MiDAS tutorial

Maciej Migdał & Christian Hammer

2024-10-29

logo

Introduction

Welcome to MiDAS. This tutorial is supposed to help you get started with your analyses of immunogenetic associations. We will work with a simulated data set of 500 patients and 500 controls with a binary disease diagnosis.

We also have high resolution HLA alleles (4 - 6 digit), and presence/absence calls for KIR genes.

Data import and sanity check

First, let’s import the phenotype data and HLA calls using MiDAS import functions. MiDAS will check for correct nomenclature of HLA. We can also define 4-digit resolution for HLA alleles as import format, which means that alleles with higher resolution will be reduced.

dat_pheno <-
  read.table(
  file = system.file("extdata", "MiDAS_tut_pheno.txt", package = "midasHLA"),
  header = TRUE
  )
dat_HLA <-
  readHlaCalls(
  file = system.file("extdata", "MiDAS_tut_HLA.txt", package = "midasHLA"),
  resolution = 4
  )

Let’s take a look at the imported HLA data tables:

HLA data as imported by MiDAS
ID A_1 A_2 B_1 B_2 C_1 C_2 DPA1_1 DPA1_2 DPB1_1 DPB1_2 DQA1_1 DQA1_2 DQB1_1 DQB1_2 DRA_1 DRA_2 DRB1_1 DRB1_2
C001 A*25:01 A*26:01 B*07:02 B*18:01 C*12:03 C*07:02 DPA1*01:03 DPA1*01:03 DPB1*02:01 DPB1*04:01 DQA1*05:05 DQA1*01:02 DQB1*06:02 DQB1*03:01 DRA*01:02 DRA*01:02 DRB1*15:01 DRB1*12:01
C002 A*02:01 A*02:324 B*50:01 B*18:01 C*06:02 C*12:03 DPA1*01:03 DPA1*01:03 DPB1*04:02 DPB1*04:02 DQA1*02:01 DQA1*05:05 DQB1*02:02 DQB1*03:01 DRA*01:01 DRA*01:01 DRB1*07:01 DRB1*11:04
C003 A*24:02 A*24:04 B*46:01 B*40:06 C*01:03 C*15:02 DPA1*02:02 DPA1*02:01 DPB1*05:01 DPB1*14:01 DQA1*01:04 DQA1*01:03 DQB1*06:01 DQB1*05:02 DRA*01:02 DRA*01:01 DRB1*14:07 DRB1*08:03
C004 A*01:01 A*24:02 B*08:01 B*15:01 C*07:01 C*03:03 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*03:01 DQA1*01:03 DQA1*01:02 DQB1*06:04 DQB1*06:03 DRA*01:02 DRA*01:01 DRB1*13:01 DRB1*13:02
C005 A*01:01 A*25:01 B*18:01 B*08:01 C*12:03 C*07:01 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*23:01 DQA1*05:01 DQA1*01:02 DQB1*02:01 DQB1*06:02 DRA*01:02 DRA*01:02 DRB1*03:01 DRB1*15:01
C006 A*03:01 A*01:01 B*07:02 B*08:01 C*07:01 C*07:02 DPA1*01:03 DPA1*01:03 DPB1*57:01 DPB1*271:01 DQA1*01:02 DQA1*01:01 DQB1*06:04 DQB1*05:01 DRA*01:01 DRA*01:02 DRB1*13:02 DRB1*01:02
C007 A*01:01 A*02:01 B*15:01 B*08:01 C*07:01 C*03:03 DPA1*02:01 DPA1*01:03 DPB1*04:02 DPB1*13:01 DQA1*05:01 DQA1*03:01 DQB1*02:01 DQB1*03:02 DRA*01:01 DRA*01:02 DRB1*03:01 DRB1*04:01
C008 A*11:01 A*02:01 B*35:01 B*27:05 C*03:04 C*04:01 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*04:01 DQA1*03:03 DQA1*01:02 DQB1*06:04 DQB1*03:01 DRA*01:02 DRA*01:01 DRB1*13:02 DRB1*04:01
C009 A*23:01 A*01:01 B*13:02 B*18:01 C*07:01 C*07:02 DPA1*02:01 DPA1*01:03 DPB1*01:01 DPB1*04:02 DQA1*05:05 DQA1*03:01 DQB1*03:01 DQB1*03:02 DRA*01:01 DRA*01:01 DRB1*11:04 DRB1*04:03
C010 A*31:01 A*02:06 B*15:01 B*56:01 C*04:01 C*03:03 DPA1*02:02 DPA1*02:02 DPB1*05:01 DPB1*05:01 DQA1*03:02 DQA1*03:02 DQB1*03:03 DQB1*03:96 DRA*01:01 DRA*01:01 DRB1*09:01 DRB1*09:01
C011 A*02:01 A*01:01 B*07:02 B*13:02 C*06:02 C*07:02 DPA1*02:01 DPA1*02:01 DPB1*17:01 DPB1*10:01 DQA1*02:01 DQA1*01:01 DQB1*02:02 DQB1*05:01 DRA*01:01 DRA*01:01 DRB1*07:01 DRB1*01:01
C012 A*02:01 A*02:01 B*15:01 B*27:02 C*02:02 C*03:03 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*04:01 DQA1*01:02 DQA1*03:01 DQB1*03:02 DQB1*05:02 DRA*01:01 DRA*01:01 DRB1*04:04 DRB1*16:01
C013 A*02:05 A*01:01 B*49:01 B*57:01 C*07:01 C*07:01 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*04:01 DQA1*02:01 DQA1*03:03 DQB1*03:02 DQB1*03:03 DRA*01:01 DRA*01:01 DRB1*04:05 DRB1*07:01
C014 A*30:02 A*01:01 B*37:01 B*27:05 C*06:02 C*02:02 DPA1*02:01 DPA1*01:03 DPB1*02:01 DPB1*10:01 DQA1*03:01 DQA1*03:03 DQB1*04:02 DQB1*03:02 DRA*01:01 DRA*01:01 DRB1*04:03 DRB1*04:04
C015 A*02:642 A*03:01 B*07:02 B*07:02 C*07:02 C*07:02 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*16:01 DQA1*01:02 DQA1*01:02 DQB1*06:02 DQB1*06:02 DRA*01:02 DRA*01:02 DRB1*15:01 DRB1*15:01
C016 A*01:01 A*68:01 B*42:01 B*08:156 C*07:02 C*07:01 DPA1*01:03 DPA1*01:03 DPB1*04:01 DPB1*02:01 DQA1*05:01 DQA1*01:02 DQB1*02:01 DQB1*06:02 DRA*01:02 DRA*01:02 DRB1*03:01 DRB1*15:01
C017 A*03:01 A*11:01 B*08:01 B*18:01 C*05:01 C*07:01 DPA1*02:01 DPA1*01:03 DPB1*04:01 DPB1*01:01 DQA1*05:01 DQA1*05:01 DQB1*02:01 DQB1*02:01 DRA*01:01 DRA*01:02 DRB1*03:01 DRB1*03:01
C018 A*11:01 A*02:01 B*15:01 B*37:01 C*06:02 C*04:01 DPA1*01:03 DPA1*02:02 DPB1*04:01 DPB1*05:01 DQA1*01:03 DQA1*01:05 DQB1*06:01 DQB1*05:01 DRA*01:01 DRA*01:02 DRB1*10:01 DRB1*08:03
C019 A*02:10 A*31:01 B*54:01 B*40:06 C*08:01 C*01:02 DPA1*02:02 DPA1*01:03 DPB1*04:02 DPB1*05:01 DQA1*03:02 DQA1*03:01 DQB1*04:01 DQB1*03:96 DRA*01:01 DRA*01:01 DRB1*09:01 DRB1*04:05
C020 A*01:01 A*29:02 B*44:03 B*08:01 C*07:01 C*16:01 DPA1*02:01 DPA1*02:02 DPB1*01:01 DPB1*10:01 DQA1*02:01 DQA1*05:01 DQB1*02:01 DQB1*02:02 DRA*01:02 DRA*01:01 DRB1*07:01 DRB1*03:01

Next, we want to check our HLA allele frequencies, and compare them to known frequencies from major populations. Here, we only include alleles with an allele frequency of 5% or higher in our study cohort. By default, MiDAS will output comparisons including the following populations, based on published data from allelefrequencies.net:

MiDAS comes with some pre-defined reference populations, but it is possible to customize these comparisons (see documentation).

freq_HLA <- getHlaFrequencies(hla_calls = dat_HLA, compare = TRUE) %>%
  filter(Freq > 0.01)
HLA frequencies, compared to published references
allele Counts Freq USA NMDP African American pop 2 USA NMDP Chinese USA NMDP European Caucasian USA NMDP Hispanic South or Central American USA NMDP Japanese USA NMDP North American Amerindian USA NMDP South Asian Indian
A*01:01 236 0.1180 0.0467 0.0145 0.1646 0.0726 0.0100 0.1202 0.1545
A*02:01 486 0.2430 0.1235 0.0946 0.2755 0.2095 0.1480 0.2776 0.0492
A*02:06 22 0.0110 0.0007 0.0349 0.0018 0.0198 0.0748 0.0275 0.0175
A*03:01 199 0.0995 0.0839 0.0140 0.1399 0.0738 0.0090 0.1044 0.0636
A*11:01 114 0.0570 0.0142 0.2752 0.0609 0.0456 0.0874 0.0488 0.1396
A*23:01 47 0.0235 0.1099 0.0021 0.0197 0.0368 0.0011 0.0181 0.0066

Let’s assume our cohort is of predominantly European ancestry. We can plot the following comparison to see if allele frequencies in our data are distributed as expected, for example by visualizing common HLA-A allele frequencies in comparison with European, Chinese, and African American reference populations:

freq_HLA_long <- tidyr::gather(
  data = freq_HLA,
  key = "population",
  value = "freq",
  "Freq",
  "USA NMDP European Caucasian",
  "USA NMDP Chinese",
  "USA NMDP African American pop 2",
  factor_key = TRUE
) %>% 
  filter(grepl("^A", allele))

plot_HLAfreq <-
  ggplot2::ggplot(data = freq_HLA_long, ggplot2::aes(x = allele, y = freq, fill = population)) +
  ggplot2::geom_bar(
    stat = "identity",
    position = ggplot2::position_dodge(0.7),
    width = 0.7,
    colour = "black"
  ) +
  ggplot2::coord_flip() +
  ggplot2::scale_y_continuous(labels = formattable::percent)

plot_HLAfreq

HLA association analysis

Are classical HLA alleles associated with disease status?

The following function prepares our data for analysis, combining HLA and phenotypic data into one object. Here, we are interested in analyzing our data on the level of classical HLA alleles.

HLA <- prepareMiDAS(
  hla_calls = dat_HLA,
  colData = dat_pheno,
  experiment = "hla_alleles"
)

We can now test our HLA data for deviations from Hardy-Weinberg-Equilibrium (HWE) to filter out alleles that strongly deviate from HWE expectations (imputation or genotyping errors, …). Here, let’s remove alleles with a HWE p-value below 0.05 divided by the number of alleles tested / present in our data (N=447). We can create a filtered MiDAS object right away (as.MiDAS = TRUE), as done in this example, or output actual HWE test results.

HLA <- HWETest(
  object = HLA,
  experiment = "hla_alleles",
  HWE_cutoff = 0.05 / 447,
  as.MiDAS = TRUE
)

Now, we define our statistical model and run the analysis. Since we want to test for association with disease status, we use a logistic regression approach. The term is necessary as placeholder for the tested HLA alleles and needs to be included. It will become handy when for example defining more complex interaction models.

In the runMiDAS function, we then refer to this model, choose our analysis type and define a inheritance model. Here we use dominant model, meaning that individuals will be defined as non-carriers (0) vs. carriers (1) for a given allele. Alternatively, it is also possible to choose recessive (0 = non-carrier or heterozygous carrier, 1 = homozygous carrier), overdominant (assuming heterozygous (dis)advantage: 0 = non-carrier or homozygous carrier, 1 = heterozygous carrier), or additive (N of alleles) inheritance models. Moreover, we define allele inclusion criteria, such that we only consider alleles frequencies above 2% and below 98%. We also apply the Bonferroni method to not only get nominal P values, but also such adjusted for multiple testing. For alternative multiple testing correction methods, as well as the option to choose a custom number of tests, please refer to the documentation. exponentiate = TRUE means that the effect estimate will already be shown as odds ratio, since we use a logistic regression model.

HLA_model <- glm(disease ~ term, data = HLA, family = binomial())
HLA_results <- runMiDAS(
  object = HLA_model, 
  experiment = "hla_alleles", 
  inheritance_model = "dominant",
  lower_frequency_cutoff = 0.02, 
  upper_frequency_cutoff = 0.98, 
  correction = "bonferroni", 
  exponentiate = TRUE
)

kableResults(HLA_results)
MiDAS analysis results
allele p.value p.adjusted estimate std.error conf.low conf.high statistic Ntotal Ntotal [%] N(disease=0) N(disease=0) [%] N(disease=1) N(disease=1) [%]
DQB1*06:02 2.600e-06 2.290e-04 2.1719 0.1651 1.5764 3.0138 4.698e+00 198 9.90% 69 6.90% 129 12.90%
DRB1*15:01 7.300e-06 6.386e-04 2.0649 0.1617 1.5081 2.8450 4.484e+00 206 10.30% 74 7.40% 132 13.20%
B*57:01 3.080e-05 2.682e-03 2.9931 0.2631 1.8157 5.1189 4.167e+00 79 3.95% 21 2.10% 58 5.80%
C*07:02 1.859e-04 1.618e-02 1.8227 0.1606 1.3334 2.5044 3.737e+00 204 10.20% 78 7.80% 126 12.60%
B*18:01 6.012e-04 5.230e-02 0.5014 0.2012 0.3357 0.7400 -3.431e+00 122 6.10% 79 7.90% 43 4.30%
DRA*01:02 2.701e-03 2.350e-01 1.4703 0.1285 1.1435 1.8926 3.000e+00 573 28.65% 263 26.30% 310 31.00%
DQB1*02:02 4.569e-03 3.975e-01 0.6257 0.1654 0.4513 0.8635 -2.836e+00 185 9.25% 110 11.00% 75 7.50%
B*51:01 4.863e-03 4.231e-01 1.7271 0.1941 1.1849 2.5396 2.816e+00 128 6.40% 49 4.90% 79 7.90%
DRA*01:01 1.073e-02 9.331e-01 0.6210 0.1867 0.4289 0.8930 -2.552e+00 862 43.10% 445 44.50% 417 41.70%
B*44:02 2.068e-02 1.000e+00 1.4963 0.1742 1.0655 2.1111 2.314e+00 161 8.05% 67 6.70% 94 9.40%
C*08:02 2.076e-02 1.000e+00 1.8030 0.2549 1.1023 3.0076 2.312e+00 71 3.55% 26 2.60% 45 4.50%
DQA1*04:01 2.235e-02 1.000e+00 1.9179 0.2851 1.1089 3.4120 2.284e+00 57 2.85% 20 2.00% 37 3.70%
DQB1*05:02 3.106e-02 1.000e+00 0.5645 0.2652 0.3313 0.9417 -2.156e+00 65 3.25% 41 4.10% 24 2.40%
DRB1*11:01 3.188e-02 1.000e+00 0.6651 0.1900 0.4565 0.9630 -2.146e+00 131 6.55% 77 7.70% 54 5.40%
DRB1*07:01 3.518e-02 1.000e+00 0.7266 0.1517 0.5390 0.9772 -2.106e+00 228 11.40% 128 12.80% 100 10.00%
A*31:01 6.065e-02 1.000e+00 1.6857 0.2784 0.9846 2.9492 1.876e+00 58 2.90% 22 2.20% 36 3.60%
B*08:01 8.299e-02 1.000e+00 0.7130 0.1951 0.4847 1.0431 -1.734e+00 122 6.10% 70 7.00% 52 5.20%
DQA1*01:02 9.218e-02 1.000e+00 1.2555 0.1351 0.9637 1.6371 1.684e+00 327 16.35% 151 15.10% 176 17.60%
B*07:02 1.037e-01 1.000e+00 1.3456 0.1825 0.9424 1.9292 1.627e+00 142 7.10% 62 6.20% 80 8.00%
B*35:01 1.043e-01 1.000e+00 0.6811 0.2365 0.4254 1.0787 -1.624e+00 80 4.00% 47 4.70% 33 3.30%
DQB1*04:02 1.069e-01 1.000e+00 1.5610 0.2762 0.9141 2.7147 1.612e+00 58 2.90% 23 2.30% 35 3.50%
DRB1*03:01 1.102e-01 1.000e+00 0.7737 0.1606 0.5639 1.0592 -1.597e+00 194 9.70% 107 10.70% 87 8.70%
DQA1*02:01 1.177e-01 1.000e+00 0.7913 0.1496 0.5895 1.0604 -1.565e+00 235 11.75% 128 12.80% 107 10.70%
C*03:03 1.291e-01 1.000e+00 0.6974 0.2374 0.4349 1.1070 -1.518e+00 79 3.95% 46 4.60% 33 3.30%
C*07:01 1.309e-01 1.000e+00 0.7952 0.1517 0.5901 1.0700 -1.511e+00 226 11.30% 123 12.30% 103 10.30%
DQB1*02:01 1.314e-01 1.000e+00 0.7860 0.1596 0.5740 1.0739 -1.509e+00 197 9.85% 108 10.80% 89 8.90%
DPB1*104:01 1.341e-01 1.000e+00 0.6295 0.3089 0.3380 1.1441 -1.498e+00 46 2.30% 28 2.80% 18 1.80%
DQA1*01:01 1.613e-01 1.000e+00 1.2610 0.1656 0.9122 1.7473 1.401e+00 179 8.95% 81 8.10% 98 9.80%
DQB1*03:01 1.699e-01 1.000e+00 0.8355 0.1309 0.6461 1.0797 -1.373e+00 373 18.65% 197 19.70% 176 17.60%
A*02:01 1.796e-01 1.000e+00 1.1874 0.1280 0.9241 1.5265 1.342e+00 427 21.35% 203 20.30% 224 22.40%
DQA1*05:05 2.041e-01 1.000e+00 0.8356 0.1414 0.6330 1.1022 -1.270e+00 278 13.90% 148 14.80% 130 13.00%
A*11:01 2.223e-01 1.000e+00 0.7788 0.2049 0.5194 1.1620 -1.220e+00 108 5.40% 60 6.00% 48 4.80%
DPA1*01:03 2.340e-01 1.000e+00 1.3315 0.2406 0.8330 2.1466 1.190e+00 924 46.20% 457 45.70% 467 46.70%
DQB1*03:03 2.340e-01 1.000e+00 1.3315 0.2406 0.8330 2.1466 1.190e+00 76 3.80% 33 3.30% 43 4.30%
DQA1*05:01 2.369e-01 1.000e+00 0.8294 0.1582 0.6076 1.1303 -1.183e+00 201 10.05% 108 10.80% 93 9.30%
A*25:01 2.563e-01 1.000e+00 0.7211 0.2881 0.4056 1.2630 -1.135e+00 52 2.60% 30 3.00% 22 2.20%
B*27:05 2.728e-01 1.000e+00 0.7374 0.2778 0.4239 1.2666 -1.097e+00 56 2.80% 32 3.20% 24 2.40%
DPB1*04:02 2.921e-01 1.000e+00 0.8426 0.1625 0.6120 1.1582 -1.054e+00 187 9.35% 100 10.00% 87 8.70%
A*03:01 2.960e-01 1.000e+00 1.1835 0.1612 0.8632 1.6250 1.045e+00 191 9.55% 89 8.90% 102 10.20%
DPB1*17:01 2.973e-01 1.000e+00 0.7299 0.3020 0.3991 1.3139 -1.042e+00 47 2.35% 27 2.70% 20 2.00%
C*03:04 2.978e-01 1.000e+00 1.2747 0.2331 0.8086 2.0229 1.041e+00 81 4.05% 36 3.60% 45 4.50%
DQA1*03:01 2.986e-01 1.000e+00 1.1981 0.1738 0.8526 1.6870 1.040e+00 158 7.90% 73 7.30% 85 8.50%
DPB1*13:01 3.067e-01 1.000e+00 0.7390 0.2959 0.4093 1.3149 -1.022e+00 49 2.45% 28 2.80% 21 2.10%
DQA1*01:03 3.208e-01 1.000e+00 1.1970 0.1811 0.8398 1.7102 9.928e-01 143 7.15% 66 6.60% 77 7.70%
DRB1*04:01 3.369e-01 1.000e+00 1.2288 0.2145 0.8079 1.8775 9.604e-01 97 4.85% 44 4.40% 53 5.30%
DQB1*05:03 3.760e-01 1.000e+00 0.7680 0.2981 0.4239 1.3736 -8.854e-01 48 2.40% 27 2.70% 21 2.10%
DQA1*01:04 3.938e-01 1.000e+00 0.7831 0.2867 0.4426 1.3704 -8.528e-01 52 2.60% 29 2.90% 23 2.30%
A*32:01 4.177e-01 1.000e+00 0.8022 0.2720 0.4674 1.3647 -8.104e-01 58 2.90% 32 3.20% 26 2.60%
DQB1*06:01 4.558e-01 1.000e+00 1.2512 0.3005 0.6956 2.2759 7.457e-01 47 2.35% 21 2.10% 26 2.60%
A*23:01 4.558e-01 1.000e+00 0.7993 0.3005 0.4394 1.4375 -7.457e-01 47 2.35% 26 2.60% 21 2.10%
B*40:01 4.958e-01 1.000e+00 1.2050 0.2738 0.7053 2.0743 6.812e-01 57 2.85% 26 2.60% 31 3.10%
C*12:03 5.147e-01 1.000e+00 0.8856 0.1865 0.6135 1.2760 -6.516e-01 133 6.65% 70 7.00% 63 6.30%
DRB1*13:01 5.273e-01 1.000e+00 1.1428 0.2112 0.7557 1.7330 6.321e-01 100 5.00% 47 4.70% 53 5.30%
A*29:02 5.379e-01 1.000e+00 0.8264 0.3096 0.4463 1.5145 -6.159e-01 44 2.20% 24 2.40% 20 2.00%
DRB1*01:01 5.622e-01 1.000e+00 0.8939 0.1934 0.6108 1.3059 -5.795e-01 122 6.10% 64 6.40% 58 5.80%
A*68:01 5.692e-01 1.000e+00 0.8499 0.2857 0.4823 1.4870 -5.692e-01 52 2.60% 28 2.80% 24 2.40%
B*44:03 5.709e-01 1.000e+00 0.8792 0.2271 0.5616 1.3720 -5.667e-01 85 4.25% 45 4.50% 40 4.00%
DRB1*13:02 5.750e-01 1.000e+00 1.1343 0.2247 0.7303 1.7673 5.607e-01 87 4.35% 41 4.10% 46 4.60%
DRB1*11:04 5.789e-01 1.000e+00 0.8839 0.2224 0.5699 1.3666 -5.550e-01 89 4.45% 47 4.70% 42 4.20%
DQB1*03:02 6.084e-01 1.000e+00 1.0915 0.1709 0.7808 1.5273 5.123e-01 164 8.20% 79 7.90% 85 8.50%
B*13:02 6.202e-01 1.000e+00 0.8843 0.2483 0.5415 1.4384 -4.955e-01 70 3.50% 37 3.70% 33 3.30%
DPA1*02:01 6.217e-01 1.000e+00 0.9328 0.1410 0.7072 1.2298 -4.935e-01 279 13.95% 143 14.30% 136 13.60%
B*15:01 6.412e-01 1.000e+00 0.8969 0.2334 0.5659 1.4173 -4.661e-01 80 4.00% 42 4.20% 38 3.80%
DRB1*04:04 6.542e-01 1.000e+00 0.8745 0.2994 0.4829 1.5731 -4.480e-01 47 2.35% 25 2.50% 22 2.20%
B*38:01 6.665e-01 1.000e+00 0.8833 0.2880 0.4993 1.5537 -4.310e-01 51 2.55% 27 2.70% 24 2.40%
DQB1*06:04 7.083e-01 1.000e+00 1.0980 0.2498 0.6727 1.7976 3.742e-01 69 3.45% 33 3.30% 36 3.60%
DPB1*03:01 7.087e-01 1.000e+00 0.9325 0.1869 0.6457 1.3454 -3.736e-01 132 6.60% 68 6.80% 64 6.40%
DPB1*02:01 7.233e-01 1.000e+00 0.9511 0.1417 0.7203 1.2555 -3.541e-01 275 13.75% 140 14.00% 135 13.50%
C*12:02 7.526e-01 1.000e+00 0.9053 0.3156 0.4842 1.6832 -3.152e-01 42 2.10% 22 2.20% 20 2.00%
A*24:02 7.586e-01 1.000e+00 1.0484 0.1537 0.7756 1.4176 3.074e-01 216 10.80% 106 10.60% 110 11.00%
C*05:01 7.899e-01 1.000e+00 0.9538 0.1776 0.6728 1.3513 -2.664e-01 149 7.45% 76 7.60% 73 7.30%
DPB1*01:01 8.067e-01 1.000e+00 0.9419 0.2448 0.5814 1.5231 -2.446e-01 72 3.60% 37 3.70% 35 3.50%
C*02:02 8.215e-01 1.000e+00 1.0522 0.2256 0.6756 1.6408 2.256e-01 86 4.30% 42 4.20% 44 4.40%
C*01:02 8.316e-01 1.000e+00 1.0463 0.2128 0.6891 1.5902 2.127e-01 98 4.90% 48 4.80% 50 5.00%
DQB1*06:03 8.385e-01 1.000e+00 1.0424 0.2038 0.6987 1.5563 2.038e-01 108 5.40% 53 5.30% 55 5.50%
DQB1*05:01 8.724e-01 1.000e+00 1.0261 0.1606 0.7489 1.4063 1.606e-01 192 9.60% 95 9.50% 97 9.70%
A*30:02 8.761e-01 1.000e+00 0.9526 0.3119 0.5141 1.7603 -1.559e-01 43 2.15% 22 2.20% 21 2.10%
DRB1*04:05 8.812e-01 1.000e+00 1.0457 0.2989 0.5806 1.8875 1.494e-01 47 2.35% 23 2.30% 24 2.40%
C*15:02 8.812e-01 1.000e+00 0.9563 0.2989 0.5298 1.7224 -1.494e-01 47 2.35% 24 2.40% 23 2.30%
C*16:01 8.835e-01 1.000e+00 0.9580 0.2930 0.5370 1.7054 -1.465e-01 49 2.45% 25 2.50% 24 2.40%
DQA1*03:03 9.248e-01 1.000e+00 0.9824 0.1887 0.6781 1.4227 -9.434e-02 129 6.45% 65 6.50% 64 6.40%
C*06:02 9.348e-01 1.000e+00 0.9867 0.1636 0.7158 1.3601 -8.178e-02 183 9.15% 92 9.20% 91 9.10%
C*04:01 9.396e-01 1.000e+00 1.0115 0.1515 0.7516 1.3615 7.573e-02 225 11.25% 112 11.20% 113 11.30%
A*26:01 1.000e+00 1.000e+00 1.0000 0.2232 0.6447 1.5510 0.000e+00 88 4.40% 44 4.40% 44 4.40%
B*52:01 1.000e+00 1.000e+00 1.0000 0.3153 0.5367 1.8633 0.000e+00 42 2.10% 21 2.10% 21 2.10%
A*01:01 1.000e+00 1.000e+00 1.0000 0.1522 0.7419 1.3479 0.000e+00 222 11.10% 111 11.10% 111 11.10%
B*49:01 1.000e+00 1.000e+00 1.0000 0.3153 0.5367 1.8633 0.000e+00 42 2.10% 21 2.10% 21 2.10%

Three HLA alleles show significant association with the disease after multiple testing adjustment. Due to the complex linkage disequilibrium structure in the MHC, it is likely that associations are not statistically independent. The two alleles HLA-DRB1*15:01 and HLA-DQB1*06:02 are a common class II haplotype. We can therefore test if there are associations that are statistically independent of our top-associated allele, by setting the conditional flag to TRUE. MiDAS will now perform stepwise conditional testing until the top associated allele does not reach a defined significance threshold (here th = 0.05, based on adjusted p value).

HLA_results_cond <- runMiDAS(
  object = HLA_model, 
  experiment = "hla_alleles", 
  inheritance_model = "dominant", 
  conditional = TRUE,
  lower_frequency_cutoff = 0.02, 
  upper_frequency_cutoff = 0.98, 
  correction = "bonferroni", 
  exponentiate = TRUE
)

kableResults(HLA_results_cond, scroll_box_height = "200px")
MiDAS analysis results
allele p.value p.adjusted estimate std.error conf.low conf.high statistic covariates Ntotal Ntotal [%] N(disease=0) N(disease=0) [%] N(disease=1) N(disease=1) [%]
DQB1*06:02 2.60e-06 2.290e-04 2.172 0.1651 1.576 3.014 4.698 198 9.90% 69 6.90% 129 12.90%
B*57:01 2.64e-05 2.269e-03 3.049 0.2653 1.841 5.235 4.203 DQB1*06:02 79 3.95% 21 2.10% 58 5.80%

The results for conditional testing are displayed in a way that for each step the top associated allele is shown, along with a list of alleles conditioned on.

As we can see, HLA-DRB1*15:01 was not independently associated with the disease when correcting for our top-associated allele HLA-DQB1*06:02. However, HLA-B*57:01 can be considered an independent association signal.

HLA association fine-mapping on amino acid level

Next, we want to find out what are the strongest associated amino acid positions, corresponding to our allele-level associations. This can help fine-mapping the associated variants to e.g. the peptide binding region or other functionally distinct parts of the protein. We thus prepare a MiDAS object with experiment type “hla_aa”, which includes the inference of amino acid variation from allele calls.

HLA_AA <- prepareMiDAS(
  hla_calls = dat_HLA,
  colData = dat_pheno,
  experiment = "hla_aa"
)

Amino acid data will be stored in a MiDAS object, but we can extract it to a data frame and select a couple of variables to display how this looks like:

dat_HLA_AA <- HLA_AA[["hla_aa"]] %>% 
  assay() %>% 
  t() %>% 
  as.data.frame() %>% 
  select(starts_with("B_97_")) %>% 
  head()
HLA amino acid data as inferred by MiDAS
B_97_S B_97_R B_97_T B_97_N B_97_V B_97_W
C001 1 1 0 0 0 0
C002 0 2 0 0 0 0
C003 0 1 1 0 0 0
C004 1 1 0 0 0 0
C005 1 1 0 0 0 0
C006 2 0 0 0 0 0

Now, we run the association test based on amino acid variation. To first identify the most relevant associated amino acid positions, we run a likelihood ratio (omnibus) test, which groups all residues at each amino acid position.

HLA_AA_model <- glm(disease ~ term, data = HLA_AA, family = binomial())
HLA_AA_omnibus_results <- runMiDAS(
  HLA_AA_model,
  experiment = "hla_aa",
  inheritance_model = "dominant",
  conditional = FALSE,
  omnibus = TRUE,
  lower_frequency_cutoff = 0.02,
  upper_frequency_cutoff = 0.98,
  correction = "bonferroni"
)

kableResults(HLA_AA_omnibus_results)
MiDAS analysis results
aa_pos residues df statistic p.value p.adjusted
B_97 S, R, T, N, V, W 6 3.532e+01 3.700e-06 1.573e-03
DQB1_9 F, Y, * 3 2.569e+01 1.110e-05 4.682e-03
DQB1_185 *, T 2 1.881e+01 8.240e-05 3.476e-02
DQB1_177 *, H 2 1.788e+01 1.313e-04 5.542e-02
DQB1_142 *, V 2 1.788e+01 1.313e-04 5.542e-02
DQB1_167 *, R 2 1.729e+01 1.759e-04 7.422e-02
DQB1_116 *, V 2 1.695e+01 2.081e-04 8.782e-02
DQB1_125 *, A 2 1.695e+01 2.081e-04 8.782e-02
B_81 L, A 2 1.689e+01 2.154e-04 9.092e-02
DQB1_130 *, R 2 1.663e+01 2.451e-04 1.034e-01
DQB1_126 *, Q 2 1.636e+01 2.807e-04 1.185e-01
B_80 N, T, I 3 1.866e+01 3.209e-04 1.354e-01
B_82 R, L 2 1.582e+01 3.674e-04 1.550e-01
B_83 G, R 2 1.582e+01 3.674e-04 1.550e-01
DQB1_140 *, A, T 3 1.836e+01 3.711e-04 1.566e-01
DQB1_182 *, S, N 3 1.836e+01 3.711e-04 1.566e-01
DQB1_135 *, G, D 3 1.815e+01 4.087e-04 1.725e-01
B_62 R, G 2 1.511e+01 5.232e-04 2.208e-01
DRB1_71 A, R, E, K 4 1.984e+01 5.362e-04 2.263e-01
B_275 *, E 2 1.476e+01 6.231e-04 2.630e-01
B_295 *, . 2 1.476e+01 6.231e-04 2.630e-01
B_296 *, A 2 1.476e+01 6.231e-04 2.630e-01
B_297 *, V 2 1.476e+01 6.231e-04 2.630e-01
B_299 *, V 2 1.476e+01 6.231e-04 2.630e-01
B_300 *, I 2 1.476e+01 6.231e-04 2.630e-01
B_301 *, G 2 1.476e+01 6.231e-04 2.630e-01
B_77 S, N, D 3 1.717e+01 6.530e-04 2.756e-01
B_65 Q, R 2 1.385e+01 9.828e-04 4.147e-01
B_70 Q, N, K, S 4 1.849e+01 9.909e-04 4.181e-01
B_239 *, R 2 1.362e+01 1.105e-03 4.664e-01
B_253 *, E 2 1.362e+01 1.105e-03 4.664e-01
B_267 *, P 2 1.362e+01 1.105e-03 4.664e-01
B_268 *, K 2 1.362e+01 1.105e-03 4.664e-01
B_270 *, L 2 1.362e+01 1.105e-03 4.664e-01
B_66 I, N 2 1.330e+01 1.294e-03 5.460e-01
B_194 *, I 2 1.312e+01 1.415e-03 5.970e-01
B_103 V, L 2 1.296e+01 1.537e-03 6.484e-01
B_30 D, G 2 1.283e+01 1.637e-03 6.907e-01
B_-16 *, V 2 1.255e+01 1.886e-03 7.960e-01
B_339 *, A 2 1.242e+01 2.010e-03 8.481e-01
B_199 *, A 2 1.215e+01 2.298e-03 9.696e-01
B_211 *, A 2 1.207e+01 2.395e-03 1.000e+00
DQB1_55 R, L, P 3 1.420e+01 2.647e-03 1.000e+00
C_99 Y, C, F, S 4 1.624e+01 2.714e-03 1.000e+00
DRA_217 L, V 2 1.173e+01 2.830e-03 1.000e+00
B_9 Y, H, D 3 1.370e+01 3.340e-03 1.000e+00
B_69 A, T 2 1.122e+01 3.661e-03 1.000e+00
DQB1_38 A, V 2 1.081e+01 4.489e-03 1.000e+00
DQB1_77 T, R, * 3 1.287e+01 4.925e-03 1.000e+00
B_67 Y, S, F, C, M 5 1.666e+01 5.181e-03 1.000e+00
B_71 A, T 2 1.044e+01 5.405e-03 1.000e+00
DQB1_87 F, L, *, Y 4 1.424e+01 6.568e-03 1.000e+00
DQB1_30 Y, S, H 3 1.148e+01 9.382e-03 1.000e+00
B_-23 *, R 2 9.202e+00 1.004e-02 1.000e+00
B_-21 *, T 2 9.202e+00 1.004e-02 1.000e+00
DQB1_28 T, S 2 9.008e+00 1.106e-02 1.000e+00
DQB1_46 V, E 2 9.008e+00 1.106e-02 1.000e+00
DQB1_47 Y, F 2 9.008e+00 1.106e-02 1.000e+00
DQB1_52 P, L 2 9.008e+00 1.106e-02 1.000e+00
B_-10 *, G 2 8.724e+00 1.275e-02 1.000e+00
B_-9 *, A 2 8.473e+00 1.446e-02 1.000e+00
DQB1_74 E, A, S, * 4 1.222e+01 1.579e-02 1.000e+00
B_163 E, L, T 3 1.031e+01 1.610e-02 1.000e+00
B_282 * 1 5.561e+00 1.836e-02 1.000e+00
B_306 * 1 5.561e+00 1.836e-02 1.000e+00
B_326 * 1 5.561e+00 1.836e-02 1.000e+00
DQA1_107 I, *, T 3 9.899e+00 1.945e-02 1.000e+00
DQA1_156 L, *, F 3 9.899e+00 1.945e-02 1.000e+00
DQA1_161 E, *, D 3 9.899e+00 1.945e-02 1.000e+00
DQA1_163 S, *, I 3 9.899e+00 1.945e-02 1.000e+00
DQB1_71 T, K, D, A, * 5 1.324e+01 2.121e-02 1.000e+00
DQB1_57 D, A, V, S 4 1.140e+01 2.237e-02 1.000e+00
DQB1_37 Y, I, D 3 9.592e+00 2.237e-02 1.000e+00
DRB1_25 R, Q 2 7.501e+00 2.350e-02 1.000e+00
DRB1_14 E, K 2 7.447e+00 2.415e-02 1.000e+00
DQA1_175 K, *, Q, E 4 1.122e+01 2.421e-02 1.000e+00
DRB1_13 R, Y, S, F, H, G 6 1.442e+01 2.532e-02 1.000e+00
DQA1_75 S, I 2 7.203e+00 2.729e-02 1.000e+00
DQB1_75 L, V, * 3 9.131e+00 2.760e-02 1.000e+00
DPB1_85 G, E 2 7.165e+00 2.781e-02 1.000e+00
DPB1_86 P, A 2 7.165e+00 2.781e-02 1.000e+00
DPB1_87 M, V 2 7.165e+00 2.781e-02 1.000e+00
DQA1_-16 M, *, L 3 8.964e+00 2.977e-02 1.000e+00
DRB1_11 P, G, S, V, L 5 1.229e+01 3.107e-02 1.000e+00
B_-8 *, V 2 6.935e+00 3.120e-02 1.000e+00
DQA1_69 L, A, T 3 8.813e+00 3.189e-02 1.000e+00
DPB1_56 E, A 2 6.804e+00 3.331e-02 1.000e+00
B_-11 *, W 2 6.510e+00 3.858e-02 1.000e+00
DRB1_73 A, G 2 6.484e+00 3.909e-02 1.000e+00
DQA1_56 ., G, R 3 8.283e+00 4.051e-02 1.000e+00
DQA1_76 L, M, V 3 8.283e+00 4.051e-02 1.000e+00
B_63 N, E 2 6.264e+00 4.363e-02 1.000e+00
B_143 T, S 2 6.242e+00 4.412e-02 1.000e+00
B_147 W, L 2 6.242e+00 4.412e-02 1.000e+00
DQB1_53 Q, L 2 6.167e+00 4.581e-02 1.000e+00
DRB1_70 Q, D, R 3 7.952e+00 4.701e-02 1.000e+00
B_178 K, T 2 6.097e+00 4.744e-02 1.000e+00
DQA1_129 H, *, Q 3 7.675e+00 5.323e-02 1.000e+00
DRB1_78 Y, V 2 5.806e+00 5.486e-02 1.000e+00
B_45 E, K, M, T 4 9.174e+00 5.689e-02 1.000e+00
B_152 E, V 2 5.717e+00 5.736e-02 1.000e+00
A_156 W, L, Q, R 4 9.095e+00 5.876e-02 1.000e+00
DPB1_84 G, D 2 5.518e+00 6.335e-02 1.000e+00
DQA1_47 C, K, R, Q 4 8.866e+00 6.454e-02 1.000e+00
B_167 W, S 2 5.462e+00 6.514e-02 1.000e+00
DPB1_69 E, K, R 3 7.206e+00 6.560e-02 1.000e+00
DRB1_96 *, H 2 5.296e+00 7.080e-02 1.000e+00
DRB1_98 *, K 2 5.296e+00 7.080e-02 1.000e+00
DRB1_104 *, S 2 5.296e+00 7.080e-02 1.000e+00
DRB1_120 *, S 2 5.296e+00 7.080e-02 1.000e+00
DRB1_149 *, H 2 5.296e+00 7.080e-02 1.000e+00
DRB1_180 *, V 2 5.296e+00 7.080e-02 1.000e+00
DRB1_58 A, E 2 5.167e+00 7.550e-02 1.000e+00
DQA1_54 F, L 2 4.945e+00 8.436e-02 1.000e+00
DQB1_56 P, L 2 4.874e+00 8.743e-02 1.000e+00
DRB1_74 A, Q, E, R, L 5 9.459e+00 9.208e-02 1.000e+00
B_116 Y, L, S, F, D 5 9.438e+00 9.281e-02 1.000e+00
DRB1_77 T, N 2 4.705e+00 9.511e-02 1.000e+00
DQB1_66 E, D 2 4.696e+00 9.554e-02 1.000e+00
DQB1_67 V, I 2 4.696e+00 9.554e-02 1.000e+00
DQB1_23 R 1 2.777e+00 9.565e-02 1.000e+00
B_46 E, A 2 4.545e+00 1.030e-01 1.000e+00
DQA1_18 S, F 2 4.503e+00 1.052e-01 1.000e+00
DQA1_45 V, A 2 4.503e+00 1.052e-01 1.000e+00
DQA1_48 L, W 2 4.503e+00 1.052e-01 1.000e+00
DQA1_55 R, G 2 4.503e+00 1.052e-01 1.000e+00
DQA1_61 F, G 2 4.503e+00 1.052e-01 1.000e+00
DQA1_64 T, R 2 4.503e+00 1.052e-01 1.000e+00
DQA1_66 I, M 2 4.503e+00 1.052e-01 1.000e+00
DQA1_80 S, Y 2 4.503e+00 1.052e-01 1.000e+00
A_163 R, T 2 4.467e+00 1.072e-01 1.000e+00
DQA1_11 Y, C 2 4.452e+00 1.080e-01 1.000e+00
A_90 D, A 2 4.340e+00 1.142e-01 1.000e+00
DPA1_31 M, Q 2 4.297e+00 1.167e-01 1.000e+00
DPA1_50 Q, R 2 4.237e+00 1.202e-01 1.000e+00
A_245 *, A 2 4.225e+00 1.210e-01 1.000e+00
B_171 Y, H 2 4.132e+00 1.267e-01 1.000e+00
DQB1_84 E, Q, * 3 5.693e+00 1.276e-01 1.000e+00
DQB1_85 V, L, * 3 5.693e+00 1.276e-01 1.000e+00
DQB1_89 G, T, * 3 5.693e+00 1.276e-01 1.000e+00
DQB1_90 I, T, * 3 5.693e+00 1.276e-01 1.000e+00
DPB1_36 V, A 2 4.077e+00 1.302e-01 1.000e+00
DQB1_70 G, R, E, * 4 7.108e+00 1.303e-01 1.000e+00
DQA1_130 S, *, A 3 5.630e+00 1.311e-01 1.000e+00
DRB1_37 S, F, N, Y, L 5 8.451e+00 1.331e-01 1.000e+00
DQA1_102 L, * 2 4.014e+00 1.344e-01 1.000e+00
DQA1_138 T, * 2 4.014e+00 1.344e-01 1.000e+00
DQA1_139 S, * 2 4.014e+00 1.344e-01 1.000e+00
DRB1_10 Q, Y 2 3.965e+00 1.377e-01 1.000e+00
DQA1_50 V, L, E 3 5.421e+00 1.435e-01 1.000e+00
DQA1_53 Q, R, K 3 5.421e+00 1.435e-01 1.000e+00
DQA1_52 R, H, S 3 5.388e+00 1.455e-01 1.000e+00
A_105 P, S 2 3.819e+00 1.482e-01 1.000e+00
A_193 *, A 2 3.707e+00 1.567e-01 1.000e+00
A_194 *, V 2 3.707e+00 1.567e-01 1.000e+00
A_207 *, S 2 3.707e+00 1.567e-01 1.000e+00
A_253 *, Q 2 3.707e+00 1.567e-01 1.000e+00
DQA1_-13 T, *, A 3 5.123e+00 1.630e-01 1.000e+00
DPA1_83 T, A 2 3.592e+00 1.660e-01 1.000e+00
A_77 S, D, N 3 4.931e+00 1.770e-01 1.000e+00
DRB1_12 K, T 2 3.424e+00 1.805e-01 1.000e+00
C_66 K, N 2 3.422e+00 1.807e-01 1.000e+00
DRB1_60 Y, S, H 3 4.810e+00 1.863e-01 1.000e+00
DQB1_45 G, E 2 3.314e+00 1.907e-01 1.000e+00
DRB1_30 Y, L, C, H 4 6.083e+00 1.930e-01 1.000e+00
DQA1_40 G, E 2 3.267e+00 1.953e-01 1.000e+00
DQA1_51 L, F 2 3.267e+00 1.953e-01 1.000e+00
C_152 E, A 2 3.198e+00 2.021e-01 1.000e+00
C_77 S, N 2 3.197e+00 2.022e-01 1.000e+00
C_80 N, K 2 3.197e+00 2.022e-01 1.000e+00
DPA1_96 *, P 1 1.600e+00 2.059e-01 1.000e+00
B_113 H, Y 2 3.079e+00 2.145e-01 1.000e+00
A_73 T, I 2 3.047e+00 2.180e-01 1.000e+00
DRB1_28 D, E 2 3.036e+00 2.192e-01 1.000e+00
DQA1_160 A, *, D 3 4.381e+00 2.231e-01 1.000e+00
DPB1_55 D, E, A 3 4.338e+00 2.272e-01 1.000e+00
DRB1_33 N, H 2 2.928e+00 2.313e-01 1.000e+00
DQA1_1 E, * 2 2.925e+00 2.317e-01 1.000e+00
DQA1_218 R, *, Q 3 4.267e+00 2.340e-01 1.000e+00
DQA1_41 R, K 2 2.893e+00 2.354e-01 1.000e+00
A_43 Q 1 1.387e+00 2.389e-01 1.000e+00
B_109 L 1 1.387e+00 2.389e-01 1.000e+00
C_-17 * 1 1.387e+00 2.389e-01 1.000e+00
C_-15 * 1 1.387e+00 2.389e-01 1.000e+00
C_-9 * 1 1.387e+00 2.389e-01 1.000e+00
C_1 * 1 1.387e+00 2.389e-01 1.000e+00
C_175 G 1 1.387e+00 2.389e-01 1.000e+00
C_184 * 1 1.387e+00 2.389e-01 1.000e+00
C_219 * 1 1.387e+00 2.389e-01 1.000e+00
C_253 * 1 1.387e+00 2.389e-01 1.000e+00
C_267 * 1 1.387e+00 2.389e-01 1.000e+00
C_275 * 1 1.387e+00 2.389e-01 1.000e+00
C_285 * 1 1.387e+00 2.389e-01 1.000e+00
C_312 * 1 1.387e+00 2.389e-01 1.000e+00
C_345 * 1 1.387e+00 2.389e-01 1.000e+00
DQB1_86 A, E, *, G 4 5.435e+00 2.455e-01 1.000e+00
DQA1_2 D, *, G 3 4.104e+00 2.505e-01 1.000e+00
C_173 E, K 2 2.722e+00 2.564e-01 1.000e+00
A_219 *, R 2 2.718e+00 2.569e-01 1.000e+00
C_103 L, V 2 2.700e+00 2.592e-01 1.000e+00
C_91 G, R 2 2.649e+00 2.659e-01 1.000e+00
DRB1_16 H, Y 2 2.631e+00 2.684e-01 1.000e+00
DPB1_-14 *, T 2 2.558e+00 2.782e-01 1.000e+00
DRB1_57 D, V, A, S 4 5.068e+00 2.804e-01 1.000e+00
DQA1_26 T, S 2 2.541e+00 2.807e-01 1.000e+00
A_282 *, I 2 2.520e+00 2.836e-01 1.000e+00
A_311 *, K 2 2.520e+00 2.836e-01 1.000e+00
C_330 *, A 2 2.517e+00 2.840e-01 1.000e+00
DRB1_32 Y, H 2 2.498e+00 2.868e-01 1.000e+00
B_94 T, I 2 2.473e+00 2.904e-01 1.000e+00
DQB1_13 G, A, * 3 3.735e+00 2.915e-01 1.000e+00
C_24 A, S 2 2.431e+00 2.966e-01 1.000e+00
C_295 *, A 2 2.316e+00 3.142e-01 1.000e+00
C_311 *, A 2 2.316e+00 3.142e-01 1.000e+00
C_313 *, V 2 2.316e+00 3.142e-01 1.000e+00
C_332 *, S 2 2.316e+00 3.142e-01 1.000e+00
DRB1_47 F, Y 2 2.287e+00 3.187e-01 1.000e+00
A_9 Y, F, S, T 4 4.680e+00 3.218e-01 1.000e+00
B_12 V, M 2 2.186e+00 3.352e-01 1.000e+00
DRB1_67 I, L, F 3 3.360e+00 3.394e-01 1.000e+00
B_11 S, A 2 2.145e+00 3.421e-01 1.000e+00
DQA1_207 V, *, M 3 3.336e+00 3.426e-01 1.000e+00
DPB1_11 G, L 2 2.127e+00 3.452e-01 1.000e+00
C_113 Y, H 2 2.014e+00 3.653e-01 1.000e+00
A_109 L 1 8.077e-01 3.688e-01 1.000e+00
A_231 *, V 2 1.979e+00 3.718e-01 1.000e+00
B_145 R, L 2 1.976e+00 3.723e-01 1.000e+00
DPB1_8 L, V 2 1.958e+00 3.758e-01 1.000e+00
C_309 *, V 2 1.876e+00 3.915e-01 1.000e+00
C_327 *, C 2 1.876e+00 3.915e-01 1.000e+00
C_14 R, W 2 1.834e+00 3.998e-01 1.000e+00
C_49 A, E 2 1.834e+00 3.998e-01 1.000e+00
A_76 E, V, A 3 2.935e+00 4.018e-01 1.000e+00
DPB1_178 *, L 2 1.820e+00 4.026e-01 1.000e+00
B_32 Q, L 2 1.766e+00 4.136e-01 1.000e+00
DQB1_14 M, L, * 3 2.820e+00 4.202e-01 1.000e+00
A_144 Q, K 2 1.719e+00 4.234e-01 1.000e+00
DRB1_9 W, E 2 1.605e+00 4.482e-01 1.000e+00
C_194 *, V 2 1.600e+00 4.493e-01 1.000e+00
C_261 *, V 2 1.600e+00 4.493e-01 1.000e+00
C_273 *, R 2 1.600e+00 4.493e-01 1.000e+00
C_114 D, N 2 1.576e+00 4.547e-01 1.000e+00
C_248 *, V 2 1.560e+00 4.583e-01 1.000e+00
C_211 *, A 2 1.554e+00 4.597e-01 1.000e+00
DPB1_76 M, V, I 3 2.568e+00 4.631e-01 1.000e+00
C_147 W, L 2 1.511e+00 4.697e-01 1.000e+00
C_35 R, Q 2 1.502e+00 4.718e-01 1.000e+00
C_-18 *, R 2 1.478e+00 4.775e-01 1.000e+00
C_-5 *, T 2 1.478e+00 4.775e-01 1.000e+00
C_-1 *, A 2 1.478e+00 4.775e-01 1.000e+00
C_284 *, I 2 1.478e+00 4.775e-01 1.000e+00
C_289 *, A 2 1.478e+00 4.775e-01 1.000e+00
C_291 *, L 2 1.478e+00 4.775e-01 1.000e+00
C_314 *, M 2 1.478e+00 4.775e-01 1.000e+00
C_315 *, C 2 1.478e+00 4.775e-01 1.000e+00
DPB1_33 Q 1 4.988e-01 4.800e-01 1.000e+00
DQA1_208 G, * 2 1.451e+00 4.842e-01 1.000e+00
DRB1_86 V, G 2 1.448e+00 4.847e-01 1.000e+00
DQA1_-7 V, *, M 3 2.441e+00 4.860e-01 1.000e+00
A_297 *, V 2 1.434e+00 4.881e-01 1.000e+00
C_270 *, L 2 1.412e+00 4.937e-01 1.000e+00
A_186 *, K 2 1.397e+00 4.973e-01 1.000e+00
A_-16 *, L 2 1.395e+00 4.979e-01 1.000e+00
A_283 *, P 2 1.395e+00 4.979e-01 1.000e+00
C_21 R, H 2 1.394e+00 4.980e-01 1.000e+00
C_186 *, K 2 1.387e+00 4.997e-01 1.000e+00
C_310 *, V 2 1.387e+00 4.997e-01 1.000e+00
A_184 *, A, P 3 2.353e+00 5.024e-01 1.000e+00
C_73 A, T 2 1.376e+00 5.027e-01 1.000e+00
C_163 T, L, E 3 2.260e+00 5.203e-01 1.000e+00
DPA1_11 A, M 2 1.299e+00 5.224e-01 1.000e+00
A_149 T, A 2 1.254e+00 5.343e-01 1.000e+00
A_56 G, R 2 1.228e+00 5.411e-01 1.000e+00
B_41 A, T 2 1.228e+00 5.412e-01 1.000e+00
A_161 E, D 2 1.204e+00 5.478e-01 1.000e+00
DPB1_9 F, Y, H 3 2.109e+00 5.501e-01 1.000e+00
C_138 T, K 2 1.169e+00 5.573e-01 1.000e+00
A_151 H, R 2 1.161e+00 5.597e-01 1.000e+00
DQA1_199 A, *, T 3 2.025e+00 5.672e-01 1.000e+00
DPB1_194 *, R 2 1.111e+00 5.737e-01 1.000e+00
DPB1_215 *, I 2 1.111e+00 5.737e-01 1.000e+00
B_131 R, S 2 1.054e+00 5.902e-01 1.000e+00
A_107 G, W 2 1.047e+00 5.926e-01 1.000e+00
C_94 T, I 2 1.044e+00 5.935e-01 1.000e+00
A_63 N, E, Q 3 1.882e+00 5.973e-01 1.000e+00
DQA1_-6 M, * 2 1.031e+00 5.973e-01 1.000e+00
DRB1_26 F, Y, L 3 1.844e+00 6.054e-01 1.000e+00
A_74 D, H 2 1.002e+00 6.059e-01 1.000e+00
DQA1_187 A, *, T 3 1.819e+00 6.109e-01 1.000e+00
DQA1_215 F, *, L 3 1.819e+00 6.109e-01 1.000e+00
C_90 A, D 2 9.661e-01 6.169e-01 1.000e+00
C_95 L, I 2 9.617e-01 6.183e-01 1.000e+00
C_11 A, S 2 9.525e-01 6.211e-01 1.000e+00
B_158 A, T 2 9.012e-01 6.372e-01 1.000e+00
B_114 D, N, H 3 1.682e+00 6.410e-01 1.000e+00
A_-18 *, R 2 8.755e-01 6.455e-01 1.000e+00
A_-5 *, T 2 8.755e-01 6.455e-01 1.000e+00
A_284 *, I 2 8.755e-01 6.455e-01 1.000e+00
C_156 W, R, L, Q 4 2.473e+00 6.495e-01 1.000e+00
A_66 N, K 2 8.571e-01 6.515e-01 1.000e+00
A_142 I, T 2 8.559e-01 6.519e-01 1.000e+00
A_145 R, H 2 8.559e-01 6.519e-01 1.000e+00
A_-15 * 1 2.024e-01 6.528e-01 1.000e+00
A_294 * 1 2.024e-01 6.528e-01 1.000e+00
A_79 R, G 2 8.418e-01 6.565e-01 1.000e+00
A_80 I, T 2 8.418e-01 6.565e-01 1.000e+00
A_81 A, L 2 8.418e-01 6.565e-01 1.000e+00
A_82 L, R 2 8.418e-01 6.565e-01 1.000e+00
A_83 R, G 2 8.418e-01 6.565e-01 1.000e+00
DPB1_96 *, K, R 3 1.606e+00 6.581e-01 1.000e+00
DPB1_170 *, I, T 3 1.606e+00 6.581e-01 1.000e+00
A_99 Y, F 2 8.308e-01 6.601e-01 1.000e+00
B_177 D, E 2 8.213e-01 6.632e-01 1.000e+00
B_180 E, Q 2 8.213e-01 6.632e-01 1.000e+00
B_24 S, T, A 3 1.536e+00 6.740e-01 1.000e+00
DRB1_31 F, I 2 7.443e-01 6.893e-01 1.000e+00
B_156 R, L, W, D 4 2.250e+00 6.899e-01 1.000e+00
A_-11 *, S 2 7.305e-01 6.940e-01 1.000e+00
A_65 R, G 2 6.831e-01 7.107e-01 1.000e+00
A_-21 *, M 2 6.789e-01 7.122e-01 1.000e+00
DPB1_57 E, D 2 6.767e-01 7.129e-01 1.000e+00
A_95 I, V, L 3 1.360e+00 7.148e-01 1.000e+00
A_127 N, K 2 6.643e-01 7.174e-01 1.000e+00
C_177 E, K 2 6.392e-01 7.264e-01 1.000e+00
C_97 W, R 2 6.277e-01 7.306e-01 1.000e+00
A_44 R, K 2 6.239e-01 7.320e-01 1.000e+00
A_67 V, M 2 6.239e-01 7.320e-01 1.000e+00
A_150 A, V 2 6.239e-01 7.320e-01 1.000e+00
A_158 A, V 2 6.239e-01 7.320e-01 1.000e+00
A_276 *, P 2 6.091e-01 7.374e-01 1.000e+00
A_321 *, S 2 6.091e-01 7.374e-01 1.000e+00
DPB1_205 *, V, M 3 1.192e+00 7.550e-01 1.000e+00
A_298 *, I 2 5.482e-01 7.603e-01 1.000e+00
A_307 *, M 2 5.482e-01 7.603e-01 1.000e+00
DRB1_85 V, A 2 4.685e-01 7.912e-01 1.000e+00
A_246 *, A 2 4.583e-01 7.952e-01 1.000e+00
A_70 H, Q 2 4.549e-01 7.965e-01 1.000e+00
DQA1_25 Y, F 2 4.525e-01 7.975e-01 1.000e+00
B_95 L, W, I 3 9.848e-01 8.049e-01 1.000e+00
A_116 D, Y, H 3 8.461e-01 8.384e-01 1.000e+00
DPB1_65 I, L 2 3.524e-01 8.385e-01 1.000e+00
DPB1_35 F, L, Y 3 8.446e-01 8.388e-01 1.000e+00
C_6 R, K 2 3.499e-01 8.395e-01 1.000e+00
A_17 R, S 2 3.409e-01 8.433e-01 1.000e+00
A_62 R, G, E, Q, L 5 2.026e+00 8.456e-01 1.000e+00
C_9 Y, D, F, S 4 1.236e+00 8.722e-01 1.000e+00
A_299 *, T 2 2.288e-01 8.919e-01 1.000e+00
A_334 *, V 2 2.288e-01 8.919e-01 1.000e+00
DQB1_26 L, Y, G 3 6.006e-01 8.963e-01 1.000e+00
DQA1_34 Q, E 2 1.851e-01 9.116e-01 1.000e+00
A_152 E, V, A, R 4 9.529e-01 9.169e-01 1.000e+00
B_74 D, Y 2 1.542e-01 9.258e-01 1.000e+00
C_116 S, F, Y, L 4 7.424e-01 9.460e-01 1.000e+00
C_16 G, S 2 1.028e-01 9.499e-01 1.000e+00
A_97 R, M, I 3 2.072e-01 9.764e-01 1.000e+00
A_166 E, D 2 2.644e-02 9.869e-01 1.000e+00
A_167 W, G 2 2.644e-02 9.869e-01 1.000e+00
A_114 Q, H, R, E 4 2.952e-01 9.901e-01 1.000e+00
DPA1_91 * 0 0.000e+00 1.000e+00 1.000e+00
DPA1_111 * 0 0.000e+00 1.000e+00 1.000e+00
DPA1_127 * 0 0.000e+00 1.000e+00 1.000e+00
DPA1_160 * 0 0.000e+00 1.000e+00 1.000e+00
DPA1_190 * 0 0.000e+00 1.000e+00 1.000e+00
DPA1_228 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_-27 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_-21 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_-9 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_-6 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_-5 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_-4 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_203 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_220 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_221 * 0 0.000e+00 1.000e+00 1.000e+00
DQB1_224 * 0 0.000e+00 1.000e+00 1.000e+00
DRB1_-16 * 0 0.000e+00 1.000e+00 1.000e+00
DRB1_38 V, L 2 0.000e+00 1.000e+00 1.000e+00
DRB1_189 * 0 0.000e+00 1.000e+00 1.000e+00
DRB1_207 * 0 0.000e+00 1.000e+00 1.000e+00
DRB1_233 * 0 0.000e+00 1.000e+00 1.000e+00

Next, we can investigate how effect estimates are distributed for a given associated amino acid position, e.g. DQB1_9:

HLA_AA_DQB1_9_results <- runMiDAS(
  HLA_AA_model,
  experiment = "hla_aa",
  inheritance_model = "dominant",
  omnibus_groups_filter = "DQB1_9",
  lower_frequency_cutoff = 0.02,
  upper_frequency_cutoff = 0.98,
  correction = "bonferroni",
  exponentiate = TRUE
)

kableResults(HLA_AA_DQB1_9_results, scroll_box_height = "250px")
MiDAS analysis results
aa p.value p.adjusted estimate std.error conf.low conf.high statistic Ntotal Ntotal [%] N(disease=0) N(disease=0) [%] N(disease=1) N(disease=1) [%]
DQB1_9_F 7.000e-07 2.000e-06 2.0572 0.1451 1.5509 2.740 4.973 277 13.85% 103 10.30% 174 17.40%
DQB1_9_Y 1.103e-01 3.308e-01 0.5876 0.3329 0.2994 1.116 -1.597 960 48.00% 485 48.50% 475 47.50%
DQB1_9_* 1.000e+00 1.000e+00 1.0000 0.2167 0.6531 1.531 0.000 94 4.70% 47 4.70% 47 4.70%

This shows us that individuals carrying a Phenylalanine (F) at position 9 of DQB1 have a significantly increased risk, whereas individuals carrying a Tyrosine (Y) at the same amino acid position have a decreased risk.

It is logical to hypothesize that the risk residue is found on HLA-DQB1*06:02, the previously associated HLA risk allele. MiDAS thus provides the function getAllelesforAA to map amino acid residues back to the respective HLA alleles.

HLA_AA_DQB1_9_alleles <- getAllelesForAA(HLA_AA,"DQB1_9")
HLA-DQB1 (9) HLA-DQB1 alleles count frequency
05:03, 06:01 97 4.85%
F 04:01, 04:02, 04:23, 06:02 302 15.10%
Y 02:01, 02:02, 02:10, 03:01, 03:02, 03:03, 03:04, 03:05, 03:19, 03:22, 03:251, 03:96, 05:01, 05:02, 05:04, 05:107, 06:03, 06:04, 06:07, 06:09 1601 80.05%

Finally, it is also interesting to note that there are several amino acid positions coming up that determine the Bw4 binding motif (e.g. B_81), which is a determinant for interactions of HLA class I alleles with KIR on Natural Killer cells.

KIR associations and HLA-KIR interactions

Do we see association on the level of KIR genes, and when considering defined HLA-KIR interactions?

Now that we have performed KIR genotyping, or e.g. inferred KIR types from available whole-genome sequencing data, we can import this information, and check the gene frequencies. In our example, we could successfully infer KIR gene presence status for 935 out of the 1,000 individuals in our data set.

dat_KIR <- readKirCalls(
  file = system.file("extdata", "MiDAS_tut_KIR.txt", package = "midasHLA")
)
KIR data as imported by MiDAS
ID KIR3DL3 KIR2DS2 KIR2DL2 KIR2DL3 KIR2DP1 KIR2DL1 KIR3DP1 KIR2DL4 KIR3DL1 KIR3DS1 KIR2DL5 KIR2DS3 KIR2DS5 KIR2DS4 KIR2DS1 KIR3DL2
C001 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C002 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C003 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C004 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C005 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C006 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C007 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C008 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C009 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
C010 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C011 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C012 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C013 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1
C014 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C015 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C016 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C017 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C018 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
C019 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C020 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C021 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C022 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C023 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C024 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C025 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C026 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C027 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
C028 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
C029 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
C030 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C031 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C032 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C033 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C034 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C035 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C036 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C037 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C038 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C039 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1
C040 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C041 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C042 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C043 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C044 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C045 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C046 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C047 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C048 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
C049 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C050 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C051 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1
C052 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C053 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C054 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C055 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
C056 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C057 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C058 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C059 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C060 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C061 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C062 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
C063 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
C064 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
C065 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C066 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C067 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C068 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C069 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C070 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C071 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C072 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C073 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C074 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C075 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C076 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C077 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C078 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C079 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C080 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C081 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C082 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C083 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C084 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C085 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C086 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C087 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C088 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C089 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C090 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C091 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C092 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C093 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C094 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C095 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C096 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C097 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C098 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C099 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C100 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C101 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C102 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C103 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C104 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C105 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C106 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C107 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C108 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C109 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C110 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C111 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C112 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1
C113 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C114 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C115 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C116 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C117 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C118 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C119 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
C120 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C121 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C122 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C123 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C124 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C125 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C126 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C127 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1
C128 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C129 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C130 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C131 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C132 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C133 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C134 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1
C135 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C136 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C137 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
C138 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C139 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C140 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C141 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C142 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C143 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C144 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C145 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C146 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C147 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C148 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C149 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C150 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C151 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C152 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C153 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C154 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C155 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C156 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C157 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C158 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C159 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C160 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C161 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C162 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C163 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C164 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C165 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C166 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C167 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C168 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
C169 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C170 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C171 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C172 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C173 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C174 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C175 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C176 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C177 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C178 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C179 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C180 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C181 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C182 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C183 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C184 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C185 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C186 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C187 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C188 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C189 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C190 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C191 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C192 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C193 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C194 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C195 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C196 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C197 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C198 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C199 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C201 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
C202 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C203 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
C204 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C205 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C206 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
C207 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C208 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C209 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C210 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C211 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
C212 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C213 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1
C214 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C215 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C216 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C217 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C218 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C219 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C220 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C221 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C222 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C223 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C224 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C225 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C226 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C227 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C228 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C229 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C230 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C231 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C232 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C233 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C234 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C235 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C236 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C237 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C238 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C239 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C240 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C241 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C242 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C243 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C244 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C245 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C246 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C247 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C248 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C249 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C250 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C251 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C252 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C253 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C254 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C255 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
C256 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C257 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C258 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C259 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C260 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
C261 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C262 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C263 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C264 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C265 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C266 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C267 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C268 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C269 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C270 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C271 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C272 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C273 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C274 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C275 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C276 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C277 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C278 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C279 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C280 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C281 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C282 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C283 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C284 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
C285 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C286 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C287 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C288 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C289 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C290 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C291 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C292 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C293 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
C294 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1
C295 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C296 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
C297 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C298 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1
C299 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C300 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C301 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C302 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C303 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
C304 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C305 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C306 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
C307 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C308 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C309 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C310 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C311 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C312 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C313 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C314 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C315 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C316 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C317 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C318 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C319 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C320 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C321 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C322 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C323 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C324 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C325 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C326 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C327 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1
C328 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C329 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C330 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C331 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
C332 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C333 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C334 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C335 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C336 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C337 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C338 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C339 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C340 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C341 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C342 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C343 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C344 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C345 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C346 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C347 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C348 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C349 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C350 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C351 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C352 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C353 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C354 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C355 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C356 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C357 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C358 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C359 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C360 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C361 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C362 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C363 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C364 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C365 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C366 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C367 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
C368 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
C369 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C370 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C371 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C372 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C373 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C374 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C375 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C376 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C377 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C378 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C379 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C380 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C381 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C382 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C383 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C384 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C385 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C386 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C387 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C388 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C389 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C390 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C391 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C392 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C393 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C394 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C395 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C396 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C397 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C398 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
C399 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C400 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C401 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C402 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C403 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C404 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C405 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C406 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C407 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C408 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C409 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C410 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C411 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
C412 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C413 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C414 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C415 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C416 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C417 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C418 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C419 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C420 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C421 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C422 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C423 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C424 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C425 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C426 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C427 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C428 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C429 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C430 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C431 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C432 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C433 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C434 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
C435 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C436 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C437 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C438 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C439 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C440 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C441 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C442 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C443 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C444 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C445 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C446 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C447 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C448 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C449 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C450 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
C451 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C452 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C453 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C454 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
C455 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C456 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C457 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1
C458 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C459 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C460 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
C461 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C462 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C463 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
C464 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C465 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C466 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C467 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C468 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C469 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C470 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C471 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C472 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C473 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C474 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C475 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C476 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C477 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C478 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C479 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C480 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C481 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C482 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
C483 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C484 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C485 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C486 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C487 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
C488 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C489 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C490 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C491 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
C492 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C493 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C494 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
C495 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C496 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
C497 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
C498 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C499 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
C500 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P001 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P002 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P003 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P004 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P006 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1
P007 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P008 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P009 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P010 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P011 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P012 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P013 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P014 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P015 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P016 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P017 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P018 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P019 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P020 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P021 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P022 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P023 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1
P024 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P025 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P026 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P027 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P028 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P029 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P030 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P031 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1
P032 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P033 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P034 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P035 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P036 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
P037 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P038 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P039 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P040 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P041 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P042 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P043 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P044 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P045 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P046 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P047 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P048 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P049 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P050 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P051 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P052 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P053 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P054 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P055 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
P056 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P057 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P058 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P059 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P060 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P061 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P062 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P063 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P064 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P065 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P066 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P067 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1
P068 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P069 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P070 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P071 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
P072 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P073 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P074 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P075 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P076 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P077 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P078 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P079 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P080 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P081 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P082 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P083 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P084 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P085 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P086 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P087 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P088 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P089 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P090 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P091 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P092 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P093 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P094 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P095 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1
P096 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P097 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P098 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P099 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P100 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P101 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P102 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P103 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1
P104 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P105 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P106 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P107 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P108 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P109 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P110 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P111 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P112 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1
P113 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P114 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
P115 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P116 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P117 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P118 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P119 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P120 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P121 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P122 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P123 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P124 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P125 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P126 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P127 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P128 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P129 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1
P130 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P131 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P132 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P133 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1
P134 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P135 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P136 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P137 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P138 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
P139 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P140 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P141 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P142 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P143 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P144 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P145 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P146 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P147 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P148 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P149 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P150 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P151 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P152 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P153 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P154 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P155 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P156 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P157 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P158 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P159 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P160 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P161 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P162 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P163 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P164 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P165 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P166 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P167 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P168 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P169 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P170 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P171 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P172 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P173 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P174 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P175 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P176 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P177 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P178 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P179 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P180 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P181 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P182 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P183 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P184 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P185 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P186 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P187 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P188 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P189 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
P190 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P191 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P192 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P193 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
P194 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P195 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P196 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P197 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1
P198 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P199 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P200 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P201 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P202 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P203 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1
P204 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P205 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1
P206 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P207 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P208 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P209 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P210 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P211 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P212 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P213 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P214 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P215 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P216 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P217 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P218 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P219 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P220 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P221 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P222 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P223 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P224 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
P225 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P226 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P227 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
P228 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P229 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P230 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P231 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1
P232 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P233 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P234 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P235 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P236 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P237 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P238 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P239 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P240 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P241 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P242 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P243 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P244 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P245 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P246 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P247 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P248 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P249 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P251 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1
P252 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P253 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P254 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P255 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P256 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1
P257 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P258 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P259 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P260 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P261 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P262 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P263 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P264 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
P265 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P266 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P267 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P268 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P269 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P270 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P271 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P272 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P273 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P274 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P275 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P276 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P277 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P278 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P279 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
P280 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P281 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P282 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P283 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P284 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P285 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1
P286 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P287 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P288 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P289 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P290 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P291 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P292 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P293 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P294 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P295 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P296 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P297 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
P298 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P299 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P300 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P301 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P302 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P303 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P304 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1
P305 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P306 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P307 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P308 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P309 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P310 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P311 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P312 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P313 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P314 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P315 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P316 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P317 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P318 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
P319 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P320 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P321 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P322 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P323 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
P324 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P325 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P326 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P327 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P328 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P329 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
P330 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P331 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P332 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P333 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P334 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P335 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P336 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P337 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P338 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
P339 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
P340 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P341 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P342 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P343 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1
P344 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P345 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P346 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P347 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P348 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P349 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P350 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P351 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P352 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P353 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P354 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P355 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P356 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P357 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P358 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P359 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P360 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P361 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P362 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P363 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P364 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P365 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P366 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P367 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P368 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P369 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P370 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P371 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P372 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P373 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P374 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P375 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P376 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P377 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P378 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P379 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
P380 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P381 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P382 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P383 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P384 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P385 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P386 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P387 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P388 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P389 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P390 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1
P391 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P392 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P393 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P394 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P395 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P396 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P397 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P398 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P399 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P400 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P401 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P402 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P403 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P404 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P405 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P406 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P407 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P408 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P409 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P410 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
P411 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
P412 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P413 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P414 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P415 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P416 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P417 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P418 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
P419 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P420 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P421 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1
P422 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P423 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P424 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1
P425 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
P426 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
P427 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P428 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P429 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
P430 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
P431 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1
P432 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1
P433