Package ‘BioPlex’

February 20, 2024

Title R-side access to BioPlex protein-protein interaction data
Version 1.8.0
Description The BioPlex package implements access to the BioPlex protein-protein interaction networks and related resources from within R. Besides protein-protein interaction networks for HEK293 and HCT116 cells, this includes access to CORUM protein complex data, and transcriptome and proteome data for the two cell lines. Functionality focuses on importing the various data resources and storing them in dedicated Bioconductor data structures, as a foundation for integrative downstream analysis of the data.

URL https://github.com/ccb-hms/BioPlex
BugReports https://github.com/ccb-hms/BioPlex/issues
Encoding UTF-8
License Artistic-2.0
VignetteBuilder knitr
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Depends R (>= 4.1.0), SummarizedExperiment
Imports BiocFileCache, GenomicRanges, GenomeInfoDb, GEOquery, graph, methods, utils
Suggests AnnotationDbi, AnnotationHub, BiocStyle, DEXSeq, ExperimentHub, GenomicFeatures, S4Vectors, depmap, knitr, rmarkdown
biocViews CellCulture, ColonCancerData, ExperimentHub, ExpressionData, GEO, Genome, Homo_sapiens_Data, MassSpectrometryData, Proteome, ReproducibleResearch, RNASEqData

git_url https://git.bioconductor.org/packages/BioPlex

git_branch RELEASE_3_18

git_last_commit 0fe8113
R topics documented:

annotatePFAM .. 2
bioplex2graph .. 3
ccleProteome2SummarizedExperiment 4
corum2graphlist ... 5
corum2list .. 6
getBioPlex .. 6
getBioplexProteome .. 8
getCorum ... 8
getGSE122425 ... 10
getHEK293GenomeTrack .. 10
hasSubunit ... 11
mapSummarizedExperimentOntoGraph 12

Index 14

annotatePFAM

Annotate PFAM domains to BioPlex PPI graph

Description

This function adds PFAM domain annotations to the node metadata of the BioPlex PPI graph.

Usage

annotatePFAM(bp.gr, orgdb)

Arguments

bp.gr an object of class graph storing the BioPlex PPIs. Typically obtained via bioplex2graph.
orgdb an orgdb object storing annotation data for human.

Value

An object of class graphNEL containing PFAM domain annotations in the nodeData.
bioplex2graph

References

BioPlex: https://bioplex.hms.harvard.edu/interactions.php
PFAM: http://pfam.xfam.org

See Also

nodeData

Examples

(1) Obtain the latest version of the 293T PPI network
bp.293t <- getBioPlex(cell.line = "293T", version = "3.0")

(2) Turn the data into a graph
bp.gr <- bioplex2graph(bp.293t)

(3) Obtain orgdb package from AnnotationHub
ah <- AnnotationHub::AnnotationHub()
orgdb <- AnnotationHub::query(ah, c("orgDb", "Homo sapiens"))
orgdb <- orgdb[[1]]

(4) Annotate PFAM domains
bp.gr <- annotatePFAM(bp.gr, orgdb)

bioplex2graph Representation of BioPlex PPIs in a graph data structure

Description

Representation of BioPlex PPIs in a graphNEL object from the graph package.

Usage

bioplex2graph(bioplex.df)

Arguments

bioplex.df a data.frame storing the Bioplex PPIs in a flat from-to format. Typically obtained via getBioPlex.

Value

An object of class graphNEL.

References

BioPlex: https://bioplex.hms.harvard.edu/interactions.php
ccleProteome2SummarizedExperiment

Convenient access to the CCLE proteome data

Description

Functionality for storing the protein expression data from the Cancer Cell Line Encyclopedia (CCLE) in a `SummarizedExperiment`.

Usage

```r
ccleProteome2SummarizedExperiment(df, cell.line = "HCT116")
```

Arguments

- `df` a `data.frame` storing the CCLE protein expression data with one measurement in each row. Typically obtained from `ExperimentHub`. See examples.
- `cell.line` character. One or more cell line IDs such as "HCT116" (human colon cancer cell line 116). Use `NULL` to not subset by cell line. Defaults to "HCT116", which will then subset the `df` to measurements for HCT116 only.

Value

A `SummarizedExperiment` storing protein expression data for the specified cell line(s).

References

CCLE proteomics: https://gygi.hms.harvard.edu/publications/ccle.html
Examples

Connect to ExperimentHub
eh <- ExperimentHub::ExperimentHub()

Obtain CCLE proteome data frame
AnnotationHub::query(eh, c("gygi", "depmap"))
cCLE.prot <- eh["EH3459"][
ccle.prot <- as.data.frame(ccle.prot)

Turn into a SummarizedExperiment
se <- ccleProteome2SummaryExp[ccle.prot]

corum2graphlist
Represent CORUM protein complex data as a list of graph instances

Description

Functionality for storing CORUM protein complex data in a list of graph instances.

Usage

corum2graphlist(corum.df, subunit.id.type = c("UNIPROT", "ENTREZID"))

Arguments

corum.df
A data.frame storing the CORUM protein complex data. Typically obtained via getCorum.

subunit.id.type
character. Supported options include "UNITPROT" (default) and "ENTREZID".

Value

A list with an entry for each complex. Each entry is an object of class graphNEL connecting all subunit IDs with each other by undirected edges.

References

CORUM: http://mips.helmholtz-muenchen.de/corum/#download

Examples

(1) Obtain the core set of CORUM complexes ...
core <- getCorum(set = "core")

(2) ... turn into a list of graphs
core.glist <- corum2graphlist(core)
corum2list Represent CORUM protein complex data as a simple list

Description
Functionality for storing CORUM protein complex data in a list.

Usage
`corum2list(corum.df, subunit.id.type = c("UNIPROT", "ENTREZID"))`

Arguments
corum.df A data.frame storing the CORUM protein complex data. Typically obtained via `getCorum`.
subunit.id.type character. Supported options include "UNIPROT" (default) and "ENTREZID".

Value
A list with an entry for each complex. Each entry is a character vector of subunit IDs.

References
CORUM: http://mips.helmholtz-muenchen.de/corum/#download

Examples
```
# (1) Obtain the core set of CORUM complexes ...
core <- getCorum(set = "core")

# (2) ... turn into a list
core.list <- corum2list(core)
```

getBioPlex Obtain BioPlex protein-protein interaction data

Description
Functionality for retrieving the BioPlex protein-protein interaction data. Available networks include:

- BioPlex 293T cells (versions 1.0, 2.0, and 3.0),
- BioPlex HCT116 cells (version 1.0).

See references.
getBioPlex

Usage

getBioPlex(
 cell.line = c("293T", "HCT116"),
 version = c("3.0", "1.0", "2.0"),
 remap.uniprot.ids = FALSE,
 cache = TRUE
)

Arguments

cell.line character. Valid options include:
 • "293T": derivative of human embryonic kidney 293 cell line,
 • "HCT116": human colon cancer cell line 116.
 Defaults to "293T".

version character. Valid options include "1.0", "2.0", and "3.0" for 293T cells. For
 HCT116 cells, only "1.0" is available. Defaults to "3.0".

remap.uniprot.ids logical. Should the protein-to-gene mappings from BioPlex (i.e. UNIPROT-
 to-SYMBOL and UNIPROT-to-ENTREZID) be updated using Bioc annotation
 functionality? Defaults to FALSE which will then keep the mappings provided
 by BioPlex.

cache logical. Should a locally cached version used if available? Defaults to TRUE.

Value

A data.frame.

References

BioPlex: https://bioplex.hms.harvard.edu/interactions.php

Examples

(1) Obtain the latest version of the 293T PPI network
bp.293t <- getBioPlex(cell.line = "293T", version = "3.0")

(2) Obtain the latest version of the HCT116 PPI network
bp.hct116 <- getBioPlex(cell.line = "HCT116", version = "1.0")
getBioplexProteome
Obtain BioPlex3 proteome data

Description

Functionality for retrieving the BioPlex3 protein expression data comparing expression in the HCT116 and the 293T cell lines.

Usage

```r
getiBoplexProteome(cache = TRUE)
```

Arguments

- `cache` logical. Should a locally cached version used if available? Defaults to `TRUE`.

Value

A `SummarizedExperiment` storing protein expression data for the both cell line(s) with 5 replicates each.

References

BioPlex: https://bioplex.hms.harvard.edu

Examples

```r
se <- getBioplexProteome()
```
getCorum

Usage

getCorum(
 set = c("all", "core", "splice"),
 organism = "Human",
 remap.uniprot.ids = FALSE,
 cache = TRUE,
 mode = c("ehub", "web")
)

Arguments

set character. Valid options include:
 • "all": complete set of complexes,
 • "core": core set of complexes,
 • "splice": complexes with splice variants.
 Defaults to "all".
organism character. Use NULL to not subset by organism. Defaults to "Human" which restricts the data to human protein complexes only.
remap.uniprot.ids logical. Should the protein-to-gene mappings from CORUM (i.e. UNIPROT-to-SYMBOL and UNIPROT-to-ENTREZID) be updated using Bioc annotation functionality? Currently only supported in combination with organism = "Human". Defaults to FALSE which will then keep the mappings provided by CORUM.
cache logical. Should a locally cached version used if available? Defaults to TRUE.
mode character. Should CORUM complexes be obtained from ExperimentHub or via a web download from the CORUM homepage? Defaults to "ehub", which will obtain the chosen complex set from ExperimentHub.

Value

A data.frame.

References

CORUM: http://mips.helmholtz-muenchen.de/corum/#download

Examples

 # Obtain the core set of CORUM complexes
 core <- getCorum(set = "core")
getGSE122425

Convenient access to 293T transcriptome data from GEO

Description

Functionality for storing the 293T RNA-seq data from GSE122425 in a `SummarizedExperiment`. The dataset includes three wild type samples and three NSUN2 knockout samples.

Usage

```r
getGSE122425(cache = TRUE)
```

Arguments

- `cache` logical. Should a locally cached version used if available? Defaults to `TRUE`.

Value

A `SummarizedExperiment` storing RNA-seq data for the 293T cell line.

References

Examples

```r
# Obtain the data as a SummarizedExperiment
se <- getGSE122425()
```

getHEK293GenomeTrack

Obtain HEK293 genome data

Description

Functionality for retrieving genomic data for different lineages of the human embryonic kidney HEK293 cell line. Returned genomic coordinates are based on the `hg18` human genome assembly. See references.

Usage

```r
getHEK293GenomeTrack(
  track = c("cnv.hmm", "cnv.snp"),
  cell.line = "293T",
  cache = TRUE
)
```
hasSubunit

Arguments

- **track** character. Genome track to retrieve. Valid options include:
 - "cnvhmm": regions of copy number variation (CNV) as inferred by a hidden Markov model (HMM) algorithm,
 - "cnvsnpi": CNV regions as inferred from Illumina SNP arrays
 Defaults to "cnvhmm".

- **cell.line** character. Valid options include:
 - "293T": highly-transfective derivative of human embryonic kidney 293 cell line,
 Defaults to "293T".

- **cache** logical. Should a locally cached version used if available? Defaults to TRUE.

Value

A GRanges object storing genomic coordinates and genomic scores of regions of interest.

References

http://hek293genome.org

Examples

```r
cnv.hmm <- getHEK293GenomeTrack(track = "cnv.hmm", cell.line = "293T")
```

Identify CORUM complexes that have a subunit of interest

Description

Screens a list of graph instances storing CORUM protein complex data for a subunit of choice.

Usage

```r
hasSubunit(glist, subunit, id.type = "SYMBOL")
```

Arguments

- **glist** A list of graphs storing CORUM complexes. Typically obtained via corum2graphlist.
- **subunit** character. A gene ID corresponding to the subunit of interest.
- **id.type** character. Gene ID type of the given subunit. Defaults to "SYMBOL".

Value

A logical vector indicating which graphs have a node with the given subunit.
Examples

(1) Obtain the core set of CORUM complexes ...
core <- getCorum(set = "core")

(2) ... turn into a list of graphs ...
core.glist <- corum2graphlist(core)

(3) .. check for a particular subunit of interest
has.cdk2 <- hasSubunit(core.glist, subunit = "CDK2")

mapSummarizedExperimentOntoGraph

Map experimental data onto a graph

Description

Functionality for mapping experimental data stored in a SummarizedExperiment onto a graph object.

Usage

mapSummarizedExperimentOntoGraph(
 gr,
 se,
 col.names = NULL,
 rowdata.cols = NULL,
 prefix = ""
)

Arguments

gr an object of class graph.
se an object of class SummarizedExperiment.
col.names character. Column names of se for which assay data should be mapped onto the nodes of gr. Defaults to NULL which will then use all column names of se.
rowdata.cols character. Column names of rowData(se) which should be mapped onto the nodes of gr. Defaults to NULL which will then use all column names of rowData(se).
prefix character. Informative prefix that should be pasted together with the selected col.names and rowdata.cols to allow easy identification of columns of interest when mapping from multiple experimental datasets.

Value

An object of class graph.
Examples

(1) Obtain the latest version of the 293T PPI network ...
bp.293t <- getBioPlex(cell.line = "293T", version = "3.0")

(2) ... and turn into a graph
bp.gr <- bioplex2graph(bp.293t)

(3) Obtain the BioPlex3 proteome data ...
se <- getBioplexProteome()

(4) ... and map onto the graph
bp.gr <- mapSummarizedExperimentOntoGraph(bp.gr, se)
Index

annotatePFAM, 2
bioplex2graph, 2, 3
ccleProteome2SummarizedExperiment, 4
corum2graphlist, 5, 11
corum2list, 6
ftM2graphNEL, 4
getBioPlex, 3, 4, 6
getBioplexProteome, 8
getCorum, 5, 6, 8
getGSE122425, 10
getHEK293GenomeTrack, 10
graph, 2, 12
hasSubunit, 11
mapSummarizedExperimentOntoGraph, 12
nodeData, 3
SummarizedExperiment, 4, 8, 10, 12