTReN 1.1.3 with source network : ecoli_nn.sif

References

See Also

gnw1565.data, gnw2000.data, rogers1000.data, syntren300.data

Examples

data(syntren1000.data)

Print size
print(dim(syntren1000.data))
Simulated Gene Expression Data

Description

True underlying network used to generate the dataset at syntren1000.data.

Usage

data(syntren1000.net)

Format

syntren1000.net is the true underlying network used to generate the dataset loaded at syntren1000.data.

Value

matrix containg underlying network.

Source

SynTReN 1.1.3 with source network : ecoli_nn.sif

References

See Also

syntren1000.data, gnw1565.data, gnw2000.data, rogers1000.data, syntren300.data

Examples

data(syntren1000.net)
 # Number of directed edges
 nEdges<- sum(syntren1000.net)
syntren300.data Simulated Gene Expression Data

Description

Dataset containing 800 samples and 300 genes generated by the publicly available SynTReN generator using an ecoli source network.

Usage

data(syntren300.data)

Format

syntren300.data is a data frame containing 800 rows and 300 columns. Each row contains a simulated microarray experiment and each column contains a gene.

Value

data.frame containing the data.

Source

SynTReN 1.1.3 with source network : ecoli_nn.sif

References

See Also

syntren300.net, syntren1000.data, rogers1000.data, gnw1565.data, gnw2000.data

Examples

data(syntren300.data)
Print size
print(dim(syntren300.data))
Simulated Gene Expression Data

description

True underlying network used to generate the dataset at syntren300.data.

Usage

data(syntren300.net)

Format

true.net is the true underlying network used to generate the dataset loaded at syntren300.data.

Value

matrix containing underlying network.

Source

SynTReN 1.1.3 with source network : ecoli_nn.sif

References

See Also

syntren300.data, syntren1000.data, rogers1000.data, gnw1565.data, gnw2000.data

Examples

data(syntren300.net)

Number of directed edges
nEdges<-sum(syntren300.net)
toy.data

Simulated Toy example of Gene Expression Data

Description

Dataset containing 64 samples and 64 genes generated by the publicly available GNW generator using an ecoli source network.

Usage

data(toy.data)

Format

toy.data is a data frame containing 64 rows and 64 columns. Each row contains a simulated microarray experiment and each column contains a gene.

Value

data.frame containg the data.

Source

GNW v3.1 with source network : Example (Ecoli)

References

See Also

toy.net

Examples

data(toy.data)
Print size
print(dim(toy.data))
toy.net

Simulated Toy example of Gene Expression Data

Description
True underlying network used to generate the dataset at toy.data.

Usage
data(toy.net)

Format
toy.net is the true underlying network used to generate the dataset loaded at toy.data.

Value
matrix containing underlying network.

Source
GNW v3.1 with source network: Example (Ecoli)

References

See Also
toy.data

Examples
data(toy.net)
Print size
nEdges<- sum(toy.net)
Index

* datasets
 Availabledata, 2
 gnw1565.data, 4
 gnw1565.net, 5
 gnw2000.data, 6
 gnw2000.net, 7
 rogers1000.data, 8
 rogers1000.net, 9
 syntren1000.data, 10
 syntren1000.net, 11
 syntren300.data, 12
 syntren300.net, 13
 toy.data, 14
 toy.net, 15

* misc
 getData, 3

Availabledata, 2

g getData, 3
 gnw1565.data, 4, 5–13
 gnw1565.net, 4, 5
 gnw2000.data, 4, 5, 6, 7–13
 gnw2000.net, 6, 7
 rogers1000.data, 4–7, 8, 9–13
 rogers1000.net, 8, 9
 syntren1000.data, 4–9, 10, 11–13
 syntren1000.net, 11
 syntren300.data, 4–11, 12, 13
 syntren300.net, 12, 13
 toy.data, 14, 15
 toy.net, 14, 15