limma:
Linear Models for Microarray and RNA-Seq Data
User’s Guide

Gordon K. Smyth, Matthew Ritchie, Natalie Thorne, James Wettenhall, Wei Shi and Yifang Hu
Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia

First edition 2 December 2002
Last revised 22 April 2023

This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.
Contents

1 Introduction 5

2 Preliminaries 7
 2.1 Citing limma 7
 2.2 Installation 9
 2.3 How to get help 9

3 Quick Start 11
 3.1 A brief introduction to R 11
 3.2 Sample limma Session 12
 3.3 Data Objects 13

4 Reading Microarray Data 15
 4.1 Scope of this Chapter 15
 4.2 Recommended Files 15
 4.3 The Targets Frame 15
 4.4 Reading Two-Color Intensity Data 17
 4.5 Reading Single-Channel Agilent Intensity Data 19
 4.6 Reading Illumina BeadChip Data 19
 4.7 Image-derived Spot Quality Weights 20
 4.8 Reading Probe Annotation 21
 4.9 Printer Layout 22
 4.10 The Spot Types File 22

5 Quality Assessment 24

6 Pre-Processing Two-Color Data 26
 6.1 Background Correction 26
 6.2 Within-Array Normalization 28
 6.3 Between-Array Normalization 30
 6.4 Using Objects from the marray Package 32

7 Filtering unexpressed probes 34
8 Linear Models Overview

8.1 Introduction ... 36
8.2 Single-Channel Designs ... 37
8.3 Common Reference Designs 38
8.4 Direct Two-Color Designs ... 39

9 Single-Channel Experimental Designs

9.1 Introduction ... 41
9.2 Two Groups .. 41
9.3 Several Groups .. 43
9.4 Additive Models and Blocking 43
 9.4.1 Paired Samples ... 43
 9.4.2 Blocking ... 44
9.5 Interaction Models: 2 × 2 Factorial Designs 44
 9.5.1 Questions of Interest .. 44
 9.5.2 Analysing as for a Single Factor 45
 9.5.3 A Nested Interaction Formula 46
 9.5.4 Classic Interaction Models 46
9.6 Time Course Experiments .. 48
 9.6.1 Replicated time points 48
 9.6.2 Many time points .. 49
9.7 Multi-level Experiments .. 50

10 Two-Color Experiments with a Common Reference

10.1 Introduction .. 52
10.2 Two Groups .. 52
10.3 Several Groups ... 54

11 Direct Two-Color Experimental Designs

11.1 Introduction .. 55
11.2 Simple Comparisons .. 55
 11.2.1 Replicate Arrays .. 55
 11.2.2 Dye Swaps .. 56
11.3 A Correlation Approach to Technical Replication 57

12 Separate Channel Analysis of Two-Color Data

13 Statistics for Differential Expression

13.1 Summary Top-Tables .. 61
13.2 Fitted Model Objects ... 62
13.3 Multiple Testing Across Contrasts 63

14 Array Quality Weights

14.1 Introduction .. 65
14.2 Example 1 .. 65
14.3 Example 2 .. 67
14.4 When to Use Array Weights 69
17.4.5	Background correction and normalize	116
17.4.6	Gene filtering	117
17.4.7	Differential expression	117
17.4.8	Gene ontology analysis	118

<table>
<thead>
<tr>
<th>18 RNA-Seq Case Studies</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Profiles of Yoruba HapMap Individuals</td>
<td>120</td>
</tr>
<tr>
<td>18.1.1 Background</td>
<td>120</td>
</tr>
<tr>
<td>18.1.2 Data availability</td>
<td>120</td>
</tr>
<tr>
<td>18.1.3 Yoruba Individuals and FASTQ Files</td>
<td>120</td>
</tr>
<tr>
<td>18.1.4 Mapping reads to the reference genome</td>
<td>122</td>
</tr>
<tr>
<td>18.1.5 Annotation</td>
<td>124</td>
</tr>
<tr>
<td>18.1.6 DGEList object</td>
<td>125</td>
</tr>
<tr>
<td>18.1.7 Filtering</td>
<td>125</td>
</tr>
<tr>
<td>18.1.8 Scale normalization</td>
<td>125</td>
</tr>
<tr>
<td>18.1.9 Linear modeling</td>
<td>127</td>
</tr>
<tr>
<td>18.1.10 Gene set testing</td>
<td>130</td>
</tr>
<tr>
<td>18.1.11 Session information</td>
<td>133</td>
</tr>
<tr>
<td>18.1.12 Acknowledgements</td>
<td>134</td>
</tr>
<tr>
<td>18.2 Differential Splicing after Pasilla Knockdown</td>
<td>134</td>
</tr>
<tr>
<td>18.2.1 Background</td>
<td>134</td>
</tr>
<tr>
<td>18.2.2 GEO samples and SRA Files</td>
<td>134</td>
</tr>
<tr>
<td>18.2.3 Mapping reads to the reference genome</td>
<td>135</td>
</tr>
<tr>
<td>18.2.4 Read counts for exons</td>
<td>136</td>
</tr>
<tr>
<td>18.2.5 Assemble DGEList and sum counts for technical replicates</td>
<td>136</td>
</tr>
<tr>
<td>18.2.6 Gene annotation</td>
<td>137</td>
</tr>
<tr>
<td>18.2.7 Filtering</td>
<td>138</td>
</tr>
<tr>
<td>18.2.8 Scale normalization</td>
<td>138</td>
</tr>
<tr>
<td>18.2.9 Linear modelling</td>
<td>139</td>
</tr>
<tr>
<td>18.2.10 Alternate splicing</td>
<td>141</td>
</tr>
<tr>
<td>18.2.11 Session information</td>
<td>144</td>
</tr>
<tr>
<td>18.2.12 Acknowledgements</td>
<td>145</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Limma is a package for the analysis of gene expression data arising from microarray or RNA-seq technologies [27]. A core capability is the use of linear models to assess differential expression in the context of multi-factor designed experiments. **Limma** provides the ability to analyze comparisons between many RNA targets simultaneously. It has features that make the analyses stable even for experiments with small number of arrays—this is achieved by borrowing information across genes. It is specially designed for analyzing complex experiments with a variety of experimental conditions and predictors. The linear model and differential expression functions are applicable to data from any quantitative gene expression technology including microarrays, RNA-seq and quantitative PCR. **Limma** can handle both single-channel and two-color microarrays.

This guide gives a tutorial-style introduction to the main **limma** features but does not describe every feature of the package. A full description of the package is given by the individual function help documents available from the R online help system. To access the online help, type `help(package=limma)` at the R prompt or else start the html help system using `help.start()` or the Windows drop-down help menu.

Limma provides a strong suite of functions for reading, exploring and pre-processing data from two-color microarrays. The Bioconductor package **marray** provides alternative functions for reading and normalizing spotted two-color microarray data. The **marray** package provides flexible location and scale normalization routines for log-ratios from two-color arrays. The **limma** package overlaps with **marray** in functionality but is based on a more general concept of within-array and between-array normalization as separate steps. If you are using **limma** in conjunction with **marray**, see Section 6.4.

Limma can read output data from a variety of image analysis software platforms, including GenePix, ImaGene etc. Either one-channel or two-channel formats can be processed.

The Bioconductor package **affy** provides functions for reading and normalizing Affymetrix microarray data. Advice on how to use **limma** with the **affy** package is given throughout the User’s Guide, see for example Section 8.2 and the *E. coli* and estrogen case studies.

Functions for reading and pre-processing expression data from Illumina BeadChips were introduced in **limma** 3.0.0. See the case study in Section 17.3 for an example of these. **Limma** can also be used in conjunction with the **vst** or **beadarray** packages for pre-processing Illumina data.

From version 3.9.19, **limma** includes functions to analyze RNA-seq experiments, demonstrated in Case Study 11.8. The approach is to convert a table of sequence read counts into an expression object which can then be analysed as for microarray data.

This guide describes **limma** as a command-driven package. Graphical user interfaces to the most commonly used functions in **limma** are available through the packages **limmaGUI** [39], for two-color...
data, or affylmGUI [38], for Affymetrix data. Both packages are available from Bioconductor.

This user’s guide should be correct for R Versions 2.8.0 through 4.0.0 and limma versions 2.16.0 through 3.44.0. The limma homepage is https://bioinf.wehi.edu.au/limma.
Chapter 2

Preliminaries

2.1 Citing limma

Limma implements a body of methodological research by the authors and co-workers. Please try to cite the appropriate papers when you use results from the limma software in a publication, as such citations are the main means by which the authors receive professional credit for their work.

The limma software package itself can be cited as:

The above article reviews the overall capabilities of the limma package, both new and old.

Other articles describe the statistical methodology behind particular functions of the package. If you use limma for differential expression analysis, please cite:

This article describes the linear modeling approach implemented by lmFit and the empirical Bayes statistics implemented by eBayes, topTable etc. It particularly describes eBayes with robust=TRUE or trend=TRUE.

If you use limma for RNA-seq analysis, please cite either:

or

If you use limma with duplicate spots or technical replication, please cite

The above article describes the theory behind the `duplicateCorrelation` function.

If you use `limma` for normalization of two-color microarray data, please cite one of:

The first of these articles describes the functions `read.maimages`, `normalizeWithinArrays` and `normalizeBetweenArrays`. The second describes the use of spot quality weights to normalize on control probes.

The various options provided by the `backgroundCorrect` function are explained by:

If you use `arrayWeights` or related functions to estimate sample quality weights, please cite:

If you use the `read.ilmn`, `nec` or `neqc` functions to process Illumina BeadChip data, please cite:

The `propexpr` function is explained by

The `lmscFit` function for separate channel analysis of two-color microarray data is explained by:

Finally, if you are using one of the menu-driven interfaces to the software, please cite the appropriate one of

2.2 Installation

Limma is a package for the R computing environment and we will assume here that you have already installed R (if not, see the R project at http://www.r-project.org). To install the latest version of limma, you will need to be using the latest version of R.

Limma is part of the Bioconductor project at http://www.bioconductor.org. Like other Bioconductor packages, limma is most easily installed using the BiocManager package:

```r
> library(BiocManager)
> install("limma")
```

This will allow you do to perform many basic analyses, although you’ll probably want

```r
> install("statmod")
```

as well. If you’re starting from scratch and haven’t used any Bioconductor packages before, then you will need to install the BiocManager package itself by install.packages("BiocManager") before installing limma.

Bioconductor works on a 6-monthly official release cycle, lagging each major R release by a short time. As with other Bioconductor packages, there are always two versions of limma. Most users will use the current official release version, which will be installed by `BiocManager::install` if you are using the current version of R. There is also a developmental version of limma that includes new features due for the next official release. The developmental version will be installed if you are using the developmental version of R. The official release version always has an even second number (for example 3.6.5), whereas the developmental version has an odd second number (for example 3.7.7).

Limma is updated frequently. To see what new features were introduced in the latest Bioconductor release, type:

```r
> news(package = "limma")
```

There is also a detailed change-log that describes each minor update. To see the most recent 20 lines of the change-log type:

```r
> changeLog(n = 20)
```

2.3 How to get help

Most questions about limma will hopefully be answered by the documentation or references. If you’ve run into a question which isn’t addressed by the documentation, or you’ve found a conflict between the documentation and software itself, then there is an active support community that can offer help.

The authors of the package always appreciate receiving reports of bugs in the package functions or in the documentation. The same goes for well-considered suggestions for improvements. All other questions or problems concerning limma should be posted to the Bioconductor support site https://support.bioconductor.org. Please send requests for general assistance and advice to the support site rather than to the individual authors. Posting questions to the Bioconductor mailing list has a number of advantages. First, the mailing list includes a community of experienced limma users who can answer most common questions. Second, the limma authors try hard to ensure that any user posting to Bioconductor receives assistance. Third, the mailing list allows others with the same sort of questions to gain from the answers. Users posting to the mailing list for the first time
will find it helpful to read the posting guide at http://www.bioconductor.org/help/support/posting-guide.

Note that each function in limma has its own online help page, as described in the next chapter. If you have a question about any particular function, reading the function’s help page will often answer the question very quickly. In any case, it is good etiquette to check the relevant help page first before posting a question to the support site.
Chapter 3

Quick Start

3.1 A brief introduction to R

R is a program for statistical computing. It is a command-driven language meaning that you have to type commands into it rather than pointing and clicking using a mouse. In this guide it will be assumed that you have successfully downloaded and installed R from http://www.r-project.org.

A good way to get started is to type

```
> help.start()
```

at the R prompt or, if you’re using R for Windows, to follow the drop-down menu items Help → Html help. Following the links Packages → limma from the html help page will lead you to the contents page of help topics for functions in limma.

Before you can use any limma commands you have to load the package by typing

```
> library(limma)
```

at the R prompt. You can get help on any function in any loaded package by typing `?` and the function name at the R prompt, for example

```
> ?lmFit
```

or equivalently

```
> help("lmFit")
```

for detailed help on the `lmFit` function. The individual function help pages are especially important for listing all the arguments which a function will accept and what values the arguments can take.

A key to understanding R is to appreciate that anything that you create in R is an “object”. Objects might include data sets, variables, functions, anything at all. For example

```
> x <- 2
```

will create a variable `x` and will assign it the value 2. At any stage of your R session you can type

```
> objects()
```

to get a list of all the objects you have created. You can see the contents of any object by typing the name of the object at the prompt, for example either of the following commands will print out the contents of `x`:

```
> x
```
We hope that you can use limma without having to spend a lot of time learning about the R language itself but a little knowledge in this direction will be very helpful, especially when you want to do something not explicitly provided for in limma or in the other Bioconductor packages. For more details about the R language see An Introduction to R which is available from the online help. For more background on using R for statistical analyses see [6].

3.2 Sample limma Session

This is a quick overview of what an analysis might look like. The first example assumes four replicate two-color arrays, the second and fourth of which are dye-swapped. We assume that the images have been analyzed using GenePix to produce a .gpr file for each array and that a targets file targets.txt has been prepared with a column containing the names of the .gpr files.

```r
> library(limma)
> targets <- readTargets("targets.txt")
```

Set up a filter so that any spot with a flag of −99 or less gets zero weight.

```r
> f <- function(x) as.numeric(x$Flags > -99)
```

Read in the data.

```r
> RG <- read.maimages(targets, source="genepix", wt.fun=f)
```

The following command implements a type of adaptive background correction. This is optional but recommended for GenePix data.

```r
> RG <- backgroundCorrect(RG, method="normexp", offset=50)
```

Print-tip loess normalization:

```r
> MA <- normalizeWithinArrays(RG)
```

Estimate the fold changes and standard errors by fitting a linear model for each gene. The design matrix indicates which arrays are dye-swaps.

```r
> fit <- lmFit(MA, design=c(-1,1,-1,1))
```

Apply empirical Bayes smoothing to the standard errors.

```r
> fit <- eBayes(fit)
```

Show statistics for the top 10 genes.

```r
> topTable(fit)
```

The second example assumes Affymetrix arrays hybridized with either wild-type (wt) or mutant (mu) RNA. There should be three or more arrays in total to ensure some replication. The targets file is now assumed to have another column Genotype indicating which RNA source was hybridized on each array.
> library(gcrma)
> library(limma)
> targets <- readTargets("targets.txt")

Read and pre-process the Affymetrix CEL file data.

> ab <- readAffy(filenames=targets$FileName)
> eset <- gcrma(ab)

Form an appropriate design matrix for the two RNA sources and fit linear models. The design matrix has two columns. The first represents log-expression in the wild-type and the second represents the log-ratio between the mutant and wild-type samples. See Section 9.2 for more details on the design matrix.

> design <- cbind(WT=1, MUvsWT=targets$Genotype=="mu")
> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT")

This code fits the linear model, smooths the standard errors and displays the top 10 genes for the mutant versus wild-type comparison.

The options `trend=TRUE` and `robust=TRUE` are also often helpful when running `eBayes`, increasing power for certain types of data. For example:

> fit <- eBayes(fit, trend=TRUE, robust=TRUE)
> topTable(fit, coef="MUvsWT")

3.3 Data Objects

There are six main types of data objects created and used in `limma`:

EListRaw. Raw Expression list. A class used to store single-channel raw intensities prior to normalization. Intensities are unlogged. Objects of this class contain one row for each probe and one column for each array. The function `read.ilmn()` for example creates an object of this class.

EList. Expression list. Contains background corrected and normalized log-intensities. Usually created from an `EListRaw` object using `normalizeBetweenArrays()` or `neqc()`.

RGList. Red-Green list. A class used to store raw two-color intensities as they are read in from an image analysis output file, usually by `read.maimages()`.

MAList. Two-color intensities converted to M-values and A-values, i.e., to within-spot and whole-spot contrasts on the log-scale. Usually created from an `RGList` using `MA.RG()` or `normalizeWithinArrays()`. Objects of this class contain one row for each probe. There may be more than one spot and therefore more than one row for each probe.

MArrayLM. MicroArray Linear Model. Store the result of fitting gene-wise linear models to the normalized intensities or log-ratios. Usually created by `lmFit()`. Objects of this class normally contain one row for each unique probe.
TestResults. Store the results of testing a set of contrasts equal to zero for each probe. Usually created by decideTests(). Objects of this class normally contain one row for each unique probe.

All these objects can be treated like any list in R. For example, MA$M extracts the matrix of M-values if MA is an MAList object, or fit$coef extracts the coefficient estimates if fit is an MArrayLM object. names(MA) shows what components are contained in the object. For those who are familiar with matrices in R, all these objects are also designed to obey many analogies with matrices. In the case of RGList and MAList, rows correspond to spots and columns to arrays. In the case of MArrayLM, rows correspond to unique probes and columns to parameters or contrasts. The functions summary, dim, length, ncol, nrow, dimnames, rownames, colnames have methods for these classes. For example

> dim(RG)
[1] 11088 4

shows that the RGList object RG contains data for 11088 spots and 4 arrays.

> colnames(RG)

will give the names of the filenames or arrays in the object, while if fit is an MArrayLM object then

> colnames(fit)

would give the names of the coefficients in the linear model fit.

Objects of any of these classes may be subsetted, so that RG[, j] means the data for array j and RG[i,] means the data for probes indicated by the index i. Multiple data objects may be combined using cbind, rbind or merge. Hence

> RG1 <- read.maimages(files[1:2], source="genepix")
> RG2 <- read.maimages(files[3:5], source="genepix")
> RG <- cbind(RG1, RG2)

is equivalent to

> RG <- read.maimages(files[1:5], source="genepix")

Alternatively, if control status has been set in the MAList object then

> i <- MA$genes$Status=="Gene"
> MA[i,]

might be used to eliminate control spots from the data object prior to fitting a linear model.
Chapter 4

Reading Microarray Data

4.1 Scope of this Chapter

This chapter covers most microarray types other than Affymetrix. To read data from Affymetrix GeneChips, please use the affy, gcrma or aroma.affymetrix packages to read and normalize the data.

4.2 Recommended Files

We assume that an experiment has been conducted with one or more microarrays, all printed with the same library of probes. Each array has been scanned to produce a TIFF image. The TIFF images have then been processed using an image analysis program such as ArrayVision, ImaGene, GenePix, QuantArray or SPOT to acquire the red and green foreground and background intensities for each spot. The spot intensities have then been exported from the image analysis program into a series of text files. There should be one file for each array or, in the case of Imagen, two files for each array.

You will need to have the image analysis output files. In most cases these files will include the IDs and names of the probes and possibly other annotation information. A few image analysis programs, for example SPOT, do not write the probe IDs into the output files. In this case you will also need a genelist file which describes the probes. It most cases it is also desirable to have a targets file which describes which RNA sample was hybridized to each channel of each array. A further optional file is the spot types file which identifies special probes such as control spots.

4.3 The Targets Frame

The first step in preparing data for input into limma is usually to create a targets file which lists the RNA target hybridized to each channel of each array. It is normally in tab-delimited text format and should contain a row for each microarray in the experiment. The file can have any name but the default is Targets.txt. If it has the default name, it can be read into the R session using

```r
> targets <- readTargets()
```

Once read into R, it becomes the targets frame.

The targets frame normally contains a FileName column, giving the name of the image-analysis output file, a Cy3 column giving the RNA type labeled with Cy3 dye for that slide and a Cy5
column giving the RNA type labeled with Cy5 dye for that slide. Other columns are optional. The targets file can be prepared using any text editor but spreadsheet programs such as Microsoft Excel are convenient. The targets file for the Swirl case study includes optional SlideNumber and Date columns:

![SwirlSample.png](image)

It is often convenient to create short readable labels to associate with each array for use in output and in plots, especially if the file names are long or non-intuitive. A column containing these labels can be included in the targets file, for example the Name column used for the Apoa1 case study:

![Apoa1Targets.png](image)

This column can be used to created row names for the targets frame by

```r
> targets <- readTargets("targets.txt", row.names="Name")
```

The row names can be propagated to become array names in the data objects when these are read in.

For ImaGene files, the FileName column is split into a FileNameCy3 column and a FileNameCy5 because ImaGene stores red and green intensities in separate files. This is a short example:
4.4 Reading Two-Color Intensity Data

Let files be a character vector containing the names of the image analysis output files. The foreground and background intensities can be read into an RList object using a command of the form

```r
> RG <- read.maimages(files, source="<imageanalysisprogram>", path="<directory>"
```

where `<imageanalysisprogram>` is the name of the image analysis program and `<directory>` is the full path of the directory containing the files. If the files are in the current R working directory then the argument path can be omitted; see the help entry for setwd for how to set the current working directory. The file names are usually read from the Targets File. For example, the Targets File Targets.txt is in the current working directory together with the SPOT output files, then one might use

```r
> targets <- readTargets()
> RG <- read.maimages(targets$FileName, source="spot")
```

Alternatively, and even more simply, one may give the targets frame itself in place of the files argument as

```r
> RG <- read.maimages(targets, source="spot")
```

In this case the software will look for the column FileName in the targets frame.

If the files are GenePix output files then they might be read using

```r
> RG <- read.maimages(targets, source="genepix")
```

given an appropriate targets file. Consult the help entry for read.maimages to see which other image analysis programs are supported. Files are assumed by default to be tab-delimited, although other separators can be specified using the sep= argument.

Reading data from ImaGene software is a little different to that of other image analysis programs because the red and green intensities are stored in separate files. This means that the targets frame should include two filename columns called, say, FileNameCy3 and FileNameCy5, giving the names of the files containing the green and red intensities respectively. An example is given in Section 4.3. Typical code with ImaGene data might be

```r
> targets <- readTargets()
> files <- targets[,c("FileNameCy3","FileNameCy5")]
> RG <- read.maimages(files, source="imagene")
```

For ImaGene data, the files argument to read.maimages() is expected to be a 2-column matrix of filenames rather than a vector.

The following table gives the default estimates used for the foreground and background intensities:
The default estimates can be over-ridden by specifying the `columns` argument to `read.maimages()`. Suppose for example that GenePix has been used with a custom background method, and you wish to use median foreground estimates. This combination of foreground and background is not provided as a pre-set choice in `limma`, but you can specify it by

```r
> RG <- read.maimages(files, source="genepix",
+ columns=list(R="F635 Median",G="F532 Median",Rb="B635",Gb="B532"))
```

What should you do if your image analysis program is not in the above list? If the image output files are in standard format, then you can supply the annotation and intensity column names yourself. For example,

```r
> RG <- read.maimages(files, annotation=c("Block","Row","Column","ID","Name"))
```

is exactly equivalent to `source="genepix"`. “Standard format” means here that there is a unique column name identifying each column of interest and that there are no lines in the file following the last line of data. Header information at the start of the file is acceptable, but extra lines at the end of the file will cause the read to fail.

It is a good idea to look at your data to check that it has been read in correctly. Type

```r
> show(RG)
```

to see a print out of the first few lines of data. Also try

```r
> summary(RG$R)
```

to see a five-number summary of the red intensities for each array, and so on.

It is possible to read the data in several steps. If `RG1` and `RG2` are two data sets corresponding to different sets of arrays then

```r
> RG <- cbind(RG1, RG2)
```

will combine them into one large data set. Data sets can also be subsetted. For example `RG[,1]` is the data for the first array while `RG[1:100,]` is the data on the first 100 genes.
4.5 Reading Single-Channel Agilent Intensity Data

Reading single-channel data is similar to two-color data, except that the argument `green.only=TRUE` should be added to tell `read.maimages()` not to expect a red channel. Single-channel Agilent intensities, as produced by Agilent's Feature Extraction software, can be read by

```r
> x <- read.maimages(files, source="agilent", green.only=TRUE)
```

or

```r
> x <- read.maimages(targets, source="agilent", green.only=TRUE)
```

As for two-color data, the `path` argument is used:

```r
> x <- read.maimages(files, source="agilent", path="<directory>", green.only=TRUE)
```

if the data files are not in the current working directory. The `green.only` argument tells `read.maimages()` to output an `EList` object instead an `RGList`. The raw intensities will be stored in the `E` component of the data object, and can be checked for example by

```r
> summary(x$E)
```

Agilent's Feature Extraction software has the ability to estimate the foreground and background signals for each spot using either the mean or the median of the foreground and background pixels. The default for `read.maimages` is to read the median signal for both foreground and background. Alternatively

```r
> x <- read.maimages(targets, source="agilent.mean", green.only=TRUE)
```

would read the mean foreground signal while still using median for the background. The possible values for `source` are:

<table>
<thead>
<tr>
<th>Source</th>
<th>Foreground</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>agilent</td>
<td>Median Signal</td>
<td>Median Signal</td>
</tr>
<tr>
<td>agilent.mean</td>
<td>Mean Signal</td>
<td>Median Signal</td>
</tr>
<tr>
<td>agilent.median</td>
<td>Median Signal</td>
<td>Median Signal</td>
</tr>
</tbody>
</table>

As for two-color data, the default choices for the foreground and background estimates can be overridden by specifying the `columns` argument to `read.maimages()`.

Agilent Feature Extraction output files contain probe annotation columns as well as intensity columns. By default, `read.maimages()` will read the following annotation columns, if they exist: `Row, Col, Start, Sequence, SwissProt, GenBank, Primate, GenPept, ProbeUID, ControlType, ProbeName, GeneName, SystematicName, Description`.

See Section 17.4 for a complete worked case study with single-channel Agilent data.

4.6 Reading Illumina BeadChip Data

Illumina whole-genome BeadChips require special treatment. Illumina images are scanned by BeadScan software, and Illumina's BeadStudio or GenomeStudio software can be used to export probe summary profiles. The probe summary profiles are tab-delimited files containing the intensity data. Typically, all the arrays processed at one time are written to a single file, with several columns corresponding to each array. We recommend that intensities should be exported from GenomeStudio
without background correction or normalization, as these pre-processing steps can be better done by limma functions. GenomeStudio can also be asked to export profiles for the control probes, and we recommend that this be done as well.

Illumina files differ from other platforms in that each image output file contains data from multiple arrays and in that intensities for control probes are written to a separate file from the regular probes. There are other features of these files that can optionally be used for pre-processing and filtering. Illumina probe summary files can be read by the `read.ilmn` function. A typical usage is

```r
> x <- read.ilmn("probe profile.txt", ctrlfiles="control probe profile.txt")
```

where `probe profile.txt` is the name of the main probe summary profile file and `control probe profile.txt` is the name of the file containing profiles for control probes.

If there are multiple probe summary profiles to be read, and the samples are summarized in a targets frame, then the `read.ilmn.targets` function can be used.

Reading the control probe profiles is optional but recommended. If the control probe profiles are available, then the Illumina data can be favorably background corrected and normalized using the `neqc` or `nec` functions. Otherwise, Illumina data is background corrected and normalized as for other single channel platforms.

See Section 17.3 for a fully worked case study with Illumina microarray data.

4.7 Image-derived Spot Quality Weights

Image analysis programs typically output a lot of information, in addition to the foreground and background intensities, which provides information on the quality of each spot. It is sometimes desirable to use this information to produce a quality index for each spot which can be used in the subsequent analysis steps. One approach is to remove all spots from consideration which do not satisfy a certain quality criterion. A more sophisticated approach is to produce a quantitative quality index which can be used to up or downweight each spot in a graduated way depending on its perceived reliability. limma provides an approach to spot weights which supports both of these approaches.

The limma approach is to compute a quantitative quality weight for each spot. Weights are treated similarly in limma as they are treated in most regression functions in R such as `lm()`. A zero weight indicates that the spot should be ignored in all analysis as being unreliable. A weight of 1 indicates normal quality. A spot quality weight greater or less than one will result in that spot being given relatively more or less weight in subsequent analyses. Spot weights less than zero are not meaningful.

The quality information can be read and the spot quality weights computed at the same time as the intensities are read from the image analysis output files. The computation of the quality weights is defined by the `wt.fun` argument to the `read.maimages()` function. This argument is a function which defines how the weights should be computed from the information found in the image analysis files. Deriving good spot quality weights is far from straightforward and depends very much on the image analysis software used. limma provides a few examples which have been found to be useful by some researchers.

Some image analysis programs produce a quality index as part of the output. For example, GenePix produces a column called `Flags` which is zero for a “normal” spot and takes increasingly negative values for different classes of problem spot. If you are reading GenePix image analysis files, the call
will read in the intensity data and will compute a matrix of spot weights giving zero weight to any spot with a Flags-value less than \(-50\). The weights are stored in the `weights` component of the RGList data object. The weights are used automatically by functions such as `normalizeWithinArrays` which operate on the RG-list.

Sometimes the ideal size, in terms of image pixels, is known for a perfectly circular spot. In this case it may be useful to downweight spots which are much larger or smaller than this ideal size. If SPOT image analysis output is being read, the following call

```r
> RG <- read.maimages(files, source="spot", wt.fun=wtarea(100))
```

gives full weight to spots with area exactly 100 pixels and down-weights smaller and larger spots. Spots which have zero area or are more than twice the ideal size are given zero weight.

The appropriate way to computing spot quality weights depends on the image analysis program used. Consult the help entry `QualityWeights` to see what quality weight functions are available. The `wt.fun` argument is very flexible and allows you to construct your own weights. The `wt.fun` argument can be any function which takes a data set as argument and computes the desired weights. For example, if you wish to give zero weight to all GenePix flags less than -50 you could use

```r
> myfun <- function(x) as.numeric(x$Flags > -50.5)
> RG <- read.maimages(files, source="genepix", wt.fun=myfun)
```

The `wt.fun` facility can be used to compute weights based on any number of columns in the image analysis files. For example, some researchers like to filter out spots if the foreground mean and median from GenePix for a given spot differ by more than a certain threshold, say 50. This could be achieved by

```r
> myfun <- function(x, threshold=50) {
+   okred <- abs(x[,"F635 Median"]-x[,"F635 Mean"] < threshold
+   okgreen <- abs(x[,"F532 Median"]-x[,"F532 Mean"] < threshold
+   as.numeric(okgreen & okred)
+}
> RG <- read.maimages(files, source="genepix", wt.fun=myfun)
```

Then all the “bad” spots will get weight zero which, in `limma`, is equivalent to flagging them out. The definition of `myfun` here could be replaced with any other code to compute weights using the columns in the GenePix output files.

4.8 Reading Probe Annotation

The RGList read by `read.maimages()` will almost always contain a component called `genes` containing the IDs and other annotation information associated with the probes. The only exceptions are SPOT data, `source="spot"`, or when reading generic data, `source="generic"`, without setting the annotation argument, `annotation=NULL`. Try

```r
> names(RG$genes)
```

to see if the `genes` component has been set.

If the `genes` component is not set, the probe IDs will need to be read from a separate file. If the arrays have been scanned with an Axon scanner, then the probes IDs will be available in a tab-delimited GenePix Array List (GAL) file. If the GAL file has extension “gal” and is in the current working directory, then it may be read into a data.frame by
Non-GenePix gene lists can be read into R using the function `read.delim` from R base.

4.9 Printer Layout

The printer layout is the arrangement of spots and blocks of spots on the arrays. Knowing the printer layout is especially relevant for old-style academic spotted arrays printed with a mechanical robot with a multi-tip print-head. The blocks are sometimes called print-tip groups or pin-groups or meta rows and columns. Each block corresponds to a print tip on the print-head used to print the arrays, and the layout of the blocks on the arrays corresponds to the layout of the tips on the print-head. The number of spots in each block is the number of times the print-head was lowered onto the array. Where possible, for example for Agilent, GenePix or ImaGene data, `read.maimages` will set the printer layout information in the component `printer`. Try

```r
> names(RG$printer)
```

to see if the printer layout information has been set.

If you’ve used `readGAL` to set the `genes` component, you may also use `getLayout` to set the `printer` information by

```r
> RG$printer <- getLayout(RG$genes)
```

Note this will work only for GenePix GAL files, not for general gene lists.

4.10 The Spot Types File

The Spot Types file (STF) is another optional tab-delimited text file that allows you to identify different types of probes from the entries appearing in the gene list. It is especially useful for identifying different types of control probes. The STF is used to set the control status of each probe on the arrays so that plots may highlight different types of spots in an appropriate way. It is typically used to distinguish control probes from regular probes corresponding to genes, and to distinguish positive from negative controls, ratio from calibration controls and so on. The STF should have a `SpotType` column giving the names of the different spot-types. One or more other columns should have the same names as columns in the gene list and should contain patterns or regular expressions sufficient to identify the spot-type. Any other columns are assumed to contain plotting attributes, such as colors or symbols, to be associated with the spot-types. There is one row for each spot-type to be distinguished.

The STF uses simplified regular expressions to match patterns. For example, `AA*` means any string starting with `AA`, `*AA` means any code ending with `AA`, `AA` means exactly these two letters, `*AA*` means any string containing `AA`, `AA` means `AA` followed by exactly one other character and `AA\.` means exactly `AA` followed by a period and no other characters. For those familiar with regular expressions, any other regular expressions are allowed but the codes `^` for beginning of string and `$` for end of string should be excluded. Note that the patterns are matched sequentially from first to last, so more general patterns should be included first. The first row should specify the default spot-type and should have pattern `*` for all the pattern-matching columns.

Here is a short STF appropriate for the ApoAI data:
In this example, the columns **ID** and **Name** are found in the gene-list and contain patterns to match. The asterisks are wildcards which can represent anything. Be careful to use upper or lower case as appropriate and don’t insert any extra spaces. The remaining column gives colors to be associated with the different types of points. This code assumes of that the probe annotation data.frame includes columns **ID** and **Name**. This is usually so if GenePix has been used for the image analysis, but other image analysis software may use other column names.

Here is a STF below appropriate for arrays with Lucidea Universal ScoreCard control spots.

If the STF has default name **SpotTypes.txt** then it can be read using

```r
> spottypes <- readSpotTypes()
```

It is typically used as an argument to the `controlStatus()` function to set the status of each spot on the array, for example

```r
> RG$genes$Status <- controlStatus(spottypes, RG)
```
Chapter 5

Quality Assessment

An essential step in the analysis of any microarray data is to check the quality of the data from the arrays. For two-color array data, an essential step is to view the MA-plots of the unnormalized data for each array. The plotMD() function produces plots for individual arrays [27]. The plotMA3by2() function gives an easy way to produce MA-plots for all the arrays in a large experiment. This functions writes plots to disk as png files, 6 plots to a page.

The usefulness of MA-plots is enhanced by highlighting various types of control probes on the arrays, and this is facilitated by the controlStatus() function. The following is an example MA-Plot for an Incyte array with various spike-in and other controls. (Data courtesy of Dr Steve Gerondakis, Walter and Eliza Hall Institute of Medical Research.) The data shows high-quality data with long comet-like pattern of non-differentially expressed probes and a small proportion of highly differentially expressed probes. The plot was produced using

```R
> spottypes <- readSpotTypes()
> RG$genes$Status <- controlStatus(spottypes, RG)
> plotMD(RG)
```

The array includes spike-in ratio controls which are 3-fold, 10-fold and 25-fold up and down regulated, as well as non-differentially expressed sensitivity controls and negative controls.
The background intensities are also a useful guide to the quality characteristics of each array. Boxplots of the background intensities from each array

```r
> boxplot(data.frame(log2(RG$Gb)),main="Green background")
> boxplot(data.frame(log2(RG$Rb)),main="Red background")
```

will highlight any arrays unusually with high background intensities. Spatial heterogeneity on individual arrays can be highlighted by examining imageplots of the background intensities, for example

```r
> imageplot(log2(RG$Gb[,1]),RG$printer)
```

plots the green background for the first array. The function `imageplot3by2()` gives an easy way to automate the production of plots for all arrays in an experiment.

If the plots suggest that some arrays are of lesser quality than others, it may be useful to estimate array quality weights to be used in the linear model analysis, see Section 14.
Chapter 6

Pre-Processing Two-Color Data

6.1 Background Correction

The default background correction action is to subtract the background intensity from the foreground intensity for each spot. If the RGList object has not already been background corrected, then `normalizeWithinArrays` will do this by default. Hence

\[
\text{MA} \leftarrow \text{normalizeWithinArrays}(\text{RG})
\]

is equivalent to

\[
\text{RGb} \leftarrow \text{backgroundCorrect}(\text{RG, method} = \text{"subtract"})
\]
\[
\text{MA} \leftarrow \text{normalizeWithinArrays}(\text{RGb})
\]

However there are many other background correction options which may be preferable in certain situations, see Ritchie et al [26].

For the purpose of assessing differential expression, we often find

\[
\text{RG} \leftarrow \text{backgroundCorrect}(\text{RG, method} = \text{"normexp", offset} = 50)
\]

to be preferable to the simple background subtraction when using output from most image analysis programs. This method adjusts the foreground adaptively for the background intensities and results in strictly positive adjusted intensities, i.e., negative or zero corrected intensities are avoided. The use of an offset damps the variation of the log-ratios for very low intensities spots towards zero.

To illustrate some differences between the different background correction methods we consider one cDNA array which was self-self hybridized, i.e., the same RNA source was hybridized to both channels. For this array there is no actual differential expression. The array was printed with a human 10.5k library and hybridized with Jurkatt RNA on both channels. (Data courtesy Andrew Holloway and Dileepa Diyagama, Peter MacCallum Cancer Centre, Melbourne.) The array included a selection of control spots which are highlighted on the plots. Of particular interest are the spike-in ratio controls which should show up and down fold changes of 3 and 10. The first plot displays data acquired with GenePix software and background corrected by subtracting the median local background, which is the default with GenePix data. The plot shows the typical wedge shape with fanning of the M-values at low intensities. The range of observed M-values dominates the spike-in ratio controls. The are also 1148 spots not shown on the plot because the background corrected intensities were zero or negative.
The second plot shows the same array background corrected with method="normexp" and offset=50. The spike-in ratio controls now standout clearly from the range of the M-values. All spots on the array are shown on the plot because there are now no missing M-values.

The third plot shows the same array quantified with SPOT software and with “morph” background subtractated. This background estimator produces a similar effect to that with normexp.
The effect of using “morph” background or using `method="normexp"` with an offset is to stabilize the variability of the M-values as a function of intensity. The empirical Bayes methods implemented in the `limma` package for assessing differential expression will yield most benefit when the variabilities are as homogeneous as possible between genes. This can best be achieved by reducing the dependence of variability on intensity as far as possible [26].

6.2 Within-Array Normalization

`limma` implements a range of normalization methods for spotted microarrays. Smyth and Speed [33] describe some of the most commonly used methods. The methods may be broadly classified into methods which normalize the M-values for each array separately (within-array normalization) and methods which normalize intensities or log-ratios to be comparable across arrays (between-array normalization). This section discusses mainly within-array normalization, which all that is usually required for the traditional log-ratio analysis of two-color data. Between-array normalization is discussed further in Section 6.3.

Print-tip loess normalization [44] is the default normalization method and can be performed by

```r
> MA <- normalizeWithinArrays(RG)
```

There are some notable cases where this is not appropriate. For example, Agilent arrays do not have print-tip groups, so one should use global loess normalization instead:

```r
> MA <- normalizeWithinArrays(RG, method="loess")
```

Print-tip loess is also unreliable for small arrays with less than, say, 150 spots per print-tip group. Even larger arrays may have particular print-tip groups which are too small for print-tip loess normalization if the number of spots with non-missing M-values is small for one or more of the print-tip groups. In these cases one should either use global "loess" normalization or else use robust spline normalization

```r
> MA <- normalizeWithinArrays(RG, method="robustspline")
```
which is an empirical Bayes compromise between print-tip and global loess normalization, with 5-
parameter regression splines used in place of the loess curves.

Loess normalization assumes that the bulk of the probes on the array are not differentially
expressed. It doesn’t assume that there are equal numbers of up and down regulated genes or that
differential expression is symmetric about zero, provided that the loess fit is implemented in a robust
fashion, but it is necessary that there be a substantial body of probes which do not change expression
levels. Oshlack et al [19] show that loess normalization can tolerate up to about 30% asymmetric
differential expression while still giving good results. This assumption can be suspect for boutique
arrays where the total number of unique genes on the array is small, say less than 150, particularly if
these genes have been selected for being specifically expressed in one of the RNA sources. In such a
situation, the best strategy is to include on the arrays a series of non-differentially expressed control
spots, such as a titration series of whole-library-pool spots, and to use the up-weighting method
discussed below [19]. A whole-library-pool means that one makes a pool of a library of probes, and
prints spots from the pool at various concentrations [43]. The library should be sufficiently large
than one can be confident that the average of all the probes is not differentially expressed. The larger
the library the better. Good results have been obtained with library pools with as few as 500 clones.
In the absence of such control spots, normalization of boutique arrays requires specialist advice.

Any spot quality weights found in RG will be used in the normalization by default. This means
for example that spots with zero weight (flagged out) will not influence the normalization of other
spots. The use of spot quality weights will not however result in any spots being removed from the
data object. Even spots with zero weight will be normalized and will appear in the output object,
such spots will simply not have any influence on the other spots. If you do not wish the spot quality
weights to be used in the normalization, their use can be over-ridden using

> MA <- normalizeWithinArrays(RG, weights=NULL)

The output object MA will still contain any spot quality weights found in RG, but these weights are
not used in the normalization step.

It is often useful to make use of control spots to assist the normalization process. For example,
if the arrays contain a series of spots which are known in advance to be non-differentially expressed,
these spots can be given more weight in the normalization process. Spots which are known in advance
to be differentially expressed can be down-weighted. Suppose for example that the controlStatus()
has been used to identify spike-in spots which are differentially expressed and a titration series of
whole-library-pool spots which should not be differentially expressed. Then one might use

> w <- modifyWeights(RG$weights, RG$genes$Status, c("spikein","titration"), c(0,2))
> MA <- normalizeWithinArrays(RG, weights=w)

to give zero weight to the spike-in spots and double weight to the titration spots. This process is
automated by the "control" normalization method, for example

> csi <- RG$genes$Status=="titration"
> MA <- normalizeWithinArrays(RG, method="control", controlspots=csi)

In general, csi is an index vector specifying the non-differentially expressed control spots [19].

The idea of up-weighting the titration spots is in the same spirit as the composite normalization
method proposed by [43] but is more flexible and generally applicable. The above code assumes that
RG already contains spot quality weights. If not, one could use

> w <- modifyWeights(array(1,dim(RG)), RG$genes$Status, c("spikein","titration"), c(0,2))
> MA <- normalizeWithinArrays(RG, weights=w)

29
Limma contains some more sophisticated normalization methods. In particular, some between-array normalization methods are discussed in Section 6.3 of this guide.

6.3 Between-Array Normalization

This section explores some of the methods available for between-array normalization of two-color arrays. A feature which distinguishes most of these methods from within-array normalization is the focus on the individual red and green intensity values rather than merely on the log-ratios. These methods might therefore be called individual channel or separate channel normalization methods. Individual channel normalization is typically a prerequisite to individual channel analysis methods such as that provided by limscFit(). Further discussion of the issues involved is given by [46]. This section shows how to reproduce some of the results given in [46]. The Apoa1 data set from Section 16.2 will be used to illustrate these methods. We assume that the Apoa1 data has been loaded and background corrected as follows:

```r
> load("Apoa1.RData")
```

An important issue to consider before normalizing between arrays is how background correction has been handled. For between-array normalization to be effective, it is important to avoid missing values in log-ratios which might arise from negative or zero corrected intensities. The function backgroundCorrect() gives a number of useful options. For the purposes of this section, the data has been corrected using the "minimum" method:

```r
> RG.b <- backgroundCorrect(RG,method="minimum")
```

plotDensities displays smoothed empirical densities for the individual green and red channels on all the arrays. Without any normalization there is considerable variation between both channels and between arrays:

```r
> plotDensities(RG.b)
```

![RG densities](image.png)
After loess normalization of the M-values for each array the red and green distributions become essentially the same for each array, although there is still considerable variation between arrays:

```r
> MA.p <- normalizeWithinArrays(RG.b)
> plotDensities(MA.p)
```

Loess normalization doesn’t affect the A-values. Applying quantile normalization to the A-values makes the distributions essentially the same across arrays as well as channels:

```r
> MA.pAq <- normalizeBetweenArrays(MA.p, method="Aquantile")
> plotDensities(MA.pAq)
```
Applying quantile normalization directly to the individual red and green intensities produces a similar result but is somewhat noisier:

```r
> MA.q <- normalizeBetweenArrays(RG.b, method="quantile")
> plotDensities(MA.q, col="black")
```

Warning message:
number of groups=2 not equal to number of col in: plotDensities(MA.q, col = "black")

There are other between-array normalization methods not explored here. For example `normalizeBetweenArrays` with `method="vsn"` gives an interface to the variance-stabilizing normalization methods of the `vsn` package.

6.4 Using Objects from the marray Package

The package `marray` is a well known R package for pre-processing of two-color microarray data. `Marray` provides functions for reading, normalization and graphical display of data. `Marray` and `limma` are both descendants of the earlier and path-breaking `sma` package available from http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html but `limma` has maintained and built upon the original data structures whereas `marray` has converted to a fully formal data class representation. For this reason, `Limma` is backwardly compatible with `sma` while `marray` is not.

Normalization functions in `marray` focus on a flexible approach to location and scale normalization of M-values, rather than the within and between-array approach of `limma`. `Marray` provides some normalization methods which are not in `limma` including 2-D loess normalization and print-tip-scale normalization. Although there is some overlap between the normalization functions in the two packages, both providing print-tip loess normalization, the two approaches are largely complementary. `Marray` also provides highly developed functions for graphical display of two-color microarray data.

Read functions in `marray` produce objects of class `marrayRaw` while normalization produces objects of class `marrayNorm`. Objects of these classes may be converted to and from `limma` data objects using
the convert package. `marrayRaw` objects may be converted to `RGList` objects and `marrayNorm` objects to `MAList` objects using the `as` function. For example, if `Data` is an `marrayNorm` object then

```r
> library(convert)
> MA <- as(Data, "MAList")
```

converts to an `MAList` object.

`marrayNorm` objects can also be used directly in `limma` without conversion, and this is generally recommended. If `Data` is an `marrayNorm` object, then

```r
> fit <- lmFit(Data, design)
```

fits a linear model to `Data` as it would to an `MAList` object. One difference however is that the `marray` read functions tend to populate the `maW` slot of the `marrayNorm` object with qualitative spot quality flags rather than with quantitative non-negative weights, as expected by `limma`. If this is so then one may need

```r
> fit <- lmFit(Data, design, weights=NULL)
```

to turn off use of the spot quality weights.
Sometimes the expression profiling platform (microarray or RNA-seq) includes probes or genes that do not appear to be expressed to a worthwhile degree in any of the RNA samples being compared. This might occur for example for genes that are not expressed in any of the cell types being profiled in the experiment. Genes that are never expressed are, by definition, not differentially expressed, and such genes are unlikely to be of biological interest in a study. In these cases, it may be possible to simplify the differential expression analysis by removing such genes from further consideration early in the analysis. Whether this is worthwhile and how it is done depends on the expression platform.

For two-color microarrays, it is usual to use all the available probes during the background correction and normalization steps. Control probes that don’t correspond to genes are usually then removed before the differential expression analysis steps, but no other filtering is done.

For single-channel microarrays, it often is worthwhile to identify and filter unexpressed probes. Some microarray platforms, including Illumina, Agilent and Affymetrix arrays, include control probes from which the background intensity corresponding to unexpressed probes can be estimated. In such cases, it may be useful to keep probes that are expressed above background on at least k arrays, where k is the smallest number of replicates assigned to any of the treatment combinations. Such filtering is done before the linear modeling and empirical Bayes steps but after normalization. Section 17.3.4 gives an example of filtering with Illumina arrays and Section 17.4.6 gives an example with Agilent arrays.

If background control probes are not available, an alternative single-channel approach is to filter probes based on their average log-expression values (AveExpr) as computed by `lmFit` and stored as Amean. A histogram of the Amean values and a sigma vs Amean plot may help identify a cutoff below which Amean values can be filtered:

```
fit <- lmFit(y, design)
hist(fit$Amean)
plotSA(fit)
```

Then empirical Bayes and downstream analyses can be conducted on the filtered fit object:

```
keep <- fit$Amean > CutOff
fit2 <- eBayes(fit[keep,], trend=TRUE)
plotSA(fit2)
```

Filtering is most important for RNA-seq. For RNA-seq data is important to filter out genes or exons that are never detected or have very small counts. An effective method is to keep genes or exons that have a worthwhile count, say 5–10 or more, in at least k arrays, where k is the
smallest number of replicates assigned to any of the treatment combinations. The edgeR package provides the `filterByExpr` function to identify genes or exons for filtering, as will be outlined briefly in Section 15.3.
Chapter 8

Linear Models Overview

8.1 Introduction

The package limma uses an approach called linear models to analyze designed microarray experiments. This approach allows very general experiments to be analyzed just as easily as a simple replicated experiment. The approach is outlined in [35, 45]. The approach requires one or two matrices to be specified. The first is the design matrix which indicates in effect which RNA samples have been applied to each array. The second is the contrast matrix which specifies which comparisons you would like to make between the RNA samples. For very simple experiments, you may not need to specify the contrast matrix.

The philosophy of the approach is as follows. You have to start by fitting a linear model to your data which fully models the systematic part of your data. The model is specified by the design matrix. Each row of the design matrix corresponds to an array in your experiment and each column corresponds to a coefficient that is used to describe the RNA sources in your experiment. With Affymetrix or single-channel data, or with two-color with a common reference, you will need as many coefficients as you have distinct RNA sources, no more and no less. With direct-design two-color data you will need one fewer coefficient than you have distinct RNA sources, unless you wish to estimate a dye-effect for each gene, in which case the number of RNA sources and the number of coefficients will be the same. Any set of independent coefficients will do, providing they describe all your treatments. The main purpose of this step is to estimate the variability in the data, hence the systematic part needs to be modeled so it can be distinguished from random variation.

In practice the requirement to have exactly as many coefficients as RNA sources is too restrictive in terms of questions you might want to answer. You might be interested in more or fewer comparisons between the RNA source. Hence the contrasts step is provided so that you can take the initial coefficients and compare them in as many ways as you want to answer any questions you might have, regardless of how many or how few these might be.

If you have data from Affymetrix experiments, from single-channel spotted microarrays or from spotted microarrays using a common reference, then linear modeling is the same as ordinary analysis of variance or multiple regression except that a model is fitted for every gene. With data of this type you can create design matrices as one would do for ordinary modeling with univariate data. If you have data from spotted microarrays using a direct design, i.e., a connected design with no common reference, then the linear modeling approach is very powerful but the creation of the design matrix may require more statistical knowledge.

For statistical analysis and assessing differential expression, limma uses an empirical Bayes method
to moderate the standard errors of the estimated log-fold changes. This results in more stable inference and improved power, especially for experiments with small numbers of arrays [35, 21]. For arrays with within-array replicate spots, limma uses a pooled correlation method to make full use of the duplicate spots [32].

8.2 Single-Channel Designs

Affymetrix data will usually be normalized using the affy package. We will assume here that the data is available as an ExpressionSet object called eset. Such an object will have a slot containing the log-expression values for each gene on each array which can be extracted using exprs(eset). Affymetrix and other single-channel microarray data may be analyzed very much like ordinary linear models or anova models. The difference with microarray data is that it is almost always necessary to extract particular contrasts of interest and so the standard parametrizations provided for factors in R are not usually adequate.

There are many ways to approach the analysis of a complex experiment in limma. A straightforward strategy is to set up the simplest possible design matrix and then to extract from the fit the contrasts of interest.

Suppose that there are three RNA sources to be compared. Suppose that the first three arrays are hybridized with RNA1, the next two with RNA2 and the next three with RNA3. Suppose that all pair-wise comparisons between the RNA sources are of interest. We assume that the data has been normalized and stored in an ExpressionSet object, for example by

```r
> data <- ReadAffy()
> eset <- rma(data)
```

An appropriate design matrix can be created and a linear model fitted using

```r
> design <- model.matrix(~ 0+factor(c(1,1,1,2,2,3,3,3)))
> colnames(design) <- c("group1", "group2", "group3")
> fit <- lmFit(eset, design)
```

To make all pair-wise comparisons between the three groups the appropriate contrast matrix can be created by

```r
> contrast.matrix <- makeContrasts(group2-group1, group3-group2, group3-group1, levels=design)
> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)
```

A list of top genes differential expressed in group2 versus group1 can be obtained from

```r
> topTable(fit2, coef=1, adjust="BH")
```

The outcome of each hypothesis test can be assigned using

```r
> results <- decideTests(fit2)
```

A Venn diagram showing numbers of genes significant in each comparison can be obtained from

```r
> vennDiagram(results)
```
8.3 Common Reference Designs

Now consider two-color microarray experiments in which a common reference has been used on all the arrays. Such experiments can be analyzed very similarly to Affymetrix experiments except that allowance must be made for dye-swaps. The simplest method is to setup the design matrix using the `modelMatrix()` function and the targets file. As an example, we consider part of an experiment conducted by Joëlle Michaud, Catherine Carmichael and Dr Hamish Scott at the Walter and Eliza Hall Institute to compare the effects of transcription factors in a human cell line. The targets file is as follows:

```r
> targets <- readTargets("runxtargets.txt")
> targets
SlideNumber Cy3 Cy5
1  2144 EGFP  AML1
2  2145 EGFP  AML1
3  2146 AML1  EGFP
4  2147 EGFP AML1.CBFb
5  2148 EGFP AML1.CBFb
6  2149 AML1.CBFb EGFP
7  2158 EGFP  CBFb
8  2159 CBFb  EGFP
9  2160 EGFP AML1.CBFb
10  2161 AML1.CBFb EGFP
11  2162 EGFP AML1.CBFb
12  2163 AML1.CBFb EGFP
13  2166 EGFP  CBFb
14  2167 CBFb  EGFP
```

In the experiment, green fluorescent protein (EGFP) has been used as a common reference. An adenovirus system was used to transport various transcription factors into the nuclei of HeLa cells. Here we consider the transcription factors AML1, CBFbeta or both. A simple design matrix was formed and a linear model fit:

```r
> design <- modelMatrix(targets, ref="EGFP")
> design
AML1 AML1.CBFb CBFb
1 1 0 0
2 1 0 0
3 -1 0 0
4 0 1 0
5 0 1 0
6 0 -1 0
7 0 0 1
8 0 0 -1
9 0 1 0
10 0 -1 0
11 0 1 0
12 0 -1 0
13 0 0 1
14 0 0 -1
> fit <- lmFit(MA, design)
```

It is of interest to compare each of the transcription factors to EGFP and also to compare the combination transcription factor with AML1 and CBFb individually. An appropriate contrast matrix was formed as follows:
The linear model fit can now be expanded and empirical Bayes statistics computed:

```r
> fit2 <- contrasts.fit(fit, contrasts.matrix)
> fit2 <- eBayes(fit2)
```

8.4 Direct Two-Color Designs

Two-color designs without a common reference require the most statistical knowledge to choose the appropriate design matrix. A direct design is one in which there is no single RNA source which is hybridized to every array. As an example, we consider an experiment conducted by Dr. Mireille Lahoud at the Walter and Eliza Hall Institute to compare gene expression in three different populations of dendritic cells (DC).

This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used to compare two DC types. The design is shown diagrammatically above. The targets file was as follows:

```r
> targets

<table>
<thead>
<tr>
<th>SlideNumber</th>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml12med</td>
<td>12</td>
<td>ml12med.spot</td>
<td>CD4</td>
</tr>
<tr>
<td>ml13med</td>
<td>13</td>
<td>ml13med.spot</td>
<td>CD8</td>
</tr>
<tr>
<td>ml14med</td>
<td>14</td>
<td>ml14med.spot</td>
<td>DN</td>
</tr>
<tr>
<td>ml15med</td>
<td>15</td>
<td>ml15med.spot</td>
<td>CD8</td>
</tr>
<tr>
<td>ml16med</td>
<td>16</td>
<td>ml16med.spot</td>
<td>CD4</td>
</tr>
<tr>
<td>ml17med</td>
<td>17</td>
<td>ml17med.spot</td>
<td>DN</td>
</tr>
</tbody>
</table>
```

There are many valid choices for a design matrix for such an experiment and no single correct choice. We chose to setup the design matrix as follows:

```r
> design <- modelMatrix(targets, ref="CD4")
> design <- modelMatrix(targets, ref="CD4")
```
In this design matrix, the CD8 and DN populations have been compared back to the CD4 population. The coefficients estimated by the linear model will correspond to the log-ratios of CD8 vs CD4 (first column) and DN vs CD4 (second column).

After appropriate normalization of the expression data, a linear model was fit using

```r
> design
  CD8 DN
ml12med 1 0
ml13med -1 0
ml14med 1 -1
ml15med -1 1
ml16med 0 1
ml17med 0 -1
```

The contrast matrix can be used to expand the linear model fit and then to compute empirical Bayes statistics:

```r
> contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1))
> rownames(contrast.matrix) <- colnames(design)
> contrast.matrix
   CD8-CD4 DN-CD4 CD8-DN
CD8   1   0   1
DN     0   1  -1
```

The contrast matrix can be used to expand the linear model fit and then to compute empirical Bayes statistics:

```r
> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)
40
```
Chapter 9

Single-Channel Experimental Designs

9.1 Introduction

Unlike the early days of microarrays, most data is now of the single channel type. Single channel data is generated from popular microarray technologies such as Affymetrix, Illumina or Agilent. The new technology of RNA-seq also generates single channel data, so everything in this chapter can be applied to RNA-seq analyses when the data has been pre-processed using the voom function [13]. Single-channel data may be analyzed very much like ordinary univariate linear models or analysis of variance. The difference with microarray data is that it is almost always necessary to extract particular contrasts of interest and so the standard parametrizations provided for factors in R are not usually adequate.

We will assume for our examples here that the data has been suitably pre-processed normalized and is available as an ExpressionSet or EList object called eset. Such an object will have an slot containing the log-expression values for each gene on each array which can be extracted using exprs(eset).

9.2 Two Groups

The simplest possible single channel experiment is to compare two groups. Suppose that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice:

<table>
<thead>
<tr>
<th>FileName</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>WT</td>
</tr>
<tr>
<td>File2</td>
<td>WT</td>
</tr>
<tr>
<td>File3</td>
<td>Mu</td>
</tr>
<tr>
<td>File4</td>
<td>Mu</td>
</tr>
<tr>
<td>File5</td>
<td>Mu</td>
</tr>
</tbody>
</table>

There are two different ways to form the design matrix. We can either

1. create a design matrix which includes a coefficient for the mutant vs wild type difference, or
2. create a design matrix which includes separate coefficients for wild type and mutant mice and then extract the difference as a contrast.
For the first approach, the treatment-contrasts parametrization, the design matrix should be as follows:

```r
> design

  WT MUvsWT
Array1 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Array5 1 1
```

Here the first coefficient estimates the mean log-expression for wild type mice and plays the role of an intercept. The second coefficient estimates the difference between mutant and wild type. Differentially expressed genes can be found by

```r
> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT", adjust="BH")
```

where `eset` is an `ExpressionSet` or `matrix` object containing the log-expression values. For the second approach, the design matrix should be

```r
WT MU
Array1 1 0
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1
```

Differentially expressed genes can be found by

```r
> fit <- lmFit(eset, design)
> cont.matrix <- makeContrasts(MUvsWT=MU-WT, levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
```

For the first approach, the treatment-contrasts parametrization, the design matrix can be computed by

```r
> design <- cbind(WT=1,MUvsWT=c(0,0,1,1,1))
```

or by

```r
> Group <- factor(targets$Target, levels=c("WT","Mu"))
> design <- model.matrix(~Group)
> colnames(design) <- c("WT","MUvsWT")
```

For the second approach, the group-means parametrization, the design matrix can be computed by

```r
> design <- cbind(WT=c(1,1,0,0,0),MU=c(0,0,1,1,1))
```

or by

```r
> design <- model.matrix(~0+Group)
> colnames(design) <- c("WT","MU")
```
9.3 Several Groups

The above approaches for two groups extend easily to any number of groups. Suppose that three RNA targets to be compared. Suppose that the three targets are called “RNA1”, “RNA2” and “RNA3” and that the column `targets$Target` indicates which one was hybridized to each array. An appropriate design matrix can be created using

\[
\mathbf{X} = \begin{pmatrix}
\text{RNA1} & \text{RNA2} & \text{RNA3}
\end{pmatrix}
\]

To make all pair-wise comparisons between the three groups one could proceed

\[
\text{fit} <- \text{lmFit}(\text{eset}, \mathbf{X})
\]

A list of top genes for RNA2 versus RNA1 can be obtained from

\[
\text{topTable(fit, coef=1, adjust="BH")}
\]

The outcome of each hypothesis test can be assigned using

\[
\text{results} <- \text{decideTests(fit)}
\]

A Venn diagram showing numbers of genes significant in each comparison can be obtained from

\[
\text{vennDiagram(results)}
\]

The statistic `fit$F` and the corresponding `fit$F.p.value` combine the three pair-wise comparisons into one F-test. This is equivalent to a one-way ANOVA for each gene except that the residual mean squares have been moderated between genes. To find genes which vary between the three RNA targets in any way, look for genes with small p-values. To find the top 30 genes:

\[
\text{topTable(fit2, number=30)}
\]

Here, with the `coef` argument not specified, `topTable` will test all coefficients or contrasts found in the linear model object equal to zero. When two or more contrasts are present, then the F-tests for those contrasts are reported. In this case, `fit2` contains three contrasts, so F-tests on 3 degrees of freedom (df) will be reported.

9.4 Additive Models and Blocking

9.4.1 Paired Samples

Paired samples occur when we compare two treatments and each sample given one treatment is naturally paired with a particular sample given the other treatment. This is a special case of blocking with blocks of size two. The classical test associated with this situation is the paired t-test.

Suppose an experiment is conducted to compare a new treatment (T) with a control (C). Six dogs are used from three sib-ships. For each sib-pair, one dog is given the treatment while the other dog is a control. This produces the targets frame:
A moderated paired \(t \)-test can be computed by allowing for sib-pair effects in the linear model:

\[
\begin{align*}
\text{FileName} & \quad \text{SibShip} & \quad \text{Treatment} \\
\text{File1} & \quad 1 & \quad C \\
\text{File2} & \quad 1 & \quad T \\
\text{File3} & \quad 2 & \quad C \\
\text{File4} & \quad 2 & \quad T \\
\text{File5} & \quad 3 & \quad C \\
\text{File6} & \quad 3 & \quad T \\
\end{align*}
\]

9.4.2 Blocking

The above approach used for paired samples can be applied in any situation where there are batch effects or where the experiment has been conducted in blocks. The treatments can be adjusted for differences between the blocks by using a model formula of the form:

\[
\text{design} \leftarrow \text{model.matrix}(\text{~Block+Treatment})
\]

In this type of analysis, the treatments are compared only within each block.

9.5 Interaction Models: \(2 \times 2\) Factorial Designs

9.5.1 Questions of Interest

Factorial designs are those where more than one experimental dimension is being varied and each combination of treatment conditions is observed. Suppose that cells are extracted from wild type and mutant mice and these cells are either stimulated (S) or unstimulated (U). RNA from the treated cells is then extracted and hybridized to a microarray. We will assume for simplicity that the arrays are single-color arrays such as Affymetrix. Consider the following targets frame:

<table>
<thead>
<tr>
<th>FileName</th>
<th>Strain</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>WT</td>
<td>U</td>
</tr>
<tr>
<td>File2</td>
<td>WT</td>
<td>S</td>
</tr>
<tr>
<td>File3</td>
<td>Mu</td>
<td>U</td>
</tr>
<tr>
<td>File4</td>
<td>Mu</td>
<td>S</td>
</tr>
<tr>
<td>File5</td>
<td>Mu</td>
<td>S</td>
</tr>
</tbody>
</table>

The two experimental dimensions or factors here are Strain and Treatment. Strain specifies the genotype of the mouse from which the cells are extracted and Treatment specifies whether the cells are stimulated or not. All four combinations of Strain and Treatment are observed, so this is a factorial design. It will be convenient for us to collect the Strain/Treatment combinations into one vector as follows:

\[
\begin{align*}
\text{TS} & \leftarrow \text{paste(targets$Strain, targets$Treatment, sep=".")} \\
\text{TS} & \leftarrow \text{paste(targets$Strain, targets$Treatment, sep=".")}
\end{align*}
\]
It is especially important with a factorial design to decide what are the comparisons of interest. We will assume here that the experimenter is interested in

1. which genes respond to stimulation in wild-type cells,
2. which genes respond to stimulation in mutant cells, and
3. which genes respond differently in mutant compared to wild-type cells.

as these are the questions which are most usually relevant in a molecular biology context. The first of these questions relates to the WT.S vs WT.U comparison and the second to Mu.S vs Mu.U. The third relates to the difference of differences, i.e., \((\text{Mu.S}-\text{Mu.U})-(\text{WT.S}-\text{WT.U})\), which is called the \textit{interaction} term.

9.5.2 Analysing as for a Single Factor

We describe first a simple way to analyze this experiment using limma commands in a similar way to that in which two-sample designs were analyzed. Then we will go on to describe the more classical statistical approaches using factorial model formulas. All the approaches considered are equivalent and yield identical bottom-line results. The most basic approach is to fit a model with a coefficient for each of the four factor combinations and then to extract the comparisons of interest as contrasts:

```r
> TS <- factor(TS, levels=c("WT.U","WT.S","Mu.U","Mu.S"))
> design <- model.matrix(~0+TS)
> colnames(design) <- levels(TS)
> fit <- lmFit(eset, design)
```

This fits a model with four coefficients corresponding to \(\text{WT.U}, \text{WT.S}, \text{Mu.U}\) and \(\text{Mu.S}\) respectively. Our three contrasts of interest can be extracted by

```r
> cont.matrix <- makeContrasts(~ SvsUinWT=WT.S-WT.U,
+ SvsUinMu=Mu.S-Mu.U,
+ Diff=(Mu.S-Mu.U)-(WT.S-WT.U),
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
```

We can use `topTable()` to look at lists of differentially expressed genes for each of three contrasts, or else

```r
> results <- decideTests(fit2)
> vennDiagram(results)
```

to look at all three contrasts simultaneously.

This approach is recommended for most users, because the contrasts that are being tested are formed explicitly.
9.5.3 A Nested Interaction Formula

Model formulas in R are very flexible, and offer lots of possible shortcuts for setting up the design matrix. However they also require a high level of statistical understanding in order to use reliably, and they are not completely described in the main R documentation. If we only wanted to test the first two questions above, an easy to setup the design matrix would be to use a nested interaction term:

```r
> Strain <- factor(targets$Strain, levels=c("WT","Mu"))
> Treatment <- factor(targets$Treatment, levels=c("U","S"))
> design <- model.matrix(~Strain+Strain:Treatment)
> colnames(design)
[1] "(Intercept)" "StrainMu" "StrainWT:TreatmentS" "StrainMu:TreatmentS"
```

The first term in the model formula is an effect for Strain. This introduces an intercept column to the design matrix, which estimates the average log-expression level for wild-type unstimulated cells, and a column for Strain which estimates the mutant vs wild-type difference in the unstimulated state. The second term in the model formula represents the interaction between stimulation and strain. Because there is no main effect for treatment in the model, the interaction is fitted in a nested sense. It introduces a third and a fourth column to the design matrix which represent the effect of stimulation for wild-type and for mutant mice respectively, exactly the same as the contrasts SvsUinWT and SvsUinMu define in the previous section. After

```r
> fit <- lmFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef=3)
```

will find those genes responding to stimulation in wild-type mice, and

```r
> topTable(fit, coef=4)
```

will find those genes responding to stimulation in mutant mice. Finally, we could extract the interaction contrast Diff considered above by

```r
> fit2 <- contrasts.fit(fit, c(0,0,-1,1))
> fit2 <- eBayes(fit2)
> topTable(fit2)
```

This finds genes that respond differently to the stimulus in mutant vs wild-type mice.

9.5.4 Classic Interaction Models

The analysis of factorial designs has a long history in statistics and a system of factorial model formulas has been developed to facilitate the analysis of complex designs. It is important to understand though that the above three molecular biology questions do not correspond to any of the classic parametrizations used in statistics for factorial designs. Hence we generally recommend the approaches already considered above for microarray analysis.

Suppose for example that we proceed in the usual statistical way,

```r
> design <- model.matrix(~Strain*Treatment)
```
This creates a design matrix which defines four coefficients with the following interpretations:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Comparison</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>WT.U</td>
<td>Baseline level of unstimulated WT</td>
</tr>
<tr>
<td>StrainMu</td>
<td>Mu.U-WT.U</td>
<td>Difference between unstimulated strains</td>
</tr>
<tr>
<td>TreatmentS</td>
<td>WT.S-WT.U</td>
<td>Stimulation effect for WT</td>
</tr>
<tr>
<td>StrainMu:TreatmentS</td>
<td>(Mu.S-Mu.U)-(WT.S-WT.U)</td>
<td>Interaction</td>
</tr>
</tbody>
</table>

This is called the treatment-contrast parametrization. Notice that one of our comparisons of interest, Mu.S-Mu.U, is not represented and instead the comparison Mu.U-WT.U, which might not be of direct interest, is included. We need to use contrasts to extract all the comparisons of interest:

```r
> fit <- lmFit(eset, design)
> cont.matrix <- cbind(SvsUinWT=c(0,0,1,0),SvsUinMu=c(0,0,1,1),Diff=c(0,0,0,1))
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
```

This extracts the WT stimulation effect as the third coefficient and the interaction as the fourth coefficient. The mutant stimulation effect is extracted as the sum of the third and fourth coefficients of the original model. This analysis yields exactly the same results as the previous analysis.

An even more classical statistical approach to the factorial experiment would be to use the sum to zero parametrization. In R this is achieved by

```r
> contrasts(Strain) <- contr.sum(2)
> contrasts(Treatment) <- contr.sum(2)
> design <- model.matrix(~Strain*Treatment)
```

This defines four coefficients with the following interpretations:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Comparison</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>(WT.U+WT.S+Mu.U+Mu.S)/4</td>
<td>Grand mean</td>
</tr>
<tr>
<td>Strain1</td>
<td>(WT.U+WT.S-Mu.U-Mu.S)/4</td>
<td>Strain main effect</td>
</tr>
<tr>
<td>Treatment1</td>
<td>(WT.U-WT.S+Mu.U-Mu.S)/4</td>
<td>Treatment main effect</td>
</tr>
<tr>
<td>Strain1:Treatment1</td>
<td>(WT.U-WT.S-Mu.U+Mu.S)/4</td>
<td>Interaction</td>
</tr>
</tbody>
</table>

This parametrization has many appealing mathematical properties and is the classical parametrization used for factorial designs in much experimental design theory. However it defines only one coefficient which is directly of interest to us, namely the interaction. Our three contrasts of interest could be extracted using

```r
> fit <- lmFit(eset, design)
> cont.matrix <- cbind(SvsUinWT=c(0,0,1,-2),SvsUinMu=c(0,0,-2,2),Diff=c(0,0,0,4))
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
```

The results will be identical to those for the previous three approaches.

The various approaches described here for the 2×2 factorial problem are equivalent and differ only in the parametrization chosen for the linear model. The fitted model objects `fit` will differ only in the coefficients and associated components. The residual standard deviations `fit$sigma`, residual degrees of freedom `fit$df.residual` and all components of `fit2` will be identical regardless of parametrization used. Since the approaches are equivalent, users are free to choose whichever one is most intuitive or convenient.
9.6 Time Course Experiments

9.6.1 Replicated time points

Time course experiments are those in which RNA is extracted at several time points after the onset of some treatment or stimulation. How best to analyse a time course experiment depends on the nature of the experiment, and especially on the number of distinct time points. We consider first experiments with a relative small number of replicated time points. Simple time course experiments of this type are similar to experiments with several groups covered in Section 9.3.

As an example, we consider here a two-way experiment in which time course profiles are to be compared for two genotypes. Consider the targets frame

<table>
<thead>
<tr>
<th>FileName</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt.0hr</td>
</tr>
<tr>
<td>File2</td>
<td>wt.0hr</td>
</tr>
<tr>
<td>File3</td>
<td>wt.6hr</td>
</tr>
<tr>
<td>File4</td>
<td>wt.24hr</td>
</tr>
<tr>
<td>File5</td>
<td>mu.0hr</td>
</tr>
<tr>
<td>File6</td>
<td>mu.0hr</td>
</tr>
<tr>
<td>File7</td>
<td>mu.6hr</td>
</tr>
<tr>
<td>File8</td>
<td>mu.24hr</td>
</tr>
</tbody>
</table>

The targets are RNA samples collected from wild-type and mutant animals at 0, 6 and 24 hour time points. This can be viewed as a factorial experiment but a simpler approach is to use the group-mean parametrization.

```r
lev <- c("wt.0hr","wt.6hr","wt.24hr","mu.0hr","mu.6hr","mu.24hr")
f <- factor(targets$Target, levels=lev)
design <- model.matrix(~0+f)
colnames(design) <- lev
fit <- lmFit(eset, design)
```

Which genes respond at either the 6 hour or 24 hour times in the wild-type? We can find these by extracting the contrasts between the wild-type times.

```r
> cont.wt <- makeContrasts(
+  "wt.6hr-wt.0hr",
+  "wt.24hr-wt.6hr",
+  levels=design)
> fit2 <- contrasts.fit(fit, cont.wt)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
```

Any two contrasts between the three times would give the same result. The same gene list would be obtained had "wt.24hr-wt.0hr" been used in place of "wt.24hr-wt.6hr" for example.

Which genes respond (i.e., change over time) in the mutant?

```r
> cont.mu <- makeContrasts(
+  "mu.6hr-mu.0hr",
+  "mu.24hr-mu.6hr",
+  levels=design)
> fit2 <- contrasts.fit(fit, cont.mu)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
```
Which genes respond \textit{differently} over time in the mutant relative to the wild-type?

```r
> cont.dif <- makeContrasts(
+ Dif6hr = (mu.6hr-mu.0hr)-(wt.6hr-wt.0hr),
+ Dif24hr = (mu.24hr-mu.6hr)-(wt.24hr-wt.6hr),
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.dif)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
```

The method of analysis described in this section was used for a six-point time course experiment on histone deacetylase inhibitors [20].

9.6.2 Many time points

Now we consider an example with many time points for each group. When there are many time points, it is reasonable to assume that expression changes smoothly over time rather than making discrete jumps from one time point to another. This type of time course can be analysed by fitting a temporal trend using a regression spline or a polynomial.

Consider the following targets frame, with 32 rows:

<table>
<thead>
<tr>
<th>FileName</th>
<th>Group</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>Control</td>
<td>1</td>
</tr>
<tr>
<td>File2</td>
<td>Control</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>File16</td>
<td>Control</td>
<td>16</td>
</tr>
<tr>
<td>File17</td>
<td>Treat</td>
<td>1</td>
</tr>
<tr>
<td>File18</td>
<td>Treat</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>File32</td>
<td>Treat</td>
<td>16</td>
</tr>
</tbody>
</table>

It might be reasonable to represent a time course for a particular gene in a particular condition using a cubic spline curve with a modest number of knots. Choosing effective degrees of freedom to be in range 3–5 is reasonable. Setup a basis for a natural regression spline:

```r
> library(splines)
> X <- ns(targets$Time, df=5)
```

Then fit separate curves for the control and treatment groups:

```r
> Group <- factor(targets$Group)
> design <- model.matrix(~Group*X)
> fit <- lmFit(y, design)
> fit <- eBayes(fit)
```

This creates a model with 12 parameters, with the last 5 corresponding to interaction, i.e., to differences in the curves between groups. To detect genes with different time trends for treatment vs control:

```r
> topTable(fit, coef=8:12)
```

This conducts a moderated F-test for each gene on 5 df, which can detect very general differences between the treatment and control curves.

Note that for this analysis, it is not necessary to have replicates, nor is it necessary for the two treatment groups to be observed at identical time points.
9.7 Multi-level Experiments

We have considered paired comparisons, and we have considered comparisons between two independent groups. There are however experiments that combine both of these types of comparisons.

Consider a single-channel experiment with the following targets frame:

<table>
<thead>
<tr>
<th>FileName</th>
<th>Subject</th>
<th>Condition</th>
<th>Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>File01</td>
<td>1</td>
<td>Diseased</td>
<td>A</td>
</tr>
<tr>
<td>File02</td>
<td>1</td>
<td>Diseased</td>
<td>B</td>
</tr>
<tr>
<td>File03</td>
<td>2</td>
<td>Diseased</td>
<td>A</td>
</tr>
<tr>
<td>File04</td>
<td>2</td>
<td>Diseased</td>
<td>B</td>
</tr>
<tr>
<td>File05</td>
<td>3</td>
<td>Diseased</td>
<td>A</td>
</tr>
<tr>
<td>File06</td>
<td>3</td>
<td>Diseased</td>
<td>B</td>
</tr>
<tr>
<td>File07</td>
<td>4</td>
<td>Normal</td>
<td>A</td>
</tr>
<tr>
<td>File08</td>
<td>4</td>
<td>Normal</td>
<td>B</td>
</tr>
<tr>
<td>File09</td>
<td>5</td>
<td>Normal</td>
<td>A</td>
</tr>
<tr>
<td>File10</td>
<td>5</td>
<td>Normal</td>
<td>B</td>
</tr>
<tr>
<td>File11</td>
<td>6</td>
<td>Normal</td>
<td>A</td>
</tr>
<tr>
<td>File12</td>
<td>6</td>
<td>Normal</td>
<td>B</td>
</tr>
</tbody>
</table>

This experiment involves 6 subjects, including 3 patients who have the disease and 3 normal subjects. From each subject, we have expression profiles of two tissue types, A and B.

In analysing this experiment, we want to compare the two tissue types. This comparison can be made within subjects, because each subject yields a value for both tissues. We also want to compare diseased subjects to normal subjects, but this comparison is between subjects.

If we only wanted to compare the two tissue types, we could do a paired samples comparison. If we only wanted to compared diseased to normal, we could do an ordinary two group comparison. Since we need to make comparisons both within and between subjects, it is necessary to treat Patient as a random effect. This can be done in limma using the `duplicateCorrelation` function.

The two experimental factors Condition and Tissue could be handled in many ways. Here we will assume that it is convenient to join the two into a combined factor:

```
> Treat <- factor(paste(targets$Condition,targets$Tissue,sep="."))
> design <- model.matrix(~0+Treat)
> colnames(design) <- levels(Treat)
```

Then we estimate the correlation between measurements made on the same subject:

```
> corfit <- duplicateCorrelation(eset,design,block=targets$Subject)
> corfit$consensus
```

Then this inter-subject correlation is input into the linear model fit:

```
> fit <- lmFit(eset,design,block=targets$Subject,correlation=corfit$consensus)
```

Now we can make any comparisons between the experimental conditions in the usual way, example:

```
> cm <- makeContrasts(
+ DiseasedvsNormalForTissueA = Diseased.A-Normal.A,
+ DiseasedvsNormalForTissueB = Diseased.B-Normal.B,
+ TissueAvsTissueBForNormal = Normal.B-Normal.A,
+ TissueAvsTissueBForDiseased = Diseased.B-Diseased.A,
+ levels=design)
```
Then compute these contrasts and moderated t-tests:

```r
> fit2 <- contrasts.fit(fit, cm)
> fit2 <- eBayes(fit2)

Then

```r
> topTable(fit2, coef="DiseasedvsNormalForTissueA")
```

will find those genes that are differentially expressed between the normal and diseased subjects in the A tissue type. And so on.

This experiment has two levels of variability. First, there is the variation from person to person, which we call the between-subject strata. Then there is the variability of repeat measurements made on the same subject, the within-subject strata. The between-subject variation is always expected to be larger than within-subject, because the latter is adjusted for baseline differences between the subjects. Here the comparison between tissues can be made within subjects, and hence should be more precise than the comparison between diseased and normal, which must be made between subjects.
Chapter 10

Two-Color Experiments with a Common Reference

10.1 Introduction

Now consider two-color microarray experiments in which a common reference has been used on all the arrays. If the same channel has been used for the common reference throughout the experiment, then the expression log-ratios may be analysed exactly as if they were log-expression values from a single channel experiment. In these cases, the design matrix can be formed as for a single channel experiment.

When the common reference is dye-swapped, the simplest method is to setup the design matrix using the `modelMatrix()` function and the targets file.

10.2 Two Groups

Suppose now that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice using arrays hybridized with a common reference RNA (Ref):

<table>
<thead>
<tr>
<th>File</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>Ref</td>
<td>WT</td>
</tr>
<tr>
<td>File2</td>
<td>Ref</td>
<td>WT</td>
</tr>
<tr>
<td>File3</td>
<td>Ref</td>
<td>Mu</td>
</tr>
<tr>
<td>File4</td>
<td>Ref</td>
<td>Mu</td>
</tr>
<tr>
<td>File5</td>
<td>Ref</td>
<td>Mu</td>
</tr>
</tbody>
</table>

The interest here is in the comparison between the mutant and wild type mice. There are two major ways in which this comparison can be made. We can either

1. create a design matrix which includes a coefficient for the mutant vs wild type difference, or

2. create a design matrix which includes separate coefficients for wild type and mutant mice and then extract the difference as a contrast.

For the first approach, the design matrix should be as follows

```
> design
```

52
Here the first coefficient estimates the difference between wild type and the reference for each probe while the second coefficient estimates the difference between mutant and wild type. For those not familiar with model matrices in linear regression, it can be understood in the following way. The matrix indicates which coefficients apply to each array. For the first two arrays the fitted values will be just the WTvsREF coefficient, which is correct. For the remaining arrays the fitted values will be WTvsREF + MUvsWT, which is equivalent to mutant vs reference, also correct. For reasons that will be apparent later, this is sometimes called the treatment-contrasts parametrization. Differentially expressed genes can be found by

```r
> fit <- lmFit(MA, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT", adjust="BH")
```

There is no need here to use `contrasts.fit()` because the comparison of interest is already built into the fitted model. This analysis is analogous to the classical pooled two-sample t-test except that information has been borrowed between genes.

For the second approach, the design matrix should be

```
WT MU
Array1 1 0
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1
```

The first coefficient now represents wild-type vs the reference and the second represents mutant vs the reference. Our comparison of interest is the difference between these two coefficients. We will call this the group-means parametrization. Differentially expressed genes can be found by

```r
> fit <- lmFit(MA, design)
> cont.matrix <- makeContrasts(MUvsWT=MU-WT, levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
```

The results will be exactly the same as for the first approach.

The design matrix can be constructed

1. manually,
2. using the `limma` function `modelMatrix()`, or
3. using the built-in R function `model.matrix()`.

Let `Group` be the factor defined by

```r
> Group <- factor(c("WT","WT","Mu","Mu","Mu"), levels=c("WT","Mu"))
```
For the first approach, the treatment-contrasts parametrization, the design matrix can be computed by

\[
\text{design} \leftarrow \text{cbind}(\text{WTvsRef}=1, \text{MUvsWT}=c(0,0,1,1))
\]
or by

\[
\text{param} \leftarrow \text{cbind}(\text{WTvsRef}=c(-1,1,0), \text{MUvsWT}=c(0,-1,1))
\]
\[
\text{rownames(param)} \leftarrow c(\text{"Ref","WT","Mu"})
\]
\[
\text{design} \leftarrow \text{modelMatrix(targets, parameters=param)}
\]
or by

\[
\text{design} \leftarrow \text{model.matrix}(\text{~Group})
\]
\[
\text{colnames(design)} \leftarrow c(\text{"WTvsRef","MUvsWT"})
\]

all of which produce the same result. For the second approach, the group-means parametrization, the design matrix can be computed by

\[
\text{design} \leftarrow \text{cbind}(\text{WT}=c(1,1,0,0,0), \text{MU}=c(0,0,1,1,1))
\]
or by

\[
\text{param} \leftarrow \text{cbind}(\text{WT}=c(-1,1,0), \text{MU}=c(-1,0,1))
\]
\[
\text{rownames(param)} \leftarrow c(\text{"Ref","WT","Mu"})
\]
\[
\text{design} \leftarrow \text{modelMatrix(targets, parameters=param)}
\]
or by

\[
\text{design} \leftarrow \text{model.matrix}(\text{~0+Group})
\]
\[
\text{colnames(design)} \leftarrow c(\text{"WT","Mu"})
\]

all of which again produce the same result.

### 10.3 Several Groups

The above approaches for two groups extend easily to any number of groups. Suppose that the experiment has been conducted to compare three RNA sources, “RNA1”, “RNA2” and “RNA3”. For example the targets frame might be

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>Ref</td>
<td>RNA1</td>
</tr>
<tr>
<td>File2</td>
<td>RNA1</td>
<td>Ref</td>
</tr>
<tr>
<td>File3</td>
<td>Ref</td>
<td>RNA2</td>
</tr>
<tr>
<td>File4</td>
<td>RNA2</td>
<td>Ref</td>
</tr>
<tr>
<td>File5</td>
<td>Ref</td>
<td>RNA3</td>
</tr>
</tbody>
</table>

For this experiment the design matrix could be formed by

\[
\text{design} \leftarrow \text{modelMatrix(targets, ref="Ref")}
\]

after which the analysis would be exactly as for the equivalent single channel experiment in Section 9.3. For example, to make all pair-wise comparisons between the three groups one could proceed

\[
\text{fit} \leftarrow \text{lmFit(eset, design)}
\]
\[
\text{contrast.matrix} \leftarrow \text{makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1, levels=design)}
\]
\[
\text{fit2} \leftarrow \text{contrasts.fit(fit, contrast.matrix)}
\]
\[
\text{fit2} \leftarrow \text{eBayes(fit2)}
\]

and so on.
Chapter 11

Direct Two-Color Experimental Designs

11.1 Introduction

Direct two-color designs are those in which there is no common reference, but the RNA samples are instead compared directly by competitive hybridization on the same arrays. Direct two-color designs can be very efficient and powerful, but they require the most statistical knowledge to choose the appropriate design matrix.

11.2 Simple Comparisons

11.2.1 Replicate Arrays

The simplest possible microarray experiment is one with a series of replicate two-color arrays all comparing the same two RNA sources. For a three-array experiment comparing wild type (wt) and mutant (mu) RNA, the targets file might contain the following entries:

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt</td>
<td>mu</td>
</tr>
<tr>
<td>File2</td>
<td>wt</td>
<td>mu</td>
</tr>
<tr>
<td>File3</td>
<td>wt</td>
<td>mu</td>
</tr>
</tbody>
</table>

A list of differentially expressed probes might be found for this experiment by

```r
> fit <- lmFit(MA)
> fit <- eBayes(fit)
> topTable(fit)
```

where \( \text{MA} \) holds the normalized data. The default design matrix used here is just a single column of ones. The experiment here measures the fold change of mutant over wild type. Genes which have positive M-values are more highly expressed in the mutant RNA while genes with negative M-values are more highly expressed in the wild type. The analysis is analogous to the classical single-sample \( t \)-test except that we have used empirical Bayes methods to borrow information between genes.
11.2.2 Dye Swaps

A simple modification of the above experiment would be to swap the dyes for one of the arrays. The targets file might now be

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt</td>
<td>mu</td>
</tr>
<tr>
<td>File2</td>
<td>mu</td>
<td>wt</td>
</tr>
<tr>
<td>File3</td>
<td>wt</td>
<td>mu</td>
</tr>
</tbody>
</table>

Now the analysis would be

```r
> design <- c(1, -1, 1)
> fit <- lmFit(MA, design)
> fit <- eBayes(fit)
> topTable(fit)
```

Alternatively the design matrix could be set, replacing the first of the above code lines, by

```r
> design <- modelMatrix(targets, ref="wt")
```

where `targets` is the data frame holding the targets file information.

If there are at least two arrays with each dye-orientation, then it is possible to estimate and adjust for any probe-specific dye effects. The dye-effect is estimated by an intercept term. If the experiment was

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt</td>
<td>mu</td>
</tr>
<tr>
<td>File2</td>
<td>mu</td>
<td>wt</td>
</tr>
<tr>
<td>File3</td>
<td>wt</td>
<td>mu</td>
</tr>
<tr>
<td>File4</td>
<td>mu</td>
<td>wt</td>
</tr>
</tbody>
</table>

then we could set

```r
> design <- cbind(DyeEffect=1, MUvsWT=c(1, -1, 1, -1))
> fit <- lmFit(MA, design)
> fit <- eBayes(fit)
```

The genes which show dye effects can be seen by

```r
> topTable(fit, coef="DyeEffect")
```

The genes which are differentially expressed in the mutant are obtained by

```r
> topTable(fit, coef="MUvsWT")
```

The fold changes and significant tests in this list are corrected for dye-effects. Including the dye-effect in the model in this way uses up one degree of freedom which might otherwise be used to estimate the residual variability, but it is valuable if many genes show non-negligible dye-effects.
11.3 A Correlation Approach to Technical Replication

In the previous sections we have assumed that all arrays are biological replicates. Now consider an experiment in which two wild-type and two mice from the same mutant strain are compared using two arrays for each pair of mice. The targets might be

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt1</td>
<td>mu1</td>
</tr>
<tr>
<td>File2</td>
<td>wt1</td>
<td>mu1</td>
</tr>
<tr>
<td>File3</td>
<td>wt2</td>
<td>mu2</td>
</tr>
<tr>
<td>File4</td>
<td>wt2</td>
<td>mu2</td>
</tr>
</tbody>
</table>

The first and second and third and fourth arrays are *technical replicates*. It would not be correct to treat this experiment as comprising four replicate arrays because the technical replicate pairs are not independent, in fact they are likely to be positively correlated.

One way to analyze these data is the following:

```r
> biolrep <- c(1, 1, 2, 2)
> corfit <- duplicateCorrelation(MA, ndups = 1, block = biolrep)
> fit <- lmFit(MA, block = biolrep, cor = corfit$consensus)
> fit <- eBayes(fit)
> topTable(fit)
```

The vector `biolrep` indicates the two blocks corresponding to biological replicates. The value `corfit$consensus` estimates the average correlation within the blocks and should be positive. This analysis is analogous to *mixed model* analysis of variance [18, Chapter 18] except that information has been borrowed between genes. Information is borrowed by constraining the within-block correlations to be equal between genes and by using empirical Bayes methods to moderate the standard deviations between genes [32].

If the technical replicates were in dye-swap pairs as

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt1</td>
<td>mu1</td>
</tr>
<tr>
<td>File2</td>
<td>mu1</td>
<td>wt1</td>
</tr>
<tr>
<td>File3</td>
<td>wt2</td>
<td>mu2</td>
</tr>
<tr>
<td>File4</td>
<td>mu2</td>
<td>wt2</td>
</tr>
</tbody>
</table>

then one might use

```r
> design <- c(1, -1, 1, -1)
> corfit <- duplicateCorrelation(MA, design, ndups = 1, block = biolrep)
> fit <- lmFit(MA, design, block = biolrep, cor = corfit$consensus)
> fit <- eBayes(fit)
> topTable(fit)
```

In this case the correlation `corfit$consensus` should be negative because the technical replicates are dye-swaps and should vary in opposite directions.

This method of handling technical replication using `duplicateCorrelation()` is somewhat limited for two-color experiments. If for example one technical replicate was dye-swapped and the other not,
then there is no way to use `duplicateCorrelation()` because the technical replicate correlation will be negative for the first pair but positive for the second. In this case, there is no good alternative to treating the technical replicates as if they were biological, so that the experiment would be analysed as a simple comparison with dye-swaps. Beware however that treating technical replicates as biological gives $p$-values that are smaller than they should be.

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt1</td>
<td>mu1</td>
</tr>
<tr>
<td>File2</td>
<td>mu1</td>
<td>wt1</td>
</tr>
<tr>
<td>File3</td>
<td>wt2</td>
<td>mu2</td>
</tr>
<tr>
<td>File4</td>
<td>wt2</td>
<td>mu2</td>
</tr>
</tbody>
</table>
Chapter 12

Separate Channel Analysis of Two-Color Data

Separate channel analysis is a way to analyse two-color data in terms of the individual channel intensities [36]. In effect, separate channel analysis converts a two-color experiment into a single channel experiment with twice as many arrays but with a technical pairing between the two channels that originated from the same array.

Consider an experiment comparing young and old animals for both wild-type and mutant genotypes.

<table>
<thead>
<tr>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>File1</td>
<td>wt.young</td>
<td>wt.old</td>
</tr>
<tr>
<td>File2</td>
<td>wt.old</td>
<td>wt.young</td>
</tr>
<tr>
<td>File3</td>
<td>mu.young</td>
<td>mu.old</td>
</tr>
<tr>
<td>File4</td>
<td>mu.old</td>
<td>mu.young</td>
</tr>
</tbody>
</table>

Each of the arrays in this experiment makes a direct comparison between young and old RNA targets. There are no arrays which compare wild-type and mutant animals. This is an example of an unconnected design in that there are no arrays linking the wild-type and mutant targets. It is not possible to make comparisons between wild-type and mutant animals on the basis of log-ratios alone. So to do this it is necessary to analyze the red and green channels intensities separately, i.e., to analyze log-intensities instead of log-ratios. It is possible to do this using a mixed model representation which treats each spot as a randomized block [40, 36]. Limma implements mixed model methods for separate channel analysis which make use of shrinkage methods to ensure stable and reliable inference with small numbers of arrays [36]. Limma also provides between-array normalization to prepare for separate channel analysis, for example

> MA <- normalizeBetweenArrays(MA, method="Aquantile")

scales the intensities so that A-values have the same distribution across arrays.

The first step in the differential expression analysis is to convert the targets frame to be channel rather than array orientated.

> targets2 <- targetsA2C(targets)
> targets2
The following code produces a design matrix with eight rows and four columns:

```r
> u <- unique(targets2$Target)
> f <- factor(targets2$Target, levels=u)
> design <- model.matrix(~0+f)
> colnames(design) <- u
```

Inference proceeds as for within-array replicate spots except that the correlation to be estimated is that between the two channels for the same spot rather than between replicate spots.

```r
> corfit <- intraspotCorrelation(MA, design)
> fit <- lmscFit(MA, design, correlation=corfit$consensus)
```

Subsequent steps proceed as for log-ratio analyses. For example if we want to compare wild-type young to mutant young animals, we could extract this contrast by

```r
> cont.matrix <- makeContrasts("mu.young-wt.young",levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2)
```
13.1 Summary Top-Tables

Limma provides functions topTable() and decideTests() which summarize the results of the linear model, perform hypothesis tests and adjust the $p$-values for multiple testing. Results include (log2) fold changes, standard errors, $t$-statistics and $p$-values. The basic statistic used for significance analysis is the moderated $t$-statistic, which is computed for each probe and for each contrast. This has the same interpretation as an ordinary $t$-statistic except that the standard errors have been moderated across genes, i.e., squeezed towards a common value, using a simple Bayesian model. This has the effect of borrowing information from the ensemble of genes to aid with inference about each individual gene [35, 21]. Moderated $t$-statistics lead to $p$-values in the same way that ordinary $t$-statistics do except that the degrees of freedom are increased, reflecting the greater reliability associated with the smoothed standard errors. The effectiveness of the moderated $t$ approach has been demonstrated on test data sets for which the differential expression status of each probe is known [11].

A number of summary statistics are presented by topTable() for the top genes and the selected contrast. The logFC column gives the value of the contrast. Usually this represents a log2-fold change between two or more experimental conditions although sometimes it represents a log2-expression level. The AveExpr column gives the average log2-expression level for that gene across all the arrays and channels in the experiment. Column $t$ is the moderated $t$-statistic. Column $P$.Value is the associated $p$-value and adj.P.Value is the $p$-value adjusted for multiple testing. The most popular form of adjustment is "BH" which is Benjamini and Hochberg’s method to control the false discovery rate [1]. The adjusted values are often called $q$-values if the intention is to control or estimate the false discovery rate. The meaning of "BH" $q$-values is as follows. If all genes with $q$-value below a threshold, say 0.05, are selected as differentially expressed, then the expected proportion of false discoveries in the selected group is controlled to be less than the threshold value, in this case 5%. This procedure is equivalent to the procedure of Benjamini and Hochberg although the original paper did not formulate the method in terms of adjusted $p$-values.

The $B$-statistic (1ods or b) is the log-odds that the gene is differentially expressed [35, Section 5]. Suppose for example that $B = 1.5$. The odds of differential expression is $\exp(1.5)=4.48$, i.e., about four and a half to one. The probability that the gene is differentially expressed is $4.48/(1+4.48)=0.82$, i.e., the probability is about 82% that this gene is differentially expressed. A $B$-statistic of zero corresponds to a 50-50 chance that the gene is differentially expressed. The $B$-statistic is automatically adjusted for multiple testing by assuming that 1% of the genes, or some other percentage specified...
by the user in the call to \texttt{eBayes()}, are expected to be differentially expressed. The \( p \)-values and \( B \)-statistics will normally rank genes in the same order. In fact, if the data contains no missing values or quality weights, then the order will be precisely the same.

As with all model-based methods, the \( p \)-values depend on normality and other mathematical assumptions which are never exactly true for microarray data. It has been argued that the \( p \)-values are useful for ranking genes even in the presence of large deviations from the assumptions [34, 32]. Benjamini and Hochberg’s control of the false discovery rate assumes independence between genes, although Reiner et al [24] have argued that it works for many forms of dependence as well. The \( B \)-statistic probabilities depend on the same assumptions but require in addition a prior guess for the proportion of differentially expressed probes. The \( p \)-values may be preferred to the \( B \)-statistics because they do not require this prior knowledge.

The \texttt{eBayes()} function computes one more useful statistic. The moderated \( F \)-statistic (\( F \)) combines the \( t \)-statistics for all the contrasts into an overall test of significance for that gene. The \( F \)-statistic tests whether any of the contrasts are non-zero for that gene, i.e., whether that gene is differentially expressed on any contrast. The denominator degrees of freedom is the same as that of the moderated-\( t \). Its \( p \)-value is stored as \texttt{fit$F.p.value}. It is similar to the ordinary \( F \)-statistic from analysis of variance except that the denominator mean squares are moderated across genes.

A frequently asked question relates to the occasional occurrence that all of the adjusted \( p \)-values are equal to 1. This is not an error situation but rather an indication that there is no evidence of differential expression in the data after adjusting for multiple testing. This can occur even though many of the raw \( p \)-values may seem highly significant when taken as individual values. This situation typically occurs when none of the raw \( p \)-values are less than \( 1/G \), where \( G \) is the number of probes included in the fit. In that case the adjusted \( p \)-values are typically equal to 1 using any of the adjustment methods except for \texttt{adjust="none"}.

### 13.2 Fitted Model Objects

The output from \texttt{lmFit()} is an object of class \texttt{MArrayLM}. This section gives some mathematical details describing what is contained in such objects. This section can be skipped by readers not interested in such details.

The linear model for gene \( g \) has residual variance \( \sigma_g^2 \) with sample value \( s_g^2 \) and degrees of freedom \( d_g \). The output from \texttt{lmFit()}, \texttt{fit} say, holds the \( s_g \) in component \texttt{fit$sigma} and the \( d_g \) in \texttt{fit$df.residual}. The covariance matrix of the estimated \( \beta_g \) is \( \sigma_g^2 C^T (X^TV_gX)^{-1}C \) where \( X \) is the design matrix and \( C \) is the contrast matrix and \( V_g \) is a weight matrix. The weight matrix is determined by precision weights specified by the user, any covariance terms introduced by correlation structure and any working weights introduced by robust estimation. The square-roots of the diagonal elements of \( C^T (X^TV_gX)^{-1}C \) are called unscaled standard deviations and are stored in \texttt{fit$stdev.unscaled}. The ordinary \( t \)-statistic for the \( k \)th contrast for gene \( g \) is \( t_{gk} = \hat{\beta}_{gk}/(u_{gks_j}) \) where \( u_{gk} \) is the unscaled standard deviation. The ordinary \( t \)-statistics could be recovered by

\[
> \text{tstat.ord} \leftarrow \text{fit$coef} / \text{fit$stdev.unscaled} / \text{fit$sigma}
\]

after fitting a linear model, although the moderated versions are always recommended.

The empirical Bayes method assumes a scaled chisquare prior distribution for \( 1/\sigma_g^2 \) with mean \( 1/s_0^2 \) and degrees of freedom \( d_0 \). The posterior values for the residual variances are given by

\[
s_g^2 = \frac{d_0 s_0^2 + d_g s_g^2}{d_0 + d_g}
\]

62
where \( d_g \) is the residual degrees of freedom for the \( g \)th gene. Mathematically, \( 1/\tilde{s}_g^2 \) is derived as the posterior mean of \( 1/\sigma_g^2 \) conditional on \( s_g^2 \) [35, 21]. The output from `eBayes()` contains \( s_0^2 \) and \( d_0 \) as `fit$s2.prior` and `fit$df.prior` and the \( \tilde{s}_j^2 \) as `fit$s2.post`. If robust empirical Bayes is used [21], then `fit$s2.post` is a vector, otherwise it is a single value.

The moderated \( t \)-statistic is

\[
\tilde{t}_{gk} = \frac{\hat{\beta}_{gk}}{u_{gk} \tilde{s}_g},
\]

which can be shown to follow a \( t \)-distribution on \( d_0 + d_g \) degrees of freedom if \( \beta_{gk} = 0 \) [35]. By comparison, an ordinary \( t \)-statistic would have only \( d_g \) degrees of freedom. The prior degrees of freedom \( d_0 \) represent the extra information that is borrowed from the ensemble of genes for inference about each individual gene. The output from `eBayes()` contains the \( \tilde{t}_{gk} \) as `fit$t` with corresponding unadjusted \( p \)-values in `fit$p.value`.

### 13.3 Multiple Testing Across Contrasts

The output from `topTable` includes adjusted \( p \)-values, i.e., it performs multiple testing for the contrast being considered. If several contrasts are being tested simultaneously, then the issue arises of multiple testing for the entire set of hypotheses being considered, across contrasts as well as probes. The function `decideTests()` offers a number of strategies for doing this.

The simplest multiple testing method is `method="separate"`. This method does multiple testing for each contrast separately. This method is the default because it is equivalent to using `topTable()`.

Using this method, testing a set of contrasts together will give the same results as when each contrast is tested on its own. The great advantage of this method is that it gives the same results regardless of which set of contrasts are tested together. The disadvantage of this method is that it does not do any multiple testing adjustment between contrasts. Another disadvantage is that the raw \( p \)-value cutoff corresponding to significance can be very different for different contrasts, depending on the number of DE probes. This method is recommended when different contrasts are being analysed to answer more or less independent questions.

`method="global"` is recommended when a set of closely related contrasts are being tested. This method simply appends all the tests together into one long vector of tests, i.e., it treats all the tests as equivalent regardless of which probe or contrast they relate to. An advantage is that the raw \( p \)-value cutoff is consistent across all contrasts. For this reason, `method="global"` is recommended if you want to compare the number of DE genes found for different contrasts, for example interpreting the number of DE genes as representing the strength of the contrast. However users need to be aware that the number of DE genes for any particular contrasts will depend on which other contrasts are tested at the same time. Hence one should include only those contrasts which are closely related to the question at hand. Unnecessary contrasts should be excluded as these would affect the results for the contrasts of interest. Another more theoretical issue is that there is no theorem which proves that `adjust.method="BH"` in combination with `method="global"` will correctly control the false discovery rate for combinations of negatively correlated contrasts, however simulations, experience and some theory suggest that the method is safe in practice.

The "hierarchical" method offers power advantages when used with `adjust.method="holm"` to control the family-wise error rate. However its properties are not yet well understood with `adjust="BH"`.

`method="nestedF"` has a more specialized aim to give greater weight to probes that are significance for two or more contrasts. Most multiple testing methods tend to underestimate the number of such
probes. There is some practical experience to suggest that method="nestedF" gives less conservative results when finding probes which respond to several different contrasts at once. However this method should still be viewed as experimental. It provides formal false discovery rate control at the probe level only, not at the contrast level.
Chapter 14

Array Quality Weights

14.1 Introduction

Given an appropriate design matrix, the relative reliability of each array in an experiment can be estimated by measuring how well the expression values for that array follow the linear model. This empirical approach of assessing array quality can be applied to both two-color and single-channel microarray data and is described in [25].

The method is implemented in the arrayWeights function, which fits a heteroscedastic model to the expression values for each gene by calling the function lm.wfit. (See also arrayWeightsSimple which does the same calculation more quickly when there are no probe-level quality weights.) The dispersion model is fitted to the squared residuals from the mean fit, and is set up to have array specific coefficients, which are updated in either full REML scoring iterations, or using an efficient gene-by-gene update algorithm. The final estimates of these array variances are converted to weights which can be used in lmFit. This method offers a graduated approach to quality assessment by allowing poorer quality arrays, which would otherwise be discarded, to be included in an analysis but down-weighted.

14.2 Example 1

We consider the array quality weights applied to the spike-in controls from a quality control data set courtesy of Andrew Holloway, Ryan van Laar and Dileepa Diyagama from the Peter MacCallum Cancer Centre in Melbourne. This collection of arrays (described in [25]) consists of 100 replicate hybridizations and we will use data from the first 20 arrays. The object MAlms stores the loess normalized data for the 120 spike-in control probes on each array. Since these arrays are replicate hybridizations, the default design matrix of a single column of ones is used.

> arrayw <- arrayWeights(MAlms)
> barplot(arrayw, xlab="Array", ylab="Weight", col="white", las=2)
> abline(h=1, lwd=1, lty=2)
The empirical array weights vary from a minimum of 0.16 for array 19 to a maximum of 2.31 for
array 8. These weights can be used in the linear model analysis.

```r
> fitw <- lmFit(MAlms, weights=arrayw)
> fitw <- eBayes(fitw)
```

In this example the ratio control spots should show three-fold or ten-fold changes while the
dynamic range spots should not be differentially expressed. To compare the moderated t-statistics
before and after applying array weights, use the following:

```r
> fit <- lmFit(MAlms)
> fit <- eBayes(fit)
> boxplot(fit$t~MAlms$genes$Status, at=1:5-0.2, col=5, boxwex=0.4, xlab="control type",
+ ylab="moderated t-statistics", pch=".", ylim=-70:70, medlwd=1)
> boxplot(fitw$t~MAlms$genes$Status, at=1:5+0.2, col=6, boxwex=0.4,
+ add=TRUE, yaxt="n", xaxt="n", medlwd=1, pch=".")
> abline(h=0, col="black", lty=2, lwd=1)
> legend(0.5, 70, legend=c("Equal weights", "Array weights"), fill=c(5,6), cex=0.8)
```
The boxplots show that the $t$-statistics for all classes of ratio controls (D03, D10, U03 and U10) move further from zero when array weights are used while the distribution of $t$-statistics for the dynamic range controls (DR) does not noticeably change. This demonstrates that the array quality weights increase statistical power to detect true differential expression without increasing the false discovery rate.

The same heteroscedastic model can also be fitted at the print-tip group level using the `printtipWeights` function. If there are $p$ print-tip groups across $n$ arrays, the model fitting procedure described in [25] is repeated $p$ times to produce a weight for each print-tip group on each array for use in `lmFit`. This method can be applied to two-color microarray data where the probes are organized into print-tip groups whose size is specified by the printer component of the `MAList`.

### 14.3 Example 2

Below is an example of applying this method to the Apoa1 data.

```r
> ptw <- printtipWeights(MA, design, layout=MA$printer)
> zlim <- c(min(ptw), max(ptw))
> par(mfrow=c(3,2))
> for(i in seq(7,12,by=1))
+ imageplot(ptw[,i], layout=MA$printer, zlim=zlim, main=colnames(MA)[i])
```
Image plots of the print-tip weights for arrays 7 through to 12 are shown above, with lighter shades indicating print-tip groups which have been assigned lower weights. A corner of array 9 (a1kok1) is measured to be less reproducible than the same region on other arrays, which may be indicative of a spatial artefact. Using these weights in the linear model analysis increases the $t$-statistics of the top ranking genes compared to an analysis without weights (compare the results table below with the table in section 16.2).

```r
> fitptw <- lmFit(MA, design, weights=ptw)
> fitptw <- eBayes(fitptw)
> options(digits=3)
> topTable(fitptw,coef=2,number=15,genelist=fitptw$genes$NAME)
```

<table>
<thead>
<tr>
<th>ID</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149 ApoAI,lipid-Img</td>
<td>-3.151</td>
<td>12.47</td>
<td>-25.64</td>
<td>1.21e-15</td>
<td>7.73e-12</td>
<td>16.4206</td>
</tr>
<tr>
<td>540 EST,HighlysimilartoA</td>
<td>-2.918</td>
<td>12.28</td>
<td>-14.49</td>
<td>2.22e-11</td>
<td>7.09e-08</td>
<td>12.4699</td>
</tr>
<tr>
<td>5356 CATECHOLO-METHYLTRAN</td>
<td>-1.873</td>
<td>12.93</td>
<td>-13.16</td>
<td>1.10e-10</td>
<td>2.34e-07</td>
<td>11.5734</td>
</tr>
<tr>
<td>4139 EST,WeaklysimilartoC</td>
<td>-0.981</td>
<td>12.61</td>
<td>-9.92</td>
<td>9.85e-09</td>
<td>1.05e-05</td>
<td>8.6905</td>
</tr>
<tr>
<td>1739 ApoCIII,lipid-Img</td>
<td>-0.933</td>
<td>13.74</td>
<td>-10.58</td>
<td>3.66e-09</td>
<td>4.67e-06</td>
<td>9.4155</td>
</tr>
<tr>
<td>1496 est</td>
<td>-0.949</td>
<td>12.23</td>
<td>-9.92</td>
<td>1.05e-05</td>
<td>8.6905</td>
<td></td>
</tr>
<tr>
<td>2537 ESTs,HighlysimilartoF</td>
<td>-1.011</td>
<td>13.63</td>
<td>-9.56</td>
<td>1.60e-05</td>
<td>8.2587</td>
<td></td>
</tr>
<tr>
<td>4941 similartoyeaststerol</td>
<td>-0.873</td>
<td>13.29</td>
<td>-6.88</td>
<td>1.54e-03</td>
<td>4.6875</td>
<td></td>
</tr>
<tr>
<td>947 EST,WeaklysimilartoF</td>
<td>-0.566</td>
<td>10.54</td>
<td>-5.08</td>
<td>5.52e-02</td>
<td>1.6112</td>
<td></td>
</tr>
<tr>
<td>2812 5'similarartPIA:S5501</td>
<td>-0.514</td>
<td>11.65</td>
<td>-4.30</td>
<td>2.75e-01</td>
<td>0.1242</td>
<td></td>
</tr>
<tr>
<td>6073 estrogenrec</td>
<td>0.412</td>
<td>9.79</td>
<td>4.21</td>
<td>5.27e-04</td>
<td>3.06e-01</td>
<td></td>
</tr>
<tr>
<td>1347 Musmusculustranscrip</td>
<td>-0.514</td>
<td>10.18</td>
<td>-4.07</td>
<td>3.47e-01</td>
<td>-0.3106</td>
<td></td>
</tr>
</tbody>
</table>
For example, the moderated $t$-statistic of the top ranked gene, Apoa1, which has been knocked-out in this experiment, increases in absolute terms from -23.98 when equal weights are used to -25.64 with print-tip weights. The $t$-statistic of the related gene ApoCIII also increases in absolute value (moderated $t$-statistic of -9.83 before weighting and -10.58 after). This analysis provides a further example that a graduated approach to quality control can improve power to detect differentially expressed genes.

14.4 When to Use Array Weights

Array weights are generally useful when there is some reason to expect variable array quality. For example, RNA samples from human clinical patients are typically variable in quality, so array weights might be used routinely with human in vivo data, see for example Ellis et al [8]. If array quality plots suggest a problem, then array weights are indicated. If RNA is plentiful, e.g., from cell lines or model organisms, and quality plots of the arrays don’t suggest problems, then array weights are usually not needed.

In gross cases where an array is clearly bad or wrong, it should be removed, rather than down-weighted. However this action should be reserved for extreme cases.

If most genes are not differentially expressed, then the design matrix for arrayWeights does not need to be as complex as for the final linear model. For example, in a two-group comparison with just 2 replicates in each group, the array weights should be estimated with the default (intercept) design matrix, otherwise each array is compared only to its partner rather than to the other 3 arrays.
Chapter 15

RNA-Seq Data

15.1 Introduction

The limma approach to RNA-seq explained in the articles by Law et al [13] and Liu et al [17]. See also the article by Law et al [12], which gives a complete workflow case study. In the limma approach to RNA-seq, read counts are converted to log2-counts-per-million (logCPM) and the mean-variance relationship is modeled either with precision weights or with an empirical Bayes prior trend. The precision weights approach is called “voom” and the prior trend approach is called “limma-trend” [13]. In either case, the RNA-seq data can be analyzed as if it was microarray data. This means that any of the linear modeling or gene set testing methods in the limma package can be applied to RNA-seq data.

15.2 Making a count matrix

RNA-seq data usually arrives in the form of FastQ or BAM files of unaligned reads. The reads need to be mapped to a reference genome or transcriptome, then summarized at the exon or gene level to produce a matrix of counts. We find the Rsubread package [15] to be convenient, fast and effective for this purpose. Other popular methods include RSEM [14] and HTseq. A runnable example with complete code showing how to use Rsubread with limma is provided at https://subread.sourceforge.net/RNAseqCaseStudy.html. Another complete code example is provided by Chen et al [5].

15.3 Normalization and filtering

Once a matrix of read counts has been created, with rows for genes and columns for samples, it is convenient to create a DGEList object using the edgeR package:

```r
> dge <- DGEList(counts=counts)
```

The next step is to remove rows that consistently have zero or very low counts. One can for example use

```r
> keep <- filterByExpr(dge, design)
> dge <- dge[keep,,keep.lib.sizes=FALSE]
```
where `filterByExpr` is a function in the edgeR package. Here we will assume that filtering has been done.

It is usual to apply scale normalization to RNA-seq read counts, and the TMM normalization method [28] in particular has been found to perform well in comparative studies. This can be applied to the `DGEList` object:

```r
> dge <- calcNormFactors(dge)
```

### 15.4 Differential expression: limma-trend

If the sequencing depth is reasonably consistent across the RNA samples, then the simplest and most robust approach to differential exis to use limma-trend. This approach will usually work well if the ratio of the largest library size to the smallest is not more than about 3-fold.

In the limma-trend approach, the counts are converted to logCPM values using edgeR’s `cpm` function:

```r
> logCPM <- cpm(dge, log=TRUE, prior.count=3)
```

The prior count is used here to damp down the variances of logarithms of low counts.

The logCPM values can then be used in any standard limma pipeline, using the `trend=TRUE` argument when running `eBayes` or `treat`. For example:

```r
> fit <- lmFit(logCPM, design)
> fit <- eBayes(fit, trend=TRUE)
> topTable(fit, coef=ncol(design))
```

Or, to give more weight to fold-changes in the gene ranking, one might use:

```r
> fit <- lmFit(logCPM, design)
> fit <- treat(fit, lfc=log2(1.2), trend=TRUE)
> topTreat(fit, coef=ncol(design))
```

### 15.5 Differential expression: voom

When the library sizes are quite variable between samples, then the voom approach is theoretically more powerful than limma-trend. In this approach, the voom transformation is applied to the normalized and filtered `DGEList` object:

```r
v <- voom(dge, design, plot=TRUE)
```

The voom transformation uses the experiment design matrix, and produces an `EList` object.

It is also possible to give a matrix of counts directly to voom without TMM normalization, by

```r
> v <- voom(counts, design, plot=TRUE)
```

If the data are very noisy, one can apply the same between-array normalization methods as would be used for microarrays, for example:

```r
> v <- voom(counts, design, plot=TRUE, normalize="quantile")
```

After this, the usual limma pipelines for differential expression can be applied, for example:
> fit <- lmFit(v, design)
> fit <- eBayes(fit)
> topTable(fit, coef=ncol(design))

Or, to give more weight to fold-changes in the ranking, one could use say:

> fit <- treat(fit, lfc=log2(1.2))
> topTreat(fit, coef=ncol(design))

### 15.6 Voom with sample quality weights

When a multi-dimensional scaling plot from a designed RNA-seq experiment indicates the presence of outlier samples, it is possible to combine the observation-level weighting strategy used in voom with sample-specific quality weights (as described in the section above on Array Quality Weights) to down-weight outlier samples. This capability is implemented in the `voomWithQualityWeights` function.

The example below shows its use on an RNA-seq data set where the epigenetic regulator *Smchd1* has been knocked-out in lymphoma cell-lines (GEO series GSE64099) [17]. Overall we obtain more differential expression by applying this combined weighting strategy and the raw p-value and false discovery rate for the *Smchd1* gene, which has been knocked out, is smaller.

```r
> plotMDS(x, labels=1:7, col=as.numeric(genotype), main="MDS plot")
> legend("topright", legend=c("WT", "KO"), col=1:2, pch=15)
```

![MDS plot](image)

> # Analysis with voom only
> des[1:7,]
(Intercept) Smchd1nullvsWt
1 1 1
2 1 1
3 1 1
4 1 1
5 1 0

72
> v <- voom(x, design=des)
> plotMDS(v, labels=1:7, col=as.numeric(genotype))
> vfit <- lmFit(v)
> vfit <- eBayes(vfit)
> options(digits=3)
> topTable(vfit, coef=2, sort.by="P")

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Symbols</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>74355</td>
<td>74355</td>
<td>Smchd1</td>
<td>-3.12</td>
<td>6.067</td>
<td>-23.35</td>
<td>2.16e-08</td>
<td>9.97</td>
</tr>
<tr>
<td>18028</td>
<td>18028</td>
<td>Nfib</td>
<td>8.98</td>
<td>1.714</td>
<td>12.60</td>
<td>2.17e-06</td>
<td>3.15</td>
</tr>
<tr>
<td>75605</td>
<td>75605</td>
<td>Kdm5b</td>
<td>-3.55</td>
<td>3.618</td>
<td>-11.75</td>
<td>3.62e-06</td>
<td>5.06</td>
</tr>
<tr>
<td>667435</td>
<td>667435</td>
<td>Igkv17-121</td>
<td>-5.35</td>
<td>-1.435</td>
<td>-10.22</td>
<td>9.95e-06</td>
<td>2.57</td>
</tr>
<tr>
<td>381126</td>
<td>381126</td>
<td>Garem</td>
<td>6.17</td>
<td>0.113</td>
<td>10.08</td>
<td>1.10e-05</td>
<td>3.39</td>
</tr>
<tr>
<td>75033</td>
<td>75033</td>
<td>Mei4</td>
<td>6.44</td>
<td>0.259</td>
<td>9.69</td>
<td>1.45e-05</td>
<td>2.23</td>
</tr>
<tr>
<td>69136</td>
<td>69136</td>
<td>Tuscl</td>
<td>5.67</td>
<td>-0.184</td>
<td>8.90</td>
<td>2.67e-05</td>
<td>1.87</td>
</tr>
<tr>
<td>233552</td>
<td>233552</td>
<td>Gdpd5</td>
<td>-2.82</td>
<td>1.948</td>
<td>-8.56</td>
<td>3.49e-05</td>
<td>2.81</td>
</tr>
<tr>
<td>80890</td>
<td>80890</td>
<td>Trim2</td>
<td>-1.43</td>
<td>4.491</td>
<td>-8.40</td>
<td>4.00e-05</td>
<td>2.72</td>
</tr>
</tbody>
</table>

> top <- topTable(vfit, coef=2, number=Inf, sort.by="P")
> sum(top$adj.P.Val<0.05)
[1] 12

> # Analysis with combined voom and sample quality weights
> vwts <- voomWithQualityWeights(x, design=des, normalization="none", plot=TRUE)
> vfit2 <- lmFit(vwts)
> vfit2 <- eBayes(vfit2)
> topTable(vfit2, coef=2, sort.by="P")

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Symbols</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>74355</td>
<td>74355</td>
<td>Smchd1</td>
<td>-3.17</td>
<td>6.067</td>
<td>-28.5</td>
<td>1.98e-05</td>
<td>12.57</td>
</tr>
<tr>
<td>18028</td>
<td>18028</td>
<td>Nfib</td>
<td>9.23</td>
<td>1.714</td>
<td>19.0</td>
<td>4.44e-08</td>
<td>6.91</td>
</tr>
<tr>
<td>381126</td>
<td>381126</td>
<td>Garem</td>
<td>6.45</td>
<td>0.113</td>
<td>15.9</td>
<td>1.85e-07</td>
<td>6.02</td>
</tr>
<tr>
<td>75033</td>
<td>75033</td>
<td>Mei4</td>
<td>6.56</td>
<td>0.259</td>
<td>15.0</td>
<td>2.84e-07</td>
<td>5.83</td>
</tr>
<tr>
<td>69136</td>
<td>69136</td>
<td>Tuscl</td>
<td>5.88</td>
<td>-0.184</td>
<td>13.6</td>
<td>6.16e-07</td>
<td>5.31</td>
</tr>
<tr>
<td>54354</td>
<td>54354</td>
<td>Rassf5</td>
<td>5.74</td>
<td>4.554</td>
<td>13.6</td>
<td>6.26e-07</td>
<td>6.63</td>
</tr>
<tr>
<td>75605</td>
<td>75605</td>
<td>Kdm5b</td>
<td>-3.80</td>
<td>3.618</td>
<td>-13.5</td>
<td>6.53e-07</td>
<td>6.67</td>
</tr>
<tr>
<td>58998</td>
<td>58998</td>
<td>Prr13</td>
<td>7.69</td>
<td>0.961</td>
<td>13.1</td>
<td>8.46e-07</td>
<td>5.33</td>
</tr>
<tr>
<td>320398</td>
<td>320398</td>
<td>Lrig3</td>
<td>7.39</td>
<td>1.584</td>
<td>13.1</td>
<td>8.49e-07</td>
<td>5.32</td>
</tr>
<tr>
<td>17069</td>
<td>17069</td>
<td>Ly6e</td>
<td>2.63</td>
<td>7.605</td>
<td>13.0</td>
<td>9.01e-07</td>
<td>6.26</td>
</tr>
</tbody>
</table>

> top2 <- topTable(vfit2, coef=2, number=Inf, sort.by="P")
> sum(top2$adj.P.Val<0.05)
[1] 1478
15.7 Differential splicing

limma can also detect genes that show evidence of differential splicing between conditions. One can test for differential splicing associated with any contrast for a linear model.

In this case, the matrix of counts should be at the exon level, with a row for each exon. For example,

```r
> dge <- DGEList(counts=counts)
> dge$genes$GeneID <- GeneID
```

where `counts` is a matrix of exon-level counts, and `GeneID` identifies which gene each exon belongs to. Then filter and normalize:

```r
> A <- rowSums(dge$counts)
> dge <- dge[A>10,, keep.lib.sizes=FALSE]
> dge <- calcNormFactors(dge)
```

Then apply the voom transformation and fit a linear model:

```r
> v <- voom(dge, design, plot=TRUE)
> fit <- lmFit(v, design)
```

Now we can test for differential splicing associated with any coefficient in the linear model. First run the `diffSplice` function:

```r
> ex <- diffSplice(fit, geneid="GeneID")
```

Then

```r
> topSplice(ex, coef=2, test="simes")
```

will find genes that show evidence of differential splicing associated with the second coefficient in the linear model. The output is similar that from the limma `topTable` function. More detail can be obtained by
> topSplice(ex, coef=2, test="t")

which will show individual exons that are enriched or depleted relative to other exons in the same
gene. To display the pattern of exons in the top genes:

> plotSplice(ex)
Chapter 16

Two-Color Case Studies

16.1 Swirl Zebrafish: A Single-Group Experiment

In this section we consider a case study in which two RNA sources are compared directly on a set of replicate or dye-swap arrays. The case study includes reading in the data, data display and exploration, as well as normalization and differential expression analysis. The analysis of differential expression is analogous to a classical one-sample test of location for each gene.

In this example we assume that the data is provided as a GAL file called fish.gal and raw SPOT output files and that these files are in the current working directory. The data used for this case study can be downloaded from https://bioinf.wehi.edu.au/limmaGUI/DataSets.html.

> dir()
[1] "fish.gal"   "swirl.1.spot"  "swirl.2.spot"  "swirl.3.spot"  "swirl.4.spot"
[6] "SwirlSample.txt"

**Background.** The experiment was carried out using zebrafish as a model organism to study the early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral body axis. The main goal of the Swirl experiment is to identify genes with altered expression in the Swirl mutant compared to wild-type zebrafish.

**The hybridizations.** Two sets of dye-swap experiments were performed making a total of four replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA from normal ("wild type") fish. The experimenters have prepared a tab-delimited targets file called SwirlSamples.txt which describes the four hybridizations:

> library(limma)
> targets <- readTargets("SwirlSample.txt")
> targets

<table>
<thead>
<tr>
<th>SlideNumber</th>
<th>FileName</th>
<th>Cy3</th>
<th>Cy5</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>swirl.1.spot</td>
<td>swirl</td>
<td>wild</td>
<td>type 2001/9/20</td>
</tr>
<tr>
<td>2</td>
<td>swirl.2.spot</td>
<td>wild</td>
<td>swirl</td>
<td>type 2001/9/20</td>
</tr>
<tr>
<td>3</td>
<td>swirl.3.spot</td>
<td>swirl</td>
<td>wild</td>
<td>type 2001/11/8</td>
</tr>
<tr>
<td>4</td>
<td>swirl.4.spot</td>
<td>wild</td>
<td>swirl</td>
<td>type 2001/11/8</td>
</tr>
</tbody>
</table>

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 93, swirl RNA was labeled with green (Cy3) dye and wild type RNA was labeled with red (Cy5) dye. On slides 82 and 94, the labelling was the other way around.
Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image, which was then processed using the image analysis software SPOT. The data from the arrays are stored in the four output files listed under FileName. Now we read the intensity data into an RGList object in R. The default for SPOT output is that Rmean and Gmean are used as foreground intensities and morphR and morphG are used as background intensities:

> RG <- read.maimages(targets, source="spot")
Read swirl.1.spot
Read swirl.2.spot
Read swirl.3.spot
Read swirl.4.spot
> RG
An object of class "RGList"

$R
swirl.1 swirl.2 swirl.3 swirl.4
[1,] 19538.470 16138.720 2895.1600 14054.5400
[2,] 23619.820 17247.670 2976.6230 20112.2600
[3,] 21579.950 17317.150 2735.6190 12945.8500
[4,] 8905.143 6794.381 318.9524 524.0476
[5,] 8676.095 6043.542 780.6667 304.6190
8443 more rows ...

$G
swirl.1 swirl.2 swirl.3 swirl.4
[1,] 22028.260 19278.770 2727.5600 19930.6500
[2,] 25613.200 21438.960 2419.8810 16225.3500
[3,] 22652.390 20386.470 2419.8810 16225.3500
[4,] 8929.286 6677.619 318.9524 524.0476
[5,] 8746.476 6576.292 780.6667 304.6190
8443 more rows ...

$Rb
swirl.1 swirl.2 swirl.3 swirl.4
[1,] 174 136 82 48
[2,] 174 133 82 48
[3,] 174 133 76 48
[4,] 163 105 61 48
[5,] 140 105 61 49
8443 more rows ...

$Gb
swirl.1 swirl.2 swirl.3 swirl.4
[1,] 182 175 86 97
[2,] 171 183 86 85
[3,] 153 183 86 85
[4,] 153 142 71 87
[5,] 153 142 71 87
8443 more rows ...

$targets
SlideNumber FileName Cy3 Cy5 Date
1 81 swirl.1.spot swirl wild type 2001/9/20
2 82 swirl.2.spot wild type swirl 2001/9/20
3 93 swirl.3.spot swirl wild type 2001/11/8
4 94 swirl.4.spot wild type swirl 2001/11/8

77
The arrays. The microarrays used in this experiment were printed with 8448 probes (spots), including 768 control spots. The array printer uses a print head with a 4x4 arrangement of print-tips and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 22x24 spots that were printed with a single print-tip.

Unlike most image analysis software, SPOT does not store probe annotation in the output files, so we have to read it separately. The gene name associated with each spot is recorded in a GenePix array list (GAL) file:

```r
> RG$genes <- readGAL("fish.gal")
> RG$genes[1:30,]
```

<table>
<thead>
<tr>
<th>Block</th>
<th>Row</th>
<th>Column</th>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>18</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19</td>
<td>19</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>21</td>
<td>21</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>23</td>
<td>23</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>24</td>
<td>24</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>control</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>control</td>
</tr>
</tbody>
</table>

Because we are using SPOT output, the 4x4x22x24 print layout also needs to be set. The easiest way to do this is to infer it from the GAL file:

```r
> RG$printer <- getLayout(RG$genes)
```

Image plots. It is interesting to look at the variation of background values over the array. Consider image plots of the red and green background for the first array:
Image plot of the un-normalized log-ratios or M-values for the first array:

> MA <- normalizeWithinArrays(RG, method="none")
> imageplot(MA$M[,1], RG$printer, zlim=c(-3,3))
The `imageplot` function lies the slide on its side, so the first print-tip group is bottom left in this plot. We can see a red streak across the middle two grids of the 3rd row caused by a scratch or dust on the array. Spots which are affected by this artifact will have suspect M-values. The streak also shows up as darker regions in the background plots.

**MA-plots.** An MA-plot plots the log-ratio of R vs G against the overall intensity of each spot. The log-ratio is represented by the M-value, \( M = \log_2(R) - \log_2(G) \), and the overall intensity by the A-value, \( A = (\log_2(R) + \log_2(G))/2 \). Here is the MA-plot of the un-normalized values for the first array:

\[
\text{plotMD(MA)}
\]

The red streak seen on the image plot can be seen as a line of spots in the upper right of this plot. Now we plot the individual MA-plots for each of the print-tip groups on this array, together with the loess curves which will be used for normalization:
Normalization. Print-tip loess normalization:

> MA <- normalizeWithinArrays(RG)
> plotPrintTipLoess(MA)

We have normalized the M-values with each array. A further question is whether normalization is required between the arrays. The following plot shows overall boxplots of the M-values for the four arrays.

> boxplot(MA$M~col(MA$M),names=colnames(MA$M))
There is evidence that the different arrays have different spreads of M-values, so we will scale normalize between the arrays.

```r
> MA <- normalizeBetweenArrays(MA, method="scale")
> boxplot(MA$M~col(MA$M), names=colnames(MA$M))
```

Note that scale-normalization is not done routinely for all two-color data sets, in fact it is rarely done with newer platforms. However it does give good results on this data set. It should only be done when there is good evidence of a scale difference in the M-values.

**Linear model.** First setup an appropriate design matrix. The negative numbers in the design matrix indicate the dye-swaps:
> design <- modelMatrix(targets, ref="wild type")
Found unique target names:
  swirl wild type
> design
  swirl
  swirl.1 -1
  swirl.2 1
  swirl.3 -1
  swirl.4 1

Now fit a simple linear model for each gene. This has the effect of estimating the average M-value for each gene, adjusting for the dye-swaps.

> fit <- lmFit(MA,design)
> fit
An object of class "MArrayLM"
$coefficients
 [1] -0.3556298 -0.3283455 -0.3455845 -0.2254783 -0.3175470
8443 more rows ...
$rank
 [1] 1
$assign
NULL
$qr
$qr
 [,1]
 [1,] 2.0
 [2,] -0.5
 [3,] 0.5
 [4,] -0.5
$qraux
 [1] 1.5
$pivot
 [1] 1
$tol
 [1] 1e-07
$rank
 [1] 1
$df.residual
 [1] 3 3 3 3 3
8443 more elements ...
$sigma
 [1] 0.2873571 0.3115307 0.3699258 0.3331054 0.2689609
8443 more elements ...
$cov.coefficients
 [,1]
[1,] 0.25

$stdev.unscaled
[1] 0.5 0.5 0.5 0.5 0.5
8443 more rows ...

$pivot
[1] 1

$genes
   Block Row Column ID   Name
1     1   1     1 control geno1
2     1   1     2 control geno2
3     1   1     3 control geno3
4     1   1     4 control 3XSSC
5     1   1     5 control 3XSSC
8443 more rows ...

$Amean
8443 more elements ...

$method
[1] "ls"

$design
[,1]
[1,] -1
[2,]  1
[3,] -1
[4,]  1

In the above fit object, coefficients is the average M-value for each gene and sigma is the sample standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt could be computed by

```r
> ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma
```

We prefer though to use empirical Bayes moderated t-statistics which are computed below.

Now create an mean difference plot displaying the log-fold-changes and average A-values for each gene.

```r
> plotMD(fit)
> abline(0,0,col="blue")
```
Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for differential expression. The moderated \( t \)-statistics use sample standard deviations which have been squeezed towards a pooled standard deviation value.

\[
\begin{align*}
> & \text{fit} \leftarrow \text{eBayes(fit)} \\
> & \text{qqt(fit}\$t,\text{df}=\text{fit}\$\text{df.prior+fit}\$\text{df.residual},\text{pch}=16,\text{cex}=0.2) \\
> & \text{abline(0,1)}
\end{align*}
\]

Visually there seems to be plenty of genes which are differentially expressed. We will obtain a summary table of some key statistics for the top genes.
The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should be because the Swirl fish are mutant in this gene. Other positive controls also appear in the top 30 genes in terms.

In the table, $t$ is the empirical Bayes moderated $t$-statistic, the corresponding P-values have been adjusted to control the false discovery rate and $B$ is the empirical Bayes log odds of differential expression.
16.2 Apoa1 Knockout Mice: A Two-Group Common-Reference Experiment

In this section we consider a case study where two RNA sources are compared through a common reference RNA. The analysis of the log-ratios involves a two-sample comparison of means for each gene.

In this example we assume that the data is available as an RGList in the data file Apoa1.RData. The data used for this case study can be downloaded from https://bioinf.wehi.edu.au/limma.

**Background.** The data is from a study of lipid metabolism by [3]. The apolipoprotein AI (Apoa1) gene is known to play a pivotal role in high density lipoprotein (HDL) metabolism. Mice which have the Apoa1 gene knocked out have very low HDL cholesterol levels. The purpose of this experiment is to determine how Apoa1 deficiency affects the action of other genes in the liver, with the idea that this will help determine the molecular pathways through which Apoa1 operates.

**Hybridizations.** The experiment compared 8 Apoa1 knockout mice with 8 normal C57BL/6 ("black six") mice, the control mice. For each of these 16 mice, target mRNA was obtained from liver tissue and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a separate microarray. Common reference RNA was labelled with Cy3 dye and used for all the arrays. The reference RNA was obtained by pooling RNA extracted from the 8 control mice.

<table>
<thead>
<tr>
<th>Number of arrays</th>
<th>Red</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Normal “black six” mice</td>
<td>Pooled reference</td>
</tr>
<tr>
<td>8</td>
<td>Apoa1 knockout</td>
<td>Pooled reference</td>
</tr>
</tbody>
</table>

This is an example of a single comparison experiment using a common reference. The fact that the comparison is made by way of a common reference rather than directly as for the swirl experiment makes this, for each gene, a two-sample rather than a single-sample setup.

```R
> load("Apoa1.RData")
> objects()
```
Since the common reference here is a pool of the control mice, we expect to see more differences from
the pool for the knock-out mice than for the control mice. In terms of the above plot, this should
translate into a wider range of M-values for the knock-out mice arrays than for the control arrays,
and we do see this. Since the different arrays are not expected to have the same range of M-values,
between-array scale normalization of the M-values is not appropriate here.

Now we can go on to estimate the fold change between the two groups. In this case the design
matrix has two columns. The coefficient for the second column estimates the parameter of interest,
the log-ratio between knockout and control mice.
> design <- cbind("Control-Ref"=1,"KO-Control"=MA$targets$Cy5=="ApoAI-/-")
> design

<table>
<thead>
<tr>
<th></th>
<th>Control-Ref</th>
<th>KO-Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

> fit <- lmFit(MA, design)
> fit$coef[1:5,]

<table>
<thead>
<tr>
<th></th>
<th>Control-Ref</th>
<th>KO-Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.6595</td>
<td>0.6393</td>
</tr>
<tr>
<td>2</td>
<td>0.2294</td>
<td>0.6552</td>
</tr>
<tr>
<td>3</td>
<td>-0.2518</td>
<td>0.3342</td>
</tr>
<tr>
<td>4</td>
<td>-0.0517</td>
<td>0.0405</td>
</tr>
<tr>
<td>5</td>
<td>-0.2501</td>
<td>0.2230</td>
</tr>
</tbody>
</table>

> fit <- eBayes(fit)
> options(digits=3)

Normally at this point one would just type

> topTable(fit, coef=2)

However, the gene annotation is a bit wide for the printed page, so we will tell topTable() to show just one column of the annotation information:

> topTable(fit, coef=2, number=15, genelist=fit$genes$NAME)

<table>
<thead>
<tr>
<th>ID</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149</td>
<td>-3.166</td>
<td>12.47</td>
<td>-23.98</td>
<td>4.77e-15</td>
<td>3.05e-11</td>
<td>14.927</td>
</tr>
<tr>
<td>540</td>
<td>-3.049</td>
<td>12.28</td>
<td>-12.96</td>
<td>1.57e-10</td>
<td>5.02e-07</td>
<td>10.813</td>
</tr>
<tr>
<td>5356</td>
<td>-1.848</td>
<td>12.93</td>
<td>-12.44</td>
<td>3.06e-10</td>
<td>6.51e-07</td>
<td>10.448</td>
</tr>
<tr>
<td>4139</td>
<td>-1.027</td>
<td>12.61</td>
<td>-11.76</td>
<td>7.58e-10</td>
<td>1.21e-06</td>
<td>9.929</td>
</tr>
<tr>
<td>1739</td>
<td>-0.933</td>
<td>13.74</td>
<td>-9.84</td>
<td>1.22e-08</td>
<td>1.56e-05</td>
<td>8.192</td>
</tr>
<tr>
<td>2537</td>
<td>-1.010</td>
<td>13.63</td>
<td>-9.02</td>
<td>4.53e-08</td>
<td>4.22e-05</td>
<td>7.305</td>
</tr>
<tr>
<td>1496</td>
<td>0.977</td>
<td>12.23</td>
<td>-9.00</td>
<td>4.63e-08</td>
<td>4.22e-05</td>
<td>7.290</td>
</tr>
<tr>
<td>4941</td>
<td>0.955</td>
<td>13.29</td>
<td>-7.44</td>
<td>7.04e-07</td>
<td>5.62e-04</td>
<td>5.311</td>
</tr>
<tr>
<td>947</td>
<td>-0.571</td>
<td>10.54</td>
<td>-4.55</td>
<td>2.49e-04</td>
<td>1.77e-01</td>
<td>0.563</td>
</tr>
<tr>
<td>5604</td>
<td>-0.366</td>
<td>12.71</td>
<td>-3.96</td>
<td>9.22e-04</td>
<td>5.29e-01</td>
<td>-0.553</td>
</tr>
<tr>
<td>4140</td>
<td>0.420</td>
<td>9.79</td>
<td>-3.93</td>
<td>9.96e-04</td>
<td>5.29e-01</td>
<td>-0.619</td>
</tr>
<tr>
<td>6073</td>
<td>0.421</td>
<td>9.79</td>
<td>3.91</td>
<td>1.03e-03</td>
<td>5.29e-01</td>
<td>-0.652</td>
</tr>
<tr>
<td>1337</td>
<td>-0.838</td>
<td>11.69</td>
<td>-3.89</td>
<td>1.08e-03</td>
<td>5.29e-01</td>
<td>-0.687</td>
</tr>
<tr>
<td>954</td>
<td>-0.302</td>
<td>12.14</td>
<td>-3.86</td>
<td>1.17e-03</td>
<td>5.30e-01</td>
<td>-0.757</td>
</tr>
<tr>
<td>563</td>
<td>-0.637</td>
<td>11.62</td>
<td>-3.81</td>
<td>1.29e-03</td>
<td>5.30e-01</td>
<td>-0.839</td>
</tr>
</tbody>
</table>

Notice that the top gene is Apoa1 itself which is heavily down-regulated. Theoretically the M-value should be minus infinity for Apoa1 because it is the knockout gene. Several of the other genes are
closely related. The top eight genes here were confirmed by independent assay subsequent to the microarray experiment to be differentially expressed in the knockout versus the control line.

> volcanoplot(fit,coef=2,highlight=8,names=fit$genes$NAME,main="KO vs Control")

16.3 Weaver Mutant Mice: A Composite 2x2 Factorial Experiment

16.3.1 Background

This case study considers a more involved two-color analysis in which the RNA sources have a factorial structure with two factors.

The study examined the development of neurons in wild-type and weaver mutant mice [7]. The weaver mutation affects cerebellar granule neurons, the most numerous cell-type in the central nervous system. Weaver mutant mice are characterized by a weaving gait. Granule cells are generated in the first postnatal week in the external granule layer of the cerebellum. In normal mice, the terminally differentiated granule cells migrate to the internal granule layer but in mutant mice the cells die before doing so, meaning that the mutant mice have strongly reduced numbers of cells in the internal granule layer. The expression level of any gene which is specific to mature granule cells, or is expressed in response to granule cell derived signals, is greatly reduced in the mutant mice.

16.3.2 Sample Preparation and Hybridizations

At each time point (P11 = 11 days postnatal and P21 = 21 days postnatal) cerebella were isolated from two wild-type and two mutant littermates and pooled for RNA isolation. RNA was then divided into aliquots and labelled before hybridizing to the arrays. (This means that aliquots are technical replicates, arising from the same mice and RNA extraction. In our analysis here, we will ignore this complication and will instead treat the aliquots as if they were biological replicates. See Yang and
Speed (2002) for a detailed discussion of this issue in the context of this experiment.) A pool of RNA was also made by combining the different RNA samples.

There are four different treatment combinations, P11wt, P11mt, P21wt and P21mt, comprising a 2x2 factorial structure. The RNA samples were hybridized to ten two-color microarrays, spotted with a 20k Riken clone library. There are six arrays comparing the four different RNA sources to the RNA pool, and four arrays making direct comparisons between the four treatment combinations.

The microarray images were scanned using SPOT image analysis software.

16.3.3 Data input

The data used for this case study can be downloaded from http://bioinf.wehi.edu.au/limma/data/weaverfull.rar. The data are provided courtesy of Drs Jean Yang and Elva Diaz.

First read in the targets frame:

```r
> library(limma)
> targets <- readTargets("targets.txt")
> rownames(targets) <- removeExt(targets$FileName)
> targets

<table>
<thead>
<tr>
<th>FileName</th>
<th>Tissue</th>
<th>Mouse</th>
<th>Cy5</th>
<th>Cy3</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbmut.3</td>
<td>cbmut.3.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P11wt</td>
</tr>
<tr>
<td>cbmut.4</td>
<td>cbmut.4.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P11mt</td>
</tr>
<tr>
<td>cbmut.5</td>
<td>cbmut.5.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P21mt</td>
</tr>
<tr>
<td>cbmut.6</td>
<td>cbmut.6.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P21wt</td>
</tr>
<tr>
<td>cbmut.15</td>
<td>cbmut.15.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P21wt</td>
</tr>
<tr>
<td>cbmut.16</td>
<td>cbmut.16.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P21mt</td>
</tr>
<tr>
<td>cb.1</td>
<td>cb.1.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P11wt</td>
</tr>
<tr>
<td>cb.2</td>
<td>cb.2.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P11mt</td>
</tr>
<tr>
<td>cb.3</td>
<td>cb.3.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P21mt</td>
</tr>
<tr>
<td>cb.4</td>
<td>cb.4.spot</td>
<td>Cerebellum</td>
<td>Weaver</td>
<td>P21wt</td>
</tr>
</tbody>
</table>
```

Exploratory analysis showed that the segmented area for spots for these arrays was quite variable, with a median spot area just over 50 pixels. A small proportion of spots had very small segmented sizes, suggesting that the intensities for these spots might be unreliable. It was therefore decided to set a spot quality weight function, so any spot with an area less than 50 pixels will get reduced weight. The function is set so that any spot with zero area will get zero weight:

```r
> wtfun <- function(x) pmin(x$area/50, 1)
```

Then read the SPOT files containing the intensity data using file names recorded in the targets file. The data files are stored in the subdirectory /spot:

```r
> RG <- read.maimages(targets, source = "spot", path = "spot", wt.fun = wtfun)
```

Finally, we set the print-tip layout. These arrays were printed using a print-head with 8 rows and 4 columns of print tips:

```r
> RG$printer <- list(ngrid.r = 8, ngrid.c = 4, nspot.r = 25, nspot.c = 24)
```

91
16.3.4 Annotation

Probe annotation is contained a separate file. The rows in the annotation file are as for the intensity data. Columns give Riken chip rearray IDs, GenBank accession numbers and UniGene information.

```r
> Annotation <- read.delim("091701RikenUpdatev3.txt", comment.char="", quote="\"", +
 check.names=FALSE, stringsAsFactors=FALSE)
> names(Annotation)
[1] "ReArrayID" "Accession #, GenBank" "description (Riken)"
[4] "Cluster ID (UniGene)" "2nd description (UniGene)"
```

For our purposes, we will keep the Riken IDs and GenBank accessions, putting these into the data object:

```r
> RG$genes <- Annotation[,c(1,2)]
> colnames(RG$genes) <- c("RikenID","GenBank")
```

Where possible, we find gene symbols corresponding to the GenBank accession numbers, by using the mouse organism package constructed from the NCBI database. Symbols can be found for only a little over 5000 of the probes.

```r
> library(org.Mm.eg.db)
First we find the Entrez Gene ID for each accession number:

```r
> EG.AN <- toTable(org.Mm.egACCNUM)
> i <- match(RG$genes$GenBank, EG.AN[,"accession"])
> EntrezID <- EG.AN[i,"gene_id"]
```

Then convert Entrez Gene IDs to symbols:

```r
> EG.Sym <- toTable(org.Mm.egSYMBOL)
> i <- match(EntrezID, EG.Sym[,"gene_id"])
> RG$genes$Symbol <- EG.Sym[i,"symbol"]
```

16.3.5 Quality Assessment and Normalization

We also read in a spot-types file and set a range of control spots.

```r
> spottypes <- readSpotTypes("spottypes.txt")
> spottypes
<table>
<thead>
<tr>
<th>SpotType</th>
<th>RikenID</th>
<th>col</th>
<th>cex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>* green</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Riken</td>
<td>Z* black</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Buffer</td>
<td>3x SSC</td>
<td>yellow</td>
<td>1.0</td>
</tr>
<tr>
<td>CerEstTitration</td>
<td>cer est</td>
<td>lightblue</td>
<td>1.0</td>
</tr>
<tr>
<td>LysTitration</td>
<td>Lys (0.15)</td>
<td>orange</td>
<td>1.0</td>
</tr>
<tr>
<td>PheTitration</td>
<td>Phe (0.2)</td>
<td>orange</td>
<td>1.0</td>
</tr>
<tr>
<td>RikenTitration</td>
<td>Riken est</td>
<td>blue</td>
<td>1.0</td>
</tr>
<tr>
<td>ThrTitration</td>
<td>Thr (0.15)</td>
<td>orange</td>
<td>1.0</td>
</tr>
<tr>
<td>18S 18S (0.15)</td>
<td>pink</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>GAPDH GAPDH (0.15)</td>
<td>red</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Lysine Lysine (0.2)</td>
<td>magenta</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Threonine Threonine (0.2)</td>
<td>lightgreen</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Tubulin Tubulin (0.15)</td>
<td>green</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
```

```r
> RG$genes$Status <- controlStatus(spottypes, RG)
Matching patterns for: RikenID
```
MA-plots were examined for all the arrays. Here we give the plot for array 9 only:

> plotMD(RG, column=9, xlim=c(4,15.5))

Here Buffer is an obvious negative control while 18S, GAPDH, Lysine, Threonine and Tubulin are single-gene positive controls, sometime called house-keeping genes. RikenTitration is a titration series of a pool of the entire Riken library, and can be reasonably expected to be non-differentially expressed. CerEstTitration is a titration of a pool of a cerebellum EST library. This will show higher expression in later mutant tissues. The Lys, Phe and Thr series are single-gene titration series which were not spiked-in in this case and can therefore be treated as negative controls.
The negative control probe intensities are quite high, especially for the red channel and especially for array 7:

```r
> negative <- RG$genes$Status %in% c("Buffer","LysTitration","PheTitration","ThrTitration")
> par(mfrow=c(1,2))
> boxplot(log2(RG$G[negative,]),las=2,main="Green background",ylab="log2-intensity",col="green")
> boxplot(log2(RG$R[negative,]),las=2,main="Red background",ylab="log2-intensity",col="red")
> par(mfrow=c(1,1))
```

Later on, we will investigate setting array quality weights.

Now normalize the data. The Riken titration library, being based on a pool of a large number of non-specific genes, should not be differentially expressed. We can take advantage of this by upweighting these probes in the print-tip normalization step. Here we give double-weight to the titration library probes, although higher weights could also be considered:

```r
> w <- modifyWeights(RG$weights, RG$genes$Status, "RikenTitration", 2)
> MA <- normalizeWithinArrays(RG, weights = w)
```

16.3.6 Setting Up the Linear Model

The experiment has a composite design, with some arrays comparing back to the RNA pool as a common reference, and other arrays making direct comparisons between the treatment conditions of interest. The simplest design matrix is that which compares all the RNA samples back to the RNA pool.

```r
> design <- modelMatrix(targets, ref = "Pool")
Found unique target names:
P11mt P11wt P21mt P21wt Pool
```

We also add an intercept term to extract probe-specific dye effects:
> design <- cbind(Dye=1,design)
> design
 Dye P11mt P11wt P21mt P21wt
cbmut.3 1 0 1 0 0
cbmut.4 1 1 0 0 0
cbmut.5 1 0 0 1 0
cbmut.6 1 0 0 0 1
cbmut.15 1 0 0 0 1
cbmut.16 1 0 0 1 0
 cb.1 1 -1 1 0 0
 cb.2 1 1 0 -1 0
 cb.3 1 0 0 1 -1
 cb.4 1 0 -1 0 1

16.3.7 Probe Filtering and Array Quality Weights

First we remove control probes, leaving only the regular probes of the Riken library:

> regular <- MA$genes$Status=="Riken"
> MA2 <- MA[regular,]
> MA2$genes$Status <- NULL

Then we estimate array quality weights:

> aw <- arrayWeights(MA2,design)
> options(digits=3)
> aw
 1 2 3 4 5 6 7 8 9 10
1.175 1.457 0.852 1.216 0.371 1.087 1.325 0.856 1.418 0.869

The array weights multiply the spot weights already in the data object:

> library(statmod)
> w <- matvec(MA2$weights,aw)

16.3.8 Differential expression

Fit the linear model:

> fit <- lmFit(MA2, design, weights=w)

Now extract all possible comparisons of interest as contrasts. We look for the mutant vs wt comparisons at 11 and 21 days, the time effects for mutant and wt, and the interaction terms:

> cont.matrix <- makeContrasts(
+ WT11.MT11=P11mt-P11wt,
+ WT21.MT21=P21mt-P21wt,
+ WT11.WT21=P21wt-P11wt,
+ MT11.MT21=P21mt-P11mt,
+ Int=(P21mt-P11mt)-(P21wt-P11wt),
+ levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)

Adjustment for multiple testing, using Benjamini and Hochberg’s method to control the false discovery rate at 5% across all genes and all contrasts, leads to the following:
> results <- decideTests(fit2, method="global")
> summary(results)

<table>
<thead>
<tr>
<th></th>
<th>WT11.MT11</th>
<th>WT21.MT21</th>
<th>WT11.WT21</th>
<th>MT11.MT21</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>28</td>
<td>136</td>
<td>455</td>
<td>765</td>
<td>74</td>
</tr>
<tr>
<td>0</td>
<td>16835</td>
<td>16540</td>
<td>16102</td>
<td>15377</td>
<td>16692</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>220</td>
<td>339</td>
<td>754</td>
<td>130</td>
</tr>
</tbody>
</table>

The probes that show significant interactions are those which develop differently in the mutant compared to the wild-type between days 11 and 21. To see these:

> topTable(fit2, coef="Int")

<table>
<thead>
<tr>
<th>RikenID</th>
<th>GenBank</th>
<th>Symbol</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>14395</td>
<td>ZX00005107</td>
<td>AV038977</td>
<td>2.71</td>
<td>10.52</td>
<td>11.40</td>
<td>8.56e-08</td>
<td>0.00145</td>
<td>7.66</td>
</tr>
<tr>
<td>1473</td>
<td>ZX000028J17</td>
<td>AV076735</td>
<td>1.92</td>
<td>11.37</td>
<td>10.11</td>
<td>3.18e-07</td>
<td>0.00155</td>
<td>6.65</td>
</tr>
<tr>
<td>14288</td>
<td>ZX00003115</td>
<td>AV010442</td>
<td>2.21</td>
<td>9.50</td>
<td>9.94</td>
<td>3.81e-07</td>
<td>0.00155</td>
<td>6.50</td>
</tr>
<tr>
<td>1184</td>
<td>ZX00004J09</td>
<td>AK005530</td>
<td>Tnfrsf12a</td>
<td>-2.02</td>
<td>8.47</td>
<td>-9.43</td>
<td>6.74e-07</td>
<td>0.00157</td>
</tr>
<tr>
<td>13843</td>
<td>ZX00003J07</td>
<td>AV033559</td>
<td><NA></td>
<td>-2.97</td>
<td>12.08</td>
<td>-9.33</td>
<td>7.51e-07</td>
<td>0.00158</td>
</tr>
<tr>
<td>14898</td>
<td>ZX00003H24</td>
<td>AK005382</td>
<td>Tnfrsf12a</td>
<td>-2.41</td>
<td>9.40</td>
<td>-9.23</td>
<td>8.43e-07</td>
<td>0.00159</td>
</tr>
<tr>
<td>13520</td>
<td>ZX000020X15</td>
<td>AV088030</td>
<td><NA></td>
<td>1.83</td>
<td>9.93</td>
<td>9.09</td>
<td>9.88e-07</td>
<td>0.00158</td>
</tr>
<tr>
<td>10916</td>
<td>ZX000023L14</td>
<td>AV104464</td>
<td><NA></td>
<td>2.90</td>
<td>10.49</td>
<td>8.93</td>
<td>1.19e-06</td>
<td>0.00161</td>
</tr>
<tr>
<td>12532</td>
<td>ZX000026E06</td>
<td>AV140268</td>
<td><NA></td>
<td>2.75</td>
<td>10.55</td>
<td>8.63</td>
<td>1.71e-06</td>
<td>0.00162</td>
</tr>
<tr>
<td>14250</td>
<td>ZX00048F23</td>
<td>AV122249</td>
<td><NA></td>
<td>1.89</td>
<td>10.27</td>
<td>8.41</td>
<td>2.23e-06</td>
<td>0.00167</td>
</tr>
</tbody>
</table>

> sessionInfo()

R version 2.13.0 Patched (2011-04-25 r55638)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252

attached base packages:
[1] splines stats graphics grDevices utils datasets methods base

other attached packages:
[1] statmod_1.4.11 org.Mm.eg.db_2.5.0 RSQLite_0.9-4 DBI_0.2-5
[5] AnnotationDbi_1.14.0 Biobase_2.12.0 limma_3.9.8

16.4 Bob1 Mutant Mice: Arrays With Duplicate Spots

In this section we consider a case study in which all genes (ESTs and controls) are printed more than once on the array. This means that there is both within-array and between-array replication for each gene. The structure of the experiment is therefore essentially a randomized block experiment for each gene. The approach taken here is to estimate a common correlation for all the genes for between within-array duplicates. The theory behind the approach is explained in [32]. This approach assumes that all genes are replicated the same number of times on the array and that the spacing between the replicates is entirely regular.

In this example we assume that the data is available as an RGList.

Background. This data is from a study of transcription factors critical to B cell maturation by Lynn Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in the Bob1 (aka Pou2af1 or OBF-1) transcription factor display a number of abnormalities in the B lymphocyte...
compartment of the immune system. Immature B cells that have emigrated from the bone marrow fail to differentiate into full fledged B cells, resulting in a notable deficit of mature B cells.

Arrays. Arrays were printed at the Australian Genome Research Facility with expressed sequence tags (ESTs) from the National Institute of Aging 15k mouse clone library, plus a range of positive, negative and calibration controls. The arrays were printed using a 48 tip print head and 26x26 spots in each tip group. Data from 24 of the tip groups are given here. Every gene (ESTs and controls) was printed twice on each array, side by side by rows. The NIA15k probe IDs have been anonymized in the output presented here.

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two RNA sources were compared using 2 dye-swap pairs of microarrays. One RNA source was obtained from the Bob deficient cell line after the retrovirus was used to add GFP ("green fluorescent protein", a neutral protein). The other RNA source was obtained after adding both GFP and Bob protein. RNA from Bob+GFP was labelled with Cy5 in arrays 2 and 4, and with Cy3 in arrays 1 and 4.

Image analysis. The arrays were image analyzed using SPOT with “morph” background estimation.

> The data used for this case study can be downloaded from http://bioinf.wehi.edu.au/limma/. The file should be placed in the working directory of your R session. (This case study was last updated on 29 June 2006 using R 2.3.0 and limma 2.7.5.)

```r
> library(limma)
> load("Bob.RData")
> objects()
[1] "design" "RG"
> design
[1] -1 1 -1 1
> names(RG)
[1] "R" "G" "Rb" "Gb" "genes" "printer"
> RG$genes[1:40,]

<table>
<thead>
<tr>
<th>Library</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>cDNA1.500</td>
</tr>
<tr>
<td>Control</td>
<td>cDNA1.500</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>cDNA1.500</td>
</tr>
<tr>
<td>Control</td>
<td>cDNA1.500</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>cDNA1.500</td>
</tr>
<tr>
<td>Control</td>
<td>cDNA1.500</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
<tr>
<td>Control</td>
<td>Printing.buffer</td>
</tr>
</tbody>
</table>
```

97
24 Control Printing.buffer
25 Control cDNA1.500
26 Control cDNA1.500
27 NIA15k H31
28 NIA15k H31
29 NIA15k H32
30 NIA15k H32
31 NIA15k H33
32 NIA15k H33
33 NIA15k H34
34 NIA15k H34
35 NIA15k H35
36 NIA15k H35
37 NIA15k H36
38 NIA15k H36
39 NIA15k H37
40 NIA15k H37

Although there are only four arrays, we have a total of eight spots for each gene, and more for the controls. Naturally the two M-values obtained from duplicate spots on the same array are highly correlated. The problem is how to make use of the duplicate spots in the best way. The approach taken here is to estimate the spatial correlation between the adjacent spots using REML and then to conduct the usual analysis of the arrays using generalized least squares.

First normalize the data using print-tip loess regression. The SPOT morph background ensures that the default background subtraction can be used without inducing negative intensities.

> MA <- normalizeWithinArrays(RG)

Then remove the control probes:

> MA2 <- MA[MA$genes$Library=="NIA15k",]

Now estimate the spatial correlation. We estimate a correlation term by REML for each gene, and then take a trimmed mean on the atanh scale to estimate the overall correlation. This command will probably take at least a few minutes depending on the speed of your computer.

> options(digits=3)
> corfit <- duplicateCorrelation(MA2,design,ndups=2) # A slow computation!
> corfit$consensus.correlation
[1] 0.575
> boxplot(tanh(corfit$atanh.correlations))

> fit <- lmFit(MA2,design,ndups=2,correlation=corfit$consensus)
> fit <- eBayes(fit)
> topTable(fit, n=30)
<table>
<thead>
<tr>
<th>Library ID</th>
<th>AveExpr</th>
<th>logFC</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4599</td>
<td>NIA15k</td>
<td>H34599</td>
<td>0.404</td>
<td>10.93</td>
<td>12.92</td>
<td>1.34e-07</td>
</tr>
<tr>
<td>1324</td>
<td>NIA15k</td>
<td>H31324</td>
<td>-0.520</td>
<td>7.73</td>
<td>-12.24</td>
<td>2.23e-07</td>
</tr>
<tr>
<td>3309</td>
<td>NIA15k</td>
<td>H33309</td>
<td>0.420</td>
<td>10.99</td>
<td>11.99</td>
<td>2.71e-07</td>
</tr>
<tr>
<td>440</td>
<td>NIA15k</td>
<td>H3440</td>
<td>0.568</td>
<td>9.96</td>
<td>11.64</td>
<td>3.60e-07</td>
</tr>
<tr>
<td>6795</td>
<td>NIA15k</td>
<td>H36795</td>
<td>0.460</td>
<td>10.78</td>
<td>11.56</td>
<td>3.85e-07</td>
</tr>
<tr>
<td>121</td>
<td>NIA15k</td>
<td>H3121</td>
<td>0.441</td>
<td>10.48</td>
<td>11.31</td>
<td>4.73e-07</td>
</tr>
<tr>
<td>2838</td>
<td>NIA15k</td>
<td>H32838</td>
<td>1.640</td>
<td>12.74</td>
<td>11.26</td>
<td>4.92e-07</td>
</tr>
<tr>
<td>6999</td>
<td>NIA15k</td>
<td>H36999</td>
<td>0.381</td>
<td>9.91</td>
<td>11.19</td>
<td>5.21e-07</td>
</tr>
<tr>
<td>132</td>
<td>NIA15k</td>
<td>H31322</td>
<td>0.370</td>
<td>10.10</td>
<td>11.17</td>
<td>5.31e-07</td>
</tr>
<tr>
<td>6207</td>
<td>NIA15k</td>
<td>H36207</td>
<td>0.393</td>
<td>8.53</td>
<td>-11.06</td>
<td>5.82e-07</td>
</tr>
<tr>
<td>7168</td>
<td>NIA15k</td>
<td>H37168</td>
<td>0.391</td>
<td>9.88</td>
<td>10.76</td>
<td>7.51e-07</td>
</tr>
<tr>
<td>1831</td>
<td>NIA15k</td>
<td>H31831</td>
<td>-0.374</td>
<td>9.62</td>
<td>-10.63</td>
<td>8.41e-07</td>
</tr>
<tr>
<td>2014</td>
<td>NIA15k</td>
<td>H32014</td>
<td>0.363</td>
<td>9.65</td>
<td>10.49</td>
<td>9.54e-07</td>
</tr>
<tr>
<td>7558</td>
<td>NIA15k</td>
<td>H37558</td>
<td>0.532</td>
<td>11.42</td>
<td>10.49</td>
<td>9.58e-07</td>
</tr>
<tr>
<td>4471</td>
<td>NIA15k</td>
<td>H34471</td>
<td>0.353</td>
<td>8.76</td>
<td>-10.41</td>
<td>1.02e-06</td>
</tr>
<tr>
<td>126</td>
<td>NIA15k</td>
<td>H3126</td>
<td>0.385</td>
<td>10.59</td>
<td>10.40</td>
<td>1.03e-06</td>
</tr>
<tr>
<td>4360</td>
<td>NIA15k</td>
<td>H34360</td>
<td>-0.341</td>
<td>9.37</td>
<td>-10.22</td>
<td>1.21e-06</td>
</tr>
<tr>
<td>6794</td>
<td>NIA15k</td>
<td>H36794</td>
<td>0.472</td>
<td>11.33</td>
<td>10.11</td>
<td>1.35e-06</td>
</tr>
<tr>
<td>329</td>
<td>NIA15k</td>
<td>H3329</td>
<td>0.413</td>
<td>11.37</td>
<td>9.97</td>
<td>1.53e-06</td>
</tr>
<tr>
<td>5017</td>
<td>NIA15k</td>
<td>H35017</td>
<td>0.434</td>
<td>11.41</td>
<td>9.90</td>
<td>1.63e-06</td>
</tr>
<tr>
<td>2678</td>
<td>NIA15k</td>
<td>H32678</td>
<td>0.461</td>
<td>10.44</td>
<td>9.74</td>
<td>1.90e-06</td>
</tr>
<tr>
<td>2367</td>
<td>NIA15k</td>
<td>H32367</td>
<td>0.409</td>
<td>10.21</td>
<td>9.72</td>
<td>1.93e-06</td>
</tr>
<tr>
<td>1232</td>
<td>NIA15k</td>
<td>H31232</td>
<td>-0.372</td>
<td>8.72</td>
<td>-9.70</td>
<td>1.96e-06</td>
</tr>
<tr>
<td>111</td>
<td>NIA15k</td>
<td>H3111</td>
<td>0.369</td>
<td>10.42</td>
<td>9.69</td>
<td>1.98e-06</td>
</tr>
<tr>
<td>2159</td>
<td>NIA15k</td>
<td>H32159</td>
<td>0.418</td>
<td>10.19</td>
<td>9.67</td>
<td>2.03e-06</td>
</tr>
<tr>
<td>4258</td>
<td>NIA15k</td>
<td>H34258</td>
<td>0.299</td>
<td>9.11</td>
<td>9.62</td>
<td>2.12e-06</td>
</tr>
<tr>
<td>3192</td>
<td>NIA15k</td>
<td>H33192</td>
<td>-0.410</td>
<td>9.46</td>
<td>-9.55</td>
<td>2.26e-06</td>
</tr>
<tr>
<td>6025</td>
<td>NIA15k</td>
<td>H36025</td>
<td>0.427</td>
<td>10.37</td>
<td>9.47</td>
<td>2.45e-06</td>
</tr>
<tr>
<td>5961</td>
<td>NIA15k</td>
<td>H35961</td>
<td>-0.362</td>
<td>8.50</td>
<td>-9.46</td>
<td>2.49e-06</td>
</tr>
<tr>
<td>1404</td>
<td>NIA15k</td>
<td>H31404</td>
<td>0.474</td>
<td>11.34</td>
<td>9.26</td>
<td>3.00e-06</td>
</tr>
</tbody>
</table>

> volcanoplot(fit)
Chapter 17

Single-Channel Case Studies

17.1 Lrp Mutant *E. Coli* Strain with Affymetrix Arrays

17.1.1 Background

Gene expression in two *Escherichia coli* bacteria strains, labelled lrp+ and lrp-, were compared using eight Affymetrix *E. coli* chips, four chips each for lrp+ and lrp-. The data are from experiments reported in [9], who state that

The purpose of the work presented here is to identify the network of genes that are differentially regulated by the global *E. coli* regulatory protein, leucine-responsive regulatory protein (Lrp), during steady state growth in a glucose supplemented minimal salts medium. Lrp is a DNA-binding protein that has been reported to affect the expression of approximately 55 genes.

17.1.2 Downloading the data

The raw data files can be downloaded from http://bioinf.wehi.edu.au/limma/. The following code assumes that the files in your current working directory:

```r
> dir()
[1] "Escherichia_coli_str._K-12_substr._MG1655.gene_info.gz" "nolrp_1.CEL"
[3] "nolrp_2.CEL" "nolrp_3.CEL" "nolrp_4.CEL" "targets.txt"
[7] "wt_1.CEL" "wt_2.CEL" "wt_3.CEL" "wt_4.CEL"
```

The file `targets.txt` describes the design of the experiment:

```r
> library(limma)
> targets <- readTargets("targets.txt")
> targets
            FileName Strain Experiment
nolrp_1      nolrp_1.CEL  lrp-     1
nolrp_2      nolrp_2.CEL  lrp-     2
nolrp_3      nolrp_3.CEL  lrp-     3
nolrp_4      nolrp_4.CEL  lrp-     4
    wt_1      wt_1.CEL  lrp+     1
    wt_2      wt_2.CEL  lrp+     2
```

100
The \texttt{lrp-} samples are from the Lrp-deficient strain while the \texttt{lrp+} are from the wild-type strain. The data was collected in four batches or “experiments”.

17.1.3 Background correction and normalization

The data is read and normalized using the \texttt{affy} package. The package \texttt{ecolicdf} must also be installed, otherwise the \texttt{rma()} function will attempt to download and install it for you.

```r
> library(affy)
> eset <- justRMA(filenames = targets$FileName)
> colnames(eset) <- row.names(targets)
> head(exprs(eset))

<table>
<thead>
<tr>
<th></th>
<th>nolrp_1</th>
<th>nolrp_2</th>
<th>nolrp_3</th>
<th>nolrp_4</th>
<th>wt_1</th>
<th>wt_2</th>
<th>wt_3</th>
<th>wt_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{aas}</td>
<td>8.53</td>
<td>9.20</td>
<td>8.18</td>
<td>8.01</td>
<td>8.89</td>
<td>8.28</td>
<td>8.11</td>
<td></td>
</tr>
<tr>
<td>\texttt{aat}</td>
<td>8.12</td>
<td>8.76</td>
<td>7.96</td>
<td>8.37</td>
<td>7.88</td>
<td>8.61</td>
<td>7.74</td>
<td>8.52</td>
</tr>
<tr>
<td>\texttt{abc}</td>
<td>10.65</td>
<td>10.31</td>
<td>10.17</td>
<td>11.60</td>
<td>10.44</td>
<td>10.58</td>
<td>10.20</td>
<td>11.48</td>
</tr>
<tr>
<td>\texttt{accA}</td>
<td>11.28</td>
<td>11.38</td>
<td>10.93</td>
<td>10.64</td>
<td>11.22</td>
<td>11.41</td>
<td>11.14</td>
<td>10.82</td>
</tr>
<tr>
<td>\texttt{accB}</td>
<td>12.52</td>
<td>11.81</td>
<td>12.32</td>
<td>12.69</td>
<td>12.65</td>
<td>12.29</td>
<td>12.59</td>
<td>12.66</td>
</tr>
</tbody>
</table>
```

The rownames of the expression matrix combine the gene symbols (\texttt{aas}) with an open reading frame identifier (\texttt{b2836}). This format is idiosyncratic to this historical GeneChip.

An MDS plot shows clearly that there is a batch effect between the four experiments:

```r
> plotMDS(eset)
```

![MDS plot](image)

17.1.4 Gene annotation

The gene information file \texttt{Escherichia_coli_str._K-12_substr._MG1655.gene.info.gz} was downloaded from the NCBI ftp site at \texttt{ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO}. We can use this file to update the gene annotation.

101
First we extract the old gene symbols from the rownames:

```r
> Alias <- sub("_.*", ",", row.names(eset))
> Alias[1:5]
[1] "aas" "aat" "abc" "abrB" "accA"
```

Then we use limma function `alias2SymbolUsingNCBI` to update the old gene symbols to current symbols and associated information. The information is stored in the `fData` slot of the ExpressionSet:

```r
> GeneInfo <- "Escherichia_coli_str._K-12_substr._MG1655.gene_info.gz"
> fData(eset) <- alias2SymbolUsingNCBI(Alias, GeneInfo,
+ required=c("GeneID","Symbol","type_of_gene"))
> head(fData(eset))

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Symbol</th>
<th>type_of_gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>2495</td>
<td>aas</td>
<td>protein-coding</td>
</tr>
<tr>
<td>719</td>
<td>aat</td>
<td>protein-coding</td>
</tr>
<tr>
<td>153</td>
<td>metN</td>
<td>protein-coding</td>
</tr>
<tr>
<td>554</td>
<td>abrB</td>
<td>protein-coding</td>
</tr>
<tr>
<td>152</td>
<td>accA</td>
<td>protein-coding</td>
</tr>
<tr>
<td>2922</td>
<td>accB</td>
<td>protein-coding</td>
</tr>
</tbody>
</table>
```

We remove all probes that do not have an Entrez Gene ID and Symbol:

```r
> HasSymbol <- !is.na(fData(eset)$Symbol)
> eset <- eset[HasSymbol,]
> dim(eset)
Features Samples
3709    8
```

17.1.5 Differential expression

Make factors for the Experiment and Strain:

```r
> Exp <- factor(targets$Experiment)
> Strain <- factor(targets$Strain, levels=c("lrp+","lrp-"))
```

Then construct the design matrix, with Experiment and Strain. This will allow us to test for Strain differences adjusting for differences between the Experiments:

```r
> design <- model.matrix(~Exp+Strain)
```

Now we can run the differential expression pipeline:

```r
> fit <- lmFit(eset, design)
> fit <- eBayes(fit, trend=TRUE, robust=TRUE)
> results <- decideTests(fit)
> summary(results)

(Intercept)  Exp2  Exp3  Exp4  Strainlrp-
Down          0   92  382  714  101
NotSig       0 3601 3249 2859 3526
Up           3709   16   78 136  82
```

There are 82 up-regulated and 101 down-regulated genes in the Lrp- strain at FDR < 0.05. Including Experiment as a batch was also clearly important.

The top 30 differentially expressed genes can be seen:
Top 30 genes with the largest fold changes:

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Symbol</th>
<th>Type</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>oppA_b1243_st</td>
<td>oppA</td>
<td>protein-coding</td>
<td>2.976</td>
<td>12.97</td>
<td>24.64</td>
<td>7.39e-12</td>
<td>1.33e-08</td>
<td>17.11</td>
</tr>
<tr>
<td>rmf_b0953_st</td>
<td>rmf</td>
<td>protein-coding</td>
<td>2.705</td>
<td>13.64</td>
<td>23.88</td>
<td>1.33e-08</td>
<td>16.80</td>
<td></td>
</tr>
<tr>
<td>ytfK_b4217_st</td>
<td>ytfK</td>
<td>protein-coding</td>
<td>2.641</td>
<td>11.10</td>
<td>23.88</td>
<td>9.74e-12</td>
<td>14.60</td>
<td></td>
</tr>
<tr>
<td>oppB_b1244_st</td>
<td>oppB</td>
<td>protein-coding</td>
<td>2.913</td>
<td>10.70</td>
<td>21.57</td>
<td>3.67e-11</td>
<td>15.77</td>
<td></td>
</tr>
<tr>
<td>serA_b2913_st</td>
<td>serA</td>
<td>protein-coding</td>
<td>2.776</td>
<td>12.22</td>
<td>21.13</td>
<td>3.50e-08</td>
<td>15.56</td>
<td></td>
</tr>
<tr>
<td>ompT_b0565_st</td>
<td>ompT</td>
<td>protein-coding</td>
<td>2.673</td>
<td>10.52</td>
<td>20.25</td>
<td>4.86e-08</td>
<td>15.11</td>
<td></td>
</tr>
<tr>
<td>gltD_b3213_st</td>
<td>gltD</td>
<td>protein-coding</td>
<td>3.033</td>
<td>9.78</td>
<td>16.90</td>
<td>1.33e-08</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td>ydgR_b1634_st</td>
<td>ydgR</td>
<td>protein-coding</td>
<td>2.348</td>
<td>9.33</td>
<td>14.66</td>
<td>2.61e-06</td>
<td>10.85</td>
<td></td>
</tr>
<tr>
<td>pntB_b1602_st</td>
<td>pntB</td>
<td>protein-coding</td>
<td>1.944</td>
<td>9.38</td>
<td>13.45</td>
<td>6.76e-08</td>
<td>8.10</td>
<td></td>
</tr>
<tr>
<td>oppD_b1246_st</td>
<td>oppD</td>
<td>protein-coding</td>
<td>1.789</td>
<td>9.26</td>
<td>13.23</td>
<td>8.18e-06</td>
<td>8.56</td>
<td></td>
</tr>
<tr>
<td>livK_b3458_st</td>
<td>livK</td>
<td>protein-coding</td>
<td>2.352</td>
<td>9.85</td>
<td>16.11</td>
<td>6.71e-08</td>
<td>8.85</td>
<td></td>
</tr>
</tbody>
</table>

Lrp itself is the 11th gene in the list.

We can plot the fold-changes for the significant genes:

```r
> plotMD(fit, coef="Strainlrp-", status=results)
```
17.2 Effect of Estrogen on Breast Cancer Tumor Cells: A 2x2 Factorial Experiment with Affymetrix Arrays

This data is from the **estrogen** package on Bioconductor. A subset of the data is also analyzed in the `factDesign` package vignette. To repeat this case study you will need to have the R packages `affy`, `estrogen` and `hgu95av2cdf` installed.

The data gives results from a 2x2 factorial experiment on MCF7 breast cancer cells using Affymetrix HGU95av2 arrays. The factors in this experiment were estrogen (present or absent) and length of exposure (10 or 48 hours). The aim of the study is to identify genes which respond to estrogen and to classify these into early and late responders. Genes which respond early are putative direct-target genes while those which respond late are probably downstream targets in the molecular pathway.

First load the required packages:

```r
> library(limma)
> library(affy)
```

Welcome to Bioconductor

Vignettes contain introductory material. To view,
simply type: `openVignette()`
For details on reading vignettes, see
the `openVignette` help page.

```r
> library(hgu95av2cdf)
```

The data files are contained in the `extdata` directory of the `estrogen` package:

```r
> datadir <- file.path(.find.package("estrogen"),"extdata")
> dir(datadir)
[1] "001Index" "bad.cel" "high10-1.cel" "high10-2.cel" "high48-1.cel"
[6] "high48-2.cel" "low10-1.cel" "low10-2.cel" "low48-1.cel" "low48-2.cel"
[11] "phenoData.txt"
```
The targets file is called phenoData.txt. We see there are two arrays for each experimental condition, giving a total of 8 arrays.

```r
> targets <- readTargets("phenoData.txt", path=datadir, sep="","row.names="filename")
> targets
filename estrogen time.h
low10-1 low10-1.cel absent 10
low10-2 low10-2.cel absent 10
high10-1 high10-1.cel present 10
high10-2 high10-2.cel present 10
low48-1 low48-1.cel absent 48
low48-2 low48-2.cel absent 48
high48-1 high48-1.cel present 48
high48-2 high48-2.cel present 48
```

Now read the cel files into an AffyBatch object and normalize using the `rma()` function from the affy package:

```r
> ab <- ReadAffy(filenames=targets$filename, celfile.path=datadir)
> eset <- rma(ab)
```

Background correcting
Normalizing
Calculating Expression

By default, the only probe-set annotation contained in `eset` is the Affymetrix ID number. We will add gene symbols to the data object now, so that they will be automatically included in limma results tables later on.

```r
> library(annotate)
Loading required package: AnnotationDbi
> library(hgu95av2.db)
Loading required package: org.Hs.eg.db
Loading required package: DBI
> ID <- featureNames(eset)
> Symbol <- getSYMBOL(ID,"hgu95av2.db")
> fData(eset) <- data.frame(Symbol=Symbol)
```

There are many ways to construct a design matrix for this experiment. Given that we are interested in the early and late estrogen responders, we can choose a parametrization which includes these two contrasts.

```r
> treatments <- factor(c(1,1,2,2,3,3,4,4),labels=c("e10","E10","e48","E48"))
> contrasts(treatments) <- cbind(Time=c(0,0,1,1),E10=c(0,1,0,0),E48=c(0,0,0,1))
> design <- model.matrix(~treatments)
> colnames(design) <- c("Intercept","Time","E10","E48")
```

The second coefficient picks up the effect of time in the absence of estrogen. The third and fourth coefficients estimate the log$_2$-fold change for estrogen at 10 hours and 48 hours respectively.

```r
> fit <- lmFit(eset,design)
```

We are only interested in the estrogen effects, so we choose a contrast matrix which picks these two coefficients out:

```r
> cont.matrix <- cbind(E10=c(0,0,1,0),E48=c(0,0,0,1))
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
```
We can examine which genes respond to estrogen at either time using the moderated F-statistics on 2 degrees of freedom. The moderated F p-value is stored in the component `fit2$F.p.value`.

What p-value cutoff should be used? One way to decide which changes are significant for each gene would be to use Benjamini and Hochberg’s method to control the false discovery rate across all the genes and both tests:

```r
> results <- decideTests(fit2, method="global")
```

Another method would be to adjust the F-test p-values rather than the t-test p-values:

```r
> results <- decideTests(fit2, method="nestedF")
```

Here we use a more conservative method which depends far less on distributional assumptions, which is to make use of control and spike-in probe-sets which theoretically should not be differentially-expressed. The smallest p-value amongst these controls turns out to be about 0.00014:

```r
> i <- grep("AFFX", featureNames(eset))
> summary(fit2$F.p.value[i])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001391 0.1727000 0.3562000 0.4206000 0.6825000 0.9925000
```

So a cutoff p-value of 0.0001, say, would conservatively avoid selecting any of the control probe-sets as differentially expressed:

```r
> results <- classifyTestsF(fit2, p.value=0.0001)
> summary(results)
-1 40 76
0 12469 12410
1 116 139
```

```r
> table(E10=results[,1],E48=results[,2])

E10 -1 0 1
-1 29 11 0
0 47 12370 52
1 0 29 87
```

```r
> vennDiagram(results, include="up")
```
We see that 87 genes were up regulated at both 10 and 48 hours, 29 only at 10 hours and 52 only at 48 hours. Also, 29 genes were down-regulated throughout, 11 only at 10 hours and 47 only at 48 hours. No genes were up at one time and down at the other.

topTable gives a detailed look at individual genes. Estrogen effect at 10 hours:

Estrogen effect at 48 hours:
17.3 Comparing Mammary Progenitor Cell Populations with Illumina BeadChips

17.3.1 Introduction

This case study examines the expression profiles of adult mammary stem cells and of progenitor and mature mammary luminal cells. The data was first published by Lim et al [16], who used the expression profiles to show that luminal progenitor cells are the likely cell of origin for basal-like breast cancer.
The data files used in this case study can be downloaded from http://bioinf.wehi.edu.au/marray/IlluminaCaseStudy. The expression data files are provided as gzip files and will need to be uncompressed before they can be used for a limma analysis. To run the analysis described here, download and unzip the data files and set the working directory of R to the folder containing the files.

17.3.2 The target RNA samples

The data consists of three files:

```r
> dir()
[3] "Targets.txt"
```

First read the targets file describing the target RNA samples.

```r
> library(limma)
> targets <- readTargets()
> targets

Donor Age CellType
1 1 39 MS
2 1 39 Stroma
3 1 39 ML
4 1 39 LP
5 2 57 MS
6 2 57 Stroma
7 2 57 ML
8 2 57 LP
9 3 21 MS
10 3 21 Stroma
11 3 21 ML
12 3 21 LP
```

Breast tissue was obtained from three healthy human donors who were undergoing reduction mammoplasties. Epithelial cells were sorted into three subpopulations enriched for mammary stem cells (MS), luminal progenitor cells (LP) and mature luminal cells (ML) [16]. The MS, LP and ML cells represent a lineage of luminal cells used to construct the ducts used to transport milk in the breast [37]:

![Diagram of cell lineage](image)

Stromal cells were also profiles as a comparison group. There were therefore four cell populations from each person. RNA was extracted from freshly sorted cells, making twelve RNA samples in total.
17.3.3 The expression profiles

The RNA samples were hybridized to two Illumina HumanWG-6 version 3 BeadChips. Each BeadChip is able to accommodate six samples. The BeadChips images were scanned and summarized using BeadStudio. Un-normalized summary probe profiles were exported from BeadStudio to tab-delimited text files.

Separate files were written for regular probes and for control probes. The file `probe profile.txt` contains the expression profiles for regular probes, designed to interrogate the expression levels of genes. `control probe profile.txt` contains the profiles of control probes, including negative control probes. Note that BeadStudio by default writes the profiles for all the samples to the same two files.

We read in the expression profiles for both regular and control probes, telling `read.ilm` that we wish to read the detection p-values as well as the expression values:

```r
> x <- read.ilmn(files="probe profile.txt",ctrlfiles="control probe profile.txt", other.columns="Detection")
Reading file probeprofile.txt ... ...
Reading file controlprobeprofile.txt ... ...
```

This reads a `EListRaw` object. There are about 750 negative probes and about 49,000 regular probes:

```r
> table(x$genes$Status)
  BIOTIN CY3_HYB HOUSEKEEPING LABELING
  2 6 7 2
  LOW_STRINGENCY_HYB NEGATIVE regular
  8 759 48803
```

The component `E` contains the expression value for each probe:

```r
> options(digits=3)
> head(x$E)
  ILMN_1762337 52.3 46.1 54.0 47.7 54.8 47.4 67.4 47.9 40.5 44.7 80.6 42.5
  ILMN_2055271 69.9 73.9 58.6 72.4 77.1 82.1 69.1 81.3 79.1 82.5 87.0 60.9
  ILMN_1736007 57.5 53.7 53.4 49.4 58.6 59.9 56.4 51.6 58.7 51.7 58.4 43.9
  ILMN_2383229 53.6 57.5 48.2 48.2 61.8 64.5 52.7 43.5 65.5 49.8 53.9 39.3
  ILMN_1806310 58.1 55.1 50.5 60.0 64.2 58.4 58.0 52.3 56.6 55.6 65.3 46.4
  ILMN_1779670 64.5 61.2 52.8 61.9 67.9 59.7 68.2 63.1 65.1 65.7 69.6 52.0
```

The intensities vary from about 5 to 14 on the log2 scale:

```r
> boxplot(log2(x$E),range=0,ylab="log2 intensity")
```
17.3.4 How many probes are truly expressed?

The detection values contain p-values for testing whether each probe is more intense than the negative control probes. Small values are evidence that the probe corresponds to a truly expressed gene:

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
ILMN_1762337 & 0.5585 & 0.675 & 0.1370 & 0.60139 & 0.5776 & 0.782 & 0.0503 & 0.4781 & 0.9082 & 0.7145 & 0.0000 & 0.460 \\
ILMN_2055271 & 0.0306 & 0.000 & 0.0493 & 0.00278 & 0.0364 & 0.000 & 0.0391 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.000 \\
ILMN_1736007 & 0.2772 & 0.292 & 0.1534 & 0.48611 & 0.4112 & 0.220 & 0.2318 & 0.3145 & 0.1554 & 0.3774 & 0.2539 & 0.360 \\
ILMN_2383229 & 0.4735 & 0.187 & 0.3658 & 0.56389 & 0.2961 & 0.124 & 0.3408 & 0.7447 & 0.0537 & 0.4680 & 0.3986 & 0.747 \\
ILMN_1806310 & 0.2618 & 0.248 & 0.2589 & 0.12778 & 0.2196 & 0.264 & 0.1955 & 0.2920 & 0.1963 & 0.2382 & 0.1220 & 0.203 \\
ILMN_1779670 & 0.0850 & 0.113 & 0.1644 & 0.10417 & 0.1469 & 0.224 & 0.0461 & 0.0691 & 0.0621 & 0.0655 & 0.0709 & 0.058 \\
\end{array}
\]

We can go further than this and estimate the overall proportion of the regular probes that correspond to expressed transcript, using the method of Shi et al [29].

\[
\begin{array}{cccc}
\text{Donor} & 1 & 2 & 3 \\
MS & 0.557 & 0.504 & 0.529 \\
Stroma & 0.518 & 0.514 & 0.514 \\
ML & 0.549 & 0.495 & 0.535 \\
LP & 0.555 & 0.518 & 0.517 \\
\end{array}
\]

The proportion of probes that are expressed varies from 50–56%. The average is 52.5%.

17.3.5 Normalization and filtering

Background correction and normalize:

\[
\begin{align*}
y & \leftarrow \text{neqc}(x) \\
\text{The neqc function performs normexp background correction using negative controls, then quantile normalizes and finally log}_2 \text{transforms [30]. It also automatically removes the control probes, leaving only the regular probes in } y:
\end{align*}
\]
Filter out probes that are not expressed. We keep probes that are expressed in at least three arrays according to a detection p-values of 5%:

```r
> expressed <- rowSums(y$other$Detection < 0.05) >= 3
> y <- y[expressed,]
> dim(y)
[1] 24691 12
```

A multi-dimensional scaling plot shows that the cell types are cell separated:

```r
> plotMDS(y, labels=targets$CellType)
```

17.3.6 Within-patient correlations

The study involves multiple cell types from the same patient. Arrays from the same donor are not independent, so we need to estimate the within-donor correlation:

```r
> ct <- factor(targets$CellType)
> design <- model.matrix(~0+ct)
> colnames(design) <- levels(ct)
> dupcor <- duplicateCorrelation(y, design, block=targets$Donor)
> dupcor$consensus.correlation
[1] 0.134
```

As expected, the within-donor correlation is small but positive.

17.3.7 Differential expression between cell types

Now we look for differentially expressed genes. We make all possible pairwise comparisons between the epithelial cell types, allowing for the correlation within donors:
> fit <- lmFit(y, design, block=targets$Donor, correlation=dupcor$consensus.correlation)
> contrasts <- makeContrasts(ML-MS, LP-MS, ML-LP, levels=design)
> fit2 <- contrasts.fit(fit, contrasts)
> fit2 <- eBayes(fit2, trend=TRUE)
> summary(decideTests(fit2, method="global"))

ML - MS LP - MS ML - LP
Down 3074 2836 1631
NotSig 18088 18707 21307
Up 3529 3148 1753

Top ten differentially expressed probes between ML and MS:

> topTable(fit2, coef=1)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMN_1766707</td>
<td>-4.19</td>
<td>5.94</td>
<td>-29.0</td>
<td>2.51e-12</td>
<td>5.19e-08</td>
<td>18.1</td>
</tr>
<tr>
<td>ILMN_1706051</td>
<td>-4.00</td>
<td>5.67</td>
<td>-27.8</td>
<td>4.20e-12</td>
<td>5.19e-08</td>
<td>17.7</td>
</tr>
<tr>
<td>ILMN_1656369</td>
<td>5.24</td>
<td>11.26</td>
<td>25.1</td>
<td>1.36e-11</td>
<td>1.06e-07</td>
<td>16.7</td>
</tr>
<tr>
<td>ILMN_2413323</td>
<td>-6.60</td>
<td>6.82</td>
<td>-24.3</td>
<td>2.01e-11</td>
<td>1.06e-07</td>
<td>16.4</td>
</tr>
<tr>
<td>ILMN_1787750</td>
<td>-5.68</td>
<td>6.30</td>
<td>-23.9</td>
<td>4.20e-11</td>
<td>1.06e-07</td>
<td>16.2</td>
</tr>
<tr>
<td>ILMN_1669819</td>
<td>2.52</td>
<td>5.50</td>
<td>23.8</td>
<td>1.36e-11</td>
<td>1.06e-07</td>
<td>16.2</td>
</tr>
<tr>
<td>ILMN_1777998</td>
<td>-4.78</td>
<td>6.26</td>
<td>-23.1</td>
<td>4.23e-11</td>
<td>1.15e-07</td>
<td>15.9</td>
</tr>
<tr>
<td>ILMN_1701933</td>
<td>-5.26</td>
<td>6.27</td>
<td>-22.8</td>
<td>4.19e-11</td>
<td>1.15e-07</td>
<td>15.7</td>
</tr>
<tr>
<td>ILMN_1777199</td>
<td>-5.47</td>
<td>6.36</td>
<td>-22.8</td>
<td>4.23e-11</td>
<td>1.15e-07</td>
<td>15.7</td>
</tr>
<tr>
<td>ILMN_1708303</td>
<td>4.09</td>
<td>5.94</td>
<td>22.5</td>
<td>4.76e-11</td>
<td>1.15e-07</td>
<td>15.6</td>
</tr>
</tbody>
</table>

17.3.8 Signature genes for luminal progenitor cells

Now we find genes uniquely expressed in LP cells, as compared to MS and ML. We refit the linear model, making LP the reference cell type:

> ct <- relevel(ct, ref="LP")
> design <- model.matrix(~ct)
> fit <- lmFit(y, design, block=targets$Donor, correlation=dupcor$consensus.correlation)
> fit2 <- fit[,c("ctMS","ctML")]
> fit2 <- eBayes(fit2, trend=TRUE)

The we find all those genes that are up-regulated in LP vs both MS and ML, using a 2-fold-change and 5% FDR:

> results <- decideTests(fit2, lfc=1)
> vennDiagram(results, include=c("up","down"))
There are 197 positive signature genes and 413 negative. To see the top positive signature genes with their fold-changes:

```r
> LP.sig <- rowSums(results>0)==2
> topTable(fit2[LP.sig,])
```

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ctMS</th>
<th>ctML</th>
<th>AveExpr</th>
<th>F</th>
<th>P.Value</th>
<th>adj.P.Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMN_1716370</td>
<td>TNS4</td>
<td>4.87</td>
<td>1.47</td>
<td>6.81</td>
<td>156.3</td>
<td>3.31e-09</td>
</tr>
<tr>
<td>ILMN_1810054</td>
<td>CNN1</td>
<td>6.41</td>
<td>1.42</td>
<td>8.47</td>
<td>146.0</td>
<td>4.88e-09</td>
</tr>
<tr>
<td>ILMN_1713744</td>
<td>C1orf132</td>
<td>3.85</td>
<td>1.74</td>
<td>7.34</td>
<td>103.5</td>
<td>2.21e-06</td>
</tr>
<tr>
<td>ILMN_1720513</td>
<td>SETBP1</td>
<td>4.17</td>
<td>1.27</td>
<td>8.27</td>
<td>92.5</td>
<td>3.09e-06</td>
</tr>
<tr>
<td>ILMN_1767662</td>
<td>LASS6</td>
<td>2.60</td>
<td>1.98</td>
<td>10.01</td>
<td>85.2</td>
<td>3.46e-06</td>
</tr>
<tr>
<td>ILMN_1681984</td>
<td>GALNT10</td>
<td>3.54</td>
<td>1.23</td>
<td>8.09</td>
<td>84.2</td>
<td>3.46e-06</td>
</tr>
<tr>
<td>ILMN_1731374</td>
<td>CPE</td>
<td>4.23</td>
<td>3.01</td>
<td>9.12</td>
<td>81.9</td>
<td>3.46e-06</td>
</tr>
<tr>
<td>ILMN_1769639</td>
<td>FMOD</td>
<td>3.57</td>
<td>2.24</td>
<td>8.21</td>
<td>75.7</td>
<td>4.65e-06</td>
</tr>
<tr>
<td>ILMN_1743933</td>
<td>TSHZ3</td>
<td>3.94</td>
<td>1.22</td>
<td>8.93</td>
<td>72.6</td>
<td>5.21e-06</td>
</tr>
<tr>
<td>ILMN_1721876</td>
<td>TIMP2</td>
<td>3.57</td>
<td>1.38</td>
<td>10.10</td>
<td>69.0</td>
<td>6.17e-06</td>
</tr>
</tbody>
</table>

17.4 Time Course Effects of Corn Oil on Rat Thymus with Agilent 4x44K Arrays

17.4.1 Introduction

This case study analyses a time-course experiment using single-channel Agilent Whole Rat Genome Microarray 4x44K v3 arrays.

The experiment concerns the effect of corn oil on gene expression in the thymus or rats. The data was submitted by Hong Weiguo to ArrayExpress as series E-GEOD-33005. The description of the experiment reads:

“To investigate the effects of corn oil (CO), common drug vehicle, on the gene expression profiles in rat thymus with microarray technique. Female Wistar Rats were administered daily with normal saline (NS), CO 2, 5, 10 ml/kg for 14 days, respectively. Then, the thymus samples of rats were collected for microarray test and histopathology examination. The microarray data showed that 0, 40, 458 differentially expressed genes (DEGs) in 2, 5, 10 ml/kg CO group compared to NS group, respectively. The altered genes were associated with immune response, cellular response to organic cyclic substance, regulation of fatty acid beta-oxidation, et al. However, no obvious histopathologic change was observed in the three CO dosage groups. These data show that 10 ml/kg CO, that dosage has been determined as the vehicle in drug safety assessment, can cause obvious influence on gene expression in rat thymus. Our study suggest that the dosage of CO gavage as the vehicle for water-in-soluble agents in drug development should be no more than 5 ml/kg if agents’ molecular effects in thymus want to be assessed. Gene expression in thymus from female Wistar rats daily administered with 2, 5, 10 ml/kg of corn oil or 10 ml/kg of saline by gavage for 14 consecutive days were measured using Agilent Rat Whole Genome 8×60K array.”

17.4.2 Data availability

All files were downloaded from http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-33005. The data is also available as GEO series GSE33005.

Using R, the data can be downloaded to your working directory by:
17.4.3 Reading the data

First we read the sample and data relationship format (SDRF) file. This is equivalent to what is known as the “targets file” in limma:

```r
> SDRF <- read.delim("E-GEOD-33005.sdrf.txt",check.names=FALSE,stringsAsFactors=FALSE)
> SDRF[,c("Array Data File","Characteristics\[treatment\]")]

Array Data File Characteristics[treatment]
1 GSM819076_US10283824_252828210181_S01_GE1_107_Sep09_1_4.txt 10 ml/kg corn oil
2 GSM819075_US10283824_252828210181_S01_GE1_107_Sep09_1_3.txt 10 ml/kg corn oil
3 GSM819074_US10283824_252828210181_S01_GE1_107_Sep09_1_2.txt 5 ml/kg corn oil
4 GSM819073_US10283824_252828210180_S01_GE1_107_Sep09_1_4.txt 2 ml/kg corn oil
5 GSM819072_US10283824_252828210180_S01_GE1_107_Sep09_1_3.txt 2 ml/kg corn oil
6 GSM819071_US10283824_252828210180_S01_GE1_107_Sep09_1_2.txt 10 ml/kg saline
7 GSM819070_US10283824_252828210180_S01_GE1_107_Sep09_1_1.txt 10 ml/kg saline
8 GSM819069_US10283824_252828210179_S01_GE1_107_Sep09_1_4.txt 10 ml/kg saline
9 GSM819068_US10283824_252828210179_S01_GE1_107_Sep09_1_3.txt 10 ml/kg corn oil
10 GSM819067_US10283824_252828210179_S01_GE1_107_Sep09_1_2.txt 10 ml/kg corn oil
11 GSM819066_US10283824_252828210179_S01_GE1_107_Sep09_1_1.txt 10 ml/kg corn oil
12 GSM819065_US10283824_252828210178_S01_GE1_107_Sep09_1_4.txt 5 ml/kg corn oil
13 GSM819064_US10283824_252828210178_S01_GE1_107_Sep09_1_3.txt 5 ml/kg corn oil
14 GSM819063_US10283824_252828210178_S01_GE1_107_Sep09_1_2.txt 5 ml/kg corn oil
15 GSM819062_US10283824_252828210178_S01_GE1_107_Sep09_1_1.txt 2 ml/kg corn oil
16 GSM819061_US10283824_252828210177_S01_GE1_107_Sep09_1_4.txt 2 ml/kg corn oil
17 GSM819060_US10283824_252828210177_S01_GE1_107_Sep09_1_3.txt 2 ml/kg corn oil
18 GSM819059_US10283824_252828210177_S01_GE1_107_Sep09_1_2.txt 10 ml/kg saline
19 GSM819058_US10283824_252828210177_S01_GE1_107_Sep09_1_1.txt 10 ml/kg saline

We are interested in the treatment column:

```r
> Treatment <- SDRF[,"Characteristics[treatment]"

We set the saline control to be the first level of the Treatment factor.

```r
> levels <- c("10 ml/kg saline","2 ml/kg corn oil","5 ml/kg corn oil","10 ml/kg corn oil")
> Treatment <- factor(Treatment, levels=levels)

Next read the intensity data:

```r
> x <- read.maimages(SDRF[,"Array Data File"],
+ source="agilent", green.only=TRUE, other.columns="gIsWellAboveBG")
```

Read GSM819076_US10283824_252828210181_S01_GE1_107_Sep09_1_4.txt
Read GSM819075_US10283824_252828210181_S01_GE1_107_Sep09_1_3.txt
Read GSM819074_US10283824_252828210181_S01_GE1_107_Sep09_1_2.txt
Read GSM819073_US10283824_252828210180_S01_GE1_107_Sep09_1_4.txt
Read GSM819072_US10283824_252828210180_S01_GE1_107_Sep09_1_3.txt
Read GSM819071_US10283824_252828210180_S01_GE1_107_Sep09_1_2.txt
Read GSM819070_US10283824_252828210180_S01_GE1_107_Sep09_1_1.txt
Read GSM819069_US10283824_252828210179_S01_GE1_107_Sep09_1_4.txt
Read GSM819068_US10283824_252828210179_S01_GE1_107_Sep09_1_3.txt
Read GSM819067_US10283824_252828210179_S01_GE1_107_Sep09_1_2.txt
Read GSM819066_US10283824_252828210179_S01_GE1_107_Sep09_1_1.txt
Read GSM819065_US10283824_252828210178_S01_GE1_107_Sep09_1_4.txt
Read GSM819064_US10283824_252828210178_S01_GE1_107_Sep09_1_3.txt
Read GSM819063_US10283824_252828210178_S01_GE1_107_Sep09_1_2.txt
Read GSM819062_US10283824_252828210178_S01_GE1_107_Sep09_1_1.txt
Read GSM819061_US10283824_252828210177_S01_GE1_107_Sep09_1_4.txt
Read GSM819060_US10283824_252828210177_S01_GE1_107_Sep09_1_3.txt
Read GSM819059_US10283824_252828210177_S01_GE1_107_Sep09_1_2.txt
Read GSM819058_US10283824_252828210177_S01_GE1_107_Sep09_1_1.txt
Note that we have read in the extra column `gIsWellAboveBG`, which records whether the intensity of each spot is considered above the background level for that array. This column will help us later with probe filtering.

The data has 44,254 probes and 19 arrays:

```r
> dim(x)
[1] 44254 19
```

### 17.4.4 Gene annotation

We can use the annotation package for this type of Agilent array, `RnAgilentDesign028282.db`, to get gene symbols and Entrez Gene Ids from the probe Ids:

```r
> library(RnAgilentDesign028282.db)
> x$genes$EntrezID <- mapIds(RnAgilentDesign028282.db, x$genes$ProbeName, + keytype="PROBEID", column="ENTREZID")
> x$genes$Symbol <- mapIds(RnAgilentDesign028282.db, x$genes$ProbeName, + keytype="PROBEID", column="SYMBOL")
```

<table>
<thead>
<tr>
<th>Row</th>
<th>Col</th>
<th>ControlType</th>
<th>ProbeName</th>
<th>SystematicName</th>
<th>EntrezID</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>3</td>
<td>34</td>
<td>0 A_42_P642757</td>
<td>NM_031235</td>
<td>81918</td>
<td>Pard3</td>
</tr>
<tr>
<td>202</td>
<td>3</td>
<td>35</td>
<td>0 A_64_P066694</td>
<td>A_64_P066694</td>
<td>&lt;NA&gt;</td>
<td>&lt;NA&gt;</td>
</tr>
<tr>
<td>203</td>
<td>3</td>
<td>36</td>
<td>0 A_42_P699201</td>
<td>XM_227798</td>
<td>295538</td>
<td>Depdc1</td>
</tr>
<tr>
<td>204</td>
<td>3</td>
<td>37</td>
<td>0 A_42_P591944</td>
<td>NM_172093</td>
<td>94164</td>
<td>Hbg1</td>
</tr>
<tr>
<td>205</td>
<td>3</td>
<td>38</td>
<td>0 A_44_P115293</td>
<td>NM_001108294</td>
<td>360611</td>
<td>Copz2</td>
</tr>
</tbody>
</table>

### 17.4.5 Background correction and normalize

We use `normexp` background correction followed by quantile normalization:

```r
> y <- backgroundCorrect(x, method="normexp")
```
17.4.6 Gene filtering

We will filter out control probes as indicated by the ControlType column:

```r
Control <- y$genes$ControlType==1L
```

We will also filter out probes with no Entrez Gene Id or Symbol

```r
NoSymbol <- is.na(y$genes$Symbol)
```

Finally, we will filter probes that don’t appear to be expressed. We keep probes that are above background on at least four arrays (because there are four replicates of each treatment):

```r
IsExpr <- rowSums(y$other$gIsWellAboveBG > 0) >= 4
```

Now we select the probes to keep in a new data object `yfilt`:

```r
yfilt <- y[!Control & !NoSymbol & IsExpr,]
```

To be tidy, we remove annotation columns we no longer need:

```r
yfilt$genes <- yfilt$genes[,c("ProbeName","Symbol","EntrezID")]
```

Head of the `yfilt$genes`:

<table>
<thead>
<tr>
<th>ProbeName</th>
<th>Symbol</th>
<th>EntrezID</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 A_64_P002176</td>
<td>Wdfy3</td>
<td>305164</td>
</tr>
<tr>
<td>14 A_42_P664913</td>
<td>Ankrd37</td>
<td>361149</td>
</tr>
<tr>
<td>15 A_43_P13320</td>
<td>Ifng</td>
<td>25712</td>
</tr>
<tr>
<td>18 A_43_P11804</td>
<td>Ptn</td>
<td>24924</td>
</tr>
<tr>
<td>19 A_44_P808710</td>
<td>Rd3</td>
<td>684158</td>
</tr>
<tr>
<td>20 A_64_P142111</td>
<td>Gxylt1</td>
<td>300173</td>
</tr>
</tbody>
</table>

17.4.7 Differential expression

Now we can find genes differentially expressed for the corn oil treatments compared to the saline control:

```r
design <- model.matrix(~Treatment)
fit <- lmFit(yfilt,design)
fit <- eBayes(fit,trend=TRUE,robust=TRUE)
summary(decideTests(fit[,-1]))
```

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml/kg corn oil</td>
<td>757</td>
</tr>
<tr>
<td>ml/kg saline</td>
<td>27107</td>
</tr>
<tr>
<td>ml/kg corn oil</td>
<td>27107</td>
</tr>
<tr>
<td>ml/kg saline</td>
<td>24818</td>
</tr>
</tbody>
</table>

It appears that only the 10 ml/kg treatment is different from the saline control. The top 20 genes for the 10 ml/kg treatment are as follows:
17.4.8 Gene ontology analysis

```r
> g <- goana(fit, coef=4, species="Rn", geneid="EntrezID")
> topGO(g, n=20, truncate="50")
```

<table>
<thead>
<tr>
<th>Term</th>
<th>Ont</th>
<th>N</th>
<th>Up</th>
<th>Down</th>
<th>P.Up</th>
<th>P.Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0005615 extracellular space</td>
<td>CC</td>
<td>123</td>
<td>123</td>
<td>29</td>
<td>0.87301</td>
<td></td>
</tr>
<tr>
<td>GO:0002475 antigen processing and presentation via MHC clas...</td>
<td>BP</td>
<td>24</td>
<td>12</td>
<td>3</td>
<td>0.03693</td>
<td></td>
</tr>
<tr>
<td>GO:0002484 antigen processing and presentation of endogeno...</td>
<td>BP</td>
<td>20</td>
<td>11</td>
<td>2</td>
<td>0.12633</td>
<td></td>
</tr>
<tr>
<td>GO:0002476 antigen processing and presentation of endogeno...</td>
<td>BP</td>
<td>20</td>
<td>11</td>
<td>2</td>
<td>0.12633</td>
<td></td>
</tr>
<tr>
<td>GO:0002483 antigen processing and presentation of endogeno...</td>
<td>BP</td>
<td>29</td>
<td>13</td>
<td>2</td>
<td>0.22640</td>
<td></td>
</tr>
<tr>
<td>GO:0042605 peptide antigen binding</td>
<td>MF</td>
<td>29</td>
<td>13</td>
<td>2</td>
<td>0.22640</td>
<td></td>
</tr>
<tr>
<td>GO:0002428 antigen processing and presentation of peptide ...</td>
<td>BP</td>
<td>21</td>
<td>11</td>
<td>2</td>
<td>0.13689</td>
<td></td>
</tr>
<tr>
<td>GO:0001916 positive regulation of T cell mediated cytotoxic...</td>
<td>BP</td>
<td>36</td>
<td>14</td>
<td>5</td>
<td>0.00477</td>
<td></td>
</tr>
<tr>
<td>GO:0019883 antigen processing and presentation of endogeno...</td>
<td>BP</td>
<td>31</td>
<td>13</td>
<td>4</td>
<td>0.01477</td>
<td></td>
</tr>
<tr>
<td>GO:0019885 antigen processing and presentation of endogeno...</td>
<td>BP</td>
<td>27</td>
<td>12</td>
<td>2</td>
<td>0.20345</td>
<td></td>
</tr>
<tr>
<td>GO:0001914 regulation of T cell mediated cytotoxicity</td>
<td>BP</td>
<td>43</td>
<td>15</td>
<td>5</td>
<td>0.01021</td>
<td></td>
</tr>
<tr>
<td>GO:0006955 immune response</td>
<td>BP</td>
<td>1286</td>
<td>133</td>
<td>46</td>
<td>0.16954</td>
<td></td>
</tr>
<tr>
<td>GO:0002486 antigen processing and presentation of endogeno...</td>
<td>BP</td>
<td>19</td>
<td>10</td>
<td>2</td>
<td>0.11597</td>
<td></td>
</tr>
<tr>
<td>GO:0005676 extracellular region</td>
<td>CC</td>
<td>1561</td>
<td>154</td>
<td>43</td>
<td>0.81826</td>
<td></td>
</tr>
<tr>
<td>GO:0044419 biological process involved in interspecies int...</td>
<td>BP</td>
<td>1279</td>
<td>131</td>
<td>44</td>
<td>0.25265</td>
<td></td>
</tr>
<tr>
<td>GO:0009607 response to biotic stimulus</td>
<td>BP</td>
<td>1207</td>
<td>125</td>
<td>41</td>
<td>0.29000</td>
<td></td>
</tr>
<tr>
<td>GO:0002474 antigen processing and presentation of peptide ...</td>
<td>BP</td>
<td>36</td>
<td>13</td>
<td>2</td>
<td>0.30741</td>
<td></td>
</tr>
<tr>
<td>GO:0048002 antigen processing and presentation of peptide ...</td>
<td>BP</td>
<td>56</td>
<td>16</td>
<td>4</td>
<td>0.09510</td>
<td></td>
</tr>
<tr>
<td>GO:0019882 antigen processing and presentation</td>
<td>BP</td>
<td>93</td>
<td>21</td>
<td>6</td>
<td>0.06876</td>
<td></td>
</tr>
<tr>
<td>GO:0051707 response to other organism</td>
<td>BP</td>
<td>1175</td>
<td>120</td>
<td>41</td>
<td>0.23277</td>
<td></td>
</tr>
</tbody>
</table>

> sessionInfo()

R version 4.1.2 (2021-11-01)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19043)

Matrix products: default

locale:
attached base packages:
[1] stats4  stats  graphics  grDevices  utils  datasets  methods  base

other attached packages:
[1] RnAgilentDesign028282.db_3.2.3 org.Rn.eg.db_3.14.0 AnnotationDbi_1.56.2
[4] IRanges_2.28.0 S4Vectors_0.32.2 Biobase_2.54.0
[7] BiocGenerics_0.40.0 limma_3.50.0

loaded via a namespace (and not attached):
[1] Rcpp_1.0.7       XVector_0.34.0    splines_4.1.2    zlibbioc_1.40.0
[5] statsmod_1.4.36 bit_4.0.4         R6_2.5.1         rlang_0.4.12
[9] fastmap_1.1.0   blob_1.2.2        httr_1.4.2       GenomeInfoDb_1.30.0
[13] tools_4.1.2     png_0.1-7         DBI_1.1.1         bit64_4.0.5
[17] crayon_1.4.2    GenomeInfoDbData_1.2.7 vctrs_0.3.8      bitops_1.0-7
[21] KEGGREST_1.34.0 RCurl_1.98-1.5   memoise_2.0.0     cachem_1.0.6
[25] RSQLite_2.2.8    GO.db_3.14.0     compiler_4.1.2   Biostrings_2.62.0
[29] pkgconfig_2.0.3
Chapter 18
RNA-Seq Case Studies

18.1 Profiles of Yoruba HapMap Individuals

18.1.1 Background
RNA-seq profiles were made of cell lines derived from B-lymphocytes from 69 different Yoruba individuals from Ibadan, Nigeria [22] [23]. The profiles were generated as part of the International HapMap project [10]. RNA from each individual was sequenced on at least two lanes of an Illumina Genome Analyser 2.

The study group here is essentially an opportunity sample and the individuals are likely to be genetically diverse. In this analysis we look at genes that are differentially expressed between males and female.

This case study requires limma 3.9.19 or later.

18.1.2 Data availability
The raw FASTQ files used for this example are available from the URLs given below. For those who wish to skip the alignment and count summarization steps, the DGEList object used for the statistical analysis can be downloaded from http://bioinf.wehi.edu.au/limma/.

18.1.3 Yoruba Individuals and FASTQ Files
Sequence reads of the Yoruba HapMap cell lines are available at Pritchard Lab’s eQTL resources at http://eqtl.uchicago.edu/RNA_Seq_data/unmapped_reads/ in FASTQ format. Sample information are recorded at Pritchard Lab’s eQTL resources at http://eqtl.uchicago.edu/RNA_Seq_data/list_lanes_pickrell_2010_plosgenetics. Genders of the individuals are available at the International HapMap Project NHGRI Repository at http://ccr.coriell.org/.

We will only use the read sequenced at Argonne National Laboratory. All lanes from the Argonne center were sequenced with 46 bp reads.

```r
> Targets <- read.delim("targets.txt", sep = \"\t\")
> Targets

 center flow_cell lane individual concentration cellline gender
 1 argonne 090617_RGAC_S100091 5 NA18486 3.5 NA18486 Male
 2 argonne 090330_RGAC_S100065 3 NA18498_2 3.5 NA18498 Male
 3 argonne 090218_RGAC_S100047_PIPELINE_V2 7 NA18498 2.5 NA18498 Male
```
<table>
<thead>
<tr>
<th>ID</th>
<th>Specimen ID</th>
<th>Age</th>
<th>Sex</th>
<th>Genotype</th>
<th>Group</th>
<th>Gender</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>argonne 090312_HGAC_S100055</td>
<td>090312_HGAC_S100055</td>
<td>5</td>
<td>NA18499</td>
<td>NA18499</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090113_HGAC_S100037_PIPELINE_V2</td>
<td>090113_HGAC_S100037_PIPELINE_V2</td>
<td>5</td>
<td>NA18501</td>
<td>NA18501</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090722_HGAC_S1000102</td>
<td>090722_HGAC_S1000102</td>
<td>5</td>
<td>NA18502</td>
<td>NA18502</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090417_HGAC_S100073</td>
<td>090417_HGAC_S100073</td>
<td>5</td>
<td>NA18502</td>
<td>NA18502</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090421_HGAC_S100075</td>
<td>090421_HGAC_S100075</td>
<td>3</td>
<td>NA18504</td>
<td>NA18504</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090218_HGAC_S100047_PIPELINE_V2</td>
<td>090218_HGAC_S100047_PIPELINE_V2</td>
<td>1</td>
<td>NA18504</td>
<td>NA18504</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090722_HGAC_S1000102</td>
<td>090722_HGAC_S1000102</td>
<td>8</td>
<td>NA18505</td>
<td>NA18505</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090417_HGAC_S100073</td>
<td>090417_HGAC_S100073</td>
<td>3</td>
<td>NA18505</td>
<td>NA18505</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090520_HGAC_S100083</td>
<td>090520_HGAC_S100083</td>
<td>3</td>
<td>NA18507</td>
<td>NA18507</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090330_HGAC_S100065</td>
<td>090330_HGAC_S100065</td>
<td>1</td>
<td>NA18511</td>
<td>NA18511</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090421_HGAC_S100075</td>
<td>090421_HGAC_S100075</td>
<td>3</td>
<td>NA18516</td>
<td>NA18516</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090312_HGAC_S100055</td>
<td>090312_HGAC_S100055</td>
<td>1</td>
<td>NA18516</td>
<td>NA18516</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090421_HGAC_S100075</td>
<td>090421_HGAC_S100075</td>
<td>5</td>
<td>NA18517</td>
<td>NA18517</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090520_HGAC_S100083</td>
<td>090520_HGAC_S100083</td>
<td>5</td>
<td>NA18517</td>
<td>NA18517</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090312_HGAC_S100055</td>
<td>090312_HGAC_S100055</td>
<td>8</td>
<td>NA18519</td>
<td>NA18519</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090330_HGAC_S100065</td>
<td>090330_HGAC_S100065</td>
<td>2</td>
<td>NA18520</td>
<td>NA18520</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090617_HGAC_S100091</td>
<td>090617_HGAC_S100091</td>
<td>8</td>
<td>NA18522</td>
<td>NA18522</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090520_HGAC_S100083</td>
<td>090520_HGAC_S100083</td>
<td>2</td>
<td>NA18523</td>
<td>NA18523</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090617_HGAC_S100091</td>
<td>090617_HGAC_S100091</td>
<td>5</td>
<td>NA18525</td>
<td>NA18525</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090414_HGAC_S100072</td>
<td>090414_HGAC_S100072</td>
<td>7</td>
<td>NA18852</td>
<td>NA18852</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090312_HGAC_S100055</td>
<td>090312_HGAC_S100055</td>
<td>1</td>
<td>NA18856</td>
<td>NA18856</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090421_HGAC_S100075</td>
<td>090421_HGAC_S100075</td>
<td>1</td>
<td>NA18856</td>
<td>NA18856</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090113_HGAC_S100037_PIPELINE_V2</td>
<td>090113_HGAC_S100037_PIPELINE_V2</td>
<td>6</td>
<td>NA18912</td>
<td>NA18912</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090414_HGAC_S100072</td>
<td>090414_HGAC_S100072</td>
<td>8</td>
<td>NA18913</td>
<td>NA18913</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090414_HGAC_S100072</td>
<td>090414_HGAC_S100072</td>
<td>5</td>
<td>NA18916</td>
<td>NA18916</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090103_HGAC_S1000131</td>
<td>090103_HGAC_S1000131</td>
<td>2</td>
<td>NA19092</td>
<td>NA19092</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090218_HGAC_S100047_PIPELINE_V2</td>
<td>090218_HGAC_S100047_PIPELINE_V2</td>
<td>5</td>
<td>NA19093</td>
<td>NA19093</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090312_HGAC_S100054</td>
<td>090312_HGAC_S100054</td>
<td>3</td>
<td>NA19098</td>
<td>NA19098</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090205_HGAC_S100044_PIPELINE_V2</td>
<td>090205_HGAC_S100044_PIPELINE_V2</td>
<td>8</td>
<td>NA19099</td>
<td>NA19099</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090205_HGAC_S100044_PIPELINE_V2</td>
<td>090205_HGAC_S100044_PIPELINE_V2</td>
<td>1</td>
<td>NA19101</td>
<td>NA19101</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090103_HGAC_S1000131</td>
<td>090103_HGAC_S1000131</td>
<td>8</td>
<td>NA19102</td>
<td>NA19102</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090113_HGAC_S100037_PIPELINE_V2</td>
<td>090113_HGAC_S100037_PIPELINE_V2</td>
<td>2</td>
<td>NA19102</td>
<td>NA19102</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090330_HGAC_S100065</td>
<td>090330_HGAC_S100065</td>
<td>6</td>
<td>NA19108</td>
<td>NA19108</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090421_HGAC_S100075</td>
<td>090421_HGAC_S100075</td>
<td>7</td>
<td>NA19114</td>
<td>NA19114</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090218_HGAC_S100047_PIPELINE_V2</td>
<td>090218_HGAC_S100047_PIPELINE_V2</td>
<td>8</td>
<td>NA19116</td>
<td>NA19116</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090113_HGAC_S100037_PIPELINE_V2</td>
<td>090113_HGAC_S100037_PIPELINE_V2</td>
<td>2</td>
<td>NA19119</td>
<td>NA19119</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090417_HGAC_S100073</td>
<td>090417_HGAC_S100073</td>
<td>2</td>
<td>NA19127</td>
<td>NA19127</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090205_HGAC_S100044_PIPELINE_V2</td>
<td>090205_HGAC_S100044_PIPELINE_V2</td>
<td>2</td>
<td>NA19128</td>
<td>NA19128</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090205_HGAC_S100044_PIPELINE_V2</td>
<td>090205_HGAC_S100044_PIPELINE_V2</td>
<td>3</td>
<td>NA19130</td>
<td>NA19130</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090330_HGAC_S100065</td>
<td>090330_HGAC_S100065</td>
<td>5</td>
<td>NA19131</td>
<td>NA19131</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090722_HGAC_S1000102</td>
<td>090722_HGAC_S1000102</td>
<td>2</td>
<td>NA19137</td>
<td>NA19137</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090417_HGAC_S100073</td>
<td>090417_HGAC_S100073</td>
<td>7</td>
<td>NA19138</td>
<td>NA19138</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090417_HGAC_S100073</td>
<td>090417_HGAC_S100073</td>
<td>1</td>
<td>NA19140</td>
<td>NA19140</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090103_HGAC_S1000131</td>
<td>090103_HGAC_S1000131</td>
<td>6</td>
<td>NA19141</td>
<td>NA19141</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090312_HGAC_S100055</td>
<td>090312_HGAC_S100055</td>
<td>8</td>
<td>NA19143</td>
<td>NA19143</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>argonne 090312_HGAC_S100054</td>
<td>090312_HGAC_S100054</td>
<td>5</td>
<td>NA19144</td>
<td>NA19144</td>
<td>Male</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 18.1.4 Mapping reads to the reference genome

Rsubread 1.14.2 [15] was used to perform read alignment and to summarize read counts at the gene level. The reference genome used in read alignment was GRCh37 (hg19 Genome Reference Consortium Human Build 37), and the annotations used in read summarization were NCBI RefSeq Build 37.2. FASTA files representing the Homo sapiens genome were downloaded from UCSC Human Genome at [http://hgdownload.soe.ucsc.edu/goldenPath/hg19/](http://hgdownload.soe.ucsc.edu/goldenPath/hg19/).

```r
> library(Rsubread)
> FASTQFiles <- paste0(Targets$individual, ".", Targets$center, ".fastq.gz")
> BAMFiles <- paste0(Targets$individual, ".", Targets$center, ".subread.bam")
> buildindex(basename="hg19_subread", reference="GRCh37.fa")
> align("hg19_subread", readfile1 = FASTQFiles, input_format = "gzFASTQ", output_file = BAMFiles)
> gene <- featureCounts(BAMFiles, useMetaFeatures=TRUE, annot.inbuilt="hg19", allowMultiOverlap=TRUE)
> propmap <- propmapped(BAMFiles)
```

Show the number of mapped reads. The average proportion of mapped reads is 0.786. Samples are ordered by the concentration of the cDNA using for sequencing.

```r
> summary(propmap[,"PropMapped")

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.597</td>
<td>0.778</td>
<td>0.798</td>
<td>0.786</td>
<td>0.810</td>
<td>0.828</td>
</tr>
</tbody>
</table>
```

```r
> Targets$concentration <- factor(Targets$concentration)
> o <- order(Targets$concentration)
> barplot(as.matrix(t(cbind(propmap[o,"NumMapped"])*1e-6,
122
Load the gene level counts.

```r
> Counts <- gene$counts
> dim(Counts)

[1] 25702 86

> Counts[1:5,1:5]

       NA18486 NA18498_2 NA18498 NA18499 NA18501
NA18486   653635   100422834   645520 79501 729737
NA18498_2        0          0        0 79501  6
NA18498        0          0          0  6     6
NA18499        0          0          0 729737 4
NA18501        5          0          0  6     4
```

The library sizes vary from over 0.6 million to over 9 million. Samples are ordered by the concentration of the cDNA (pM) using for sequencing.

```r
> col.concent <- c("gold", "orange", "red")
> barplot(colSums(Counts[,o])*1e-6, names = Targets$individual[o], ylab="Library size (millions)",
+ col = col.concent[Targets$concentration[o], las = 2, cex.names = 0.3)
> legend("topleft", legend = c("1.5","2.5","3.5"), col = col.concent, pch = 15, cex = 0.7)
```
To demonstrate limma on RNA-seq data, we will compare female with male individuals.

```r
> table(Targets$gender[!duplicated(Targets$cellline)])

Female  Male
   41    33
```

18.1.5 Annotation

Annotation for each Entrez Gene ID from the NCBI gene info file.

```r
> columns <- c("GeneID","Symbol", "chromosome", "type_of_gene")
> GeneInfo <- read.columns("130811-Homo_sapiens.gene_info", required=columns, stringsAsFactors = FALSE)
> m <- match(gene$annotation$GeneID, GeneInfo$GeneID)
> Ann <- cbind(gene$annotation[, c("GeneID", "Chr", "Length")], GeneInfo[m, c("Symbol", "type_of_gene")])
> Ann$Chr <- unlist(lapply(strsplit(Ann$Chr, ";"), function(x) paste(unique(x), collapse = "|"))
> Ann$Chr <- gsub("chr", "", Ann$Chr)
> head(Ann)

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Chr</th>
<th>Length</th>
<th>Symbol</th>
<th>type_of_gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>28373</td>
<td>653635</td>
<td>1</td>
<td>1769</td>
<td>WASH7P</td>
</tr>
<tr>
<td>37387</td>
<td>100422834</td>
<td>1</td>
<td>138</td>
<td>MIR1302-10</td>
</tr>
<tr>
<td>27617</td>
<td>645520</td>
<td>1</td>
<td>1130</td>
<td>FAM138A</td>
</tr>
<tr>
<td>14957</td>
<td>79501</td>
<td>1</td>
<td>918</td>
<td>OR4F5</td>
</tr>
<tr>
<td>29525</td>
<td>729737</td>
<td>1</td>
<td>3402</td>
<td>LOC729737</td>
</tr>
<tr>
<td>NA</td>
<td>100507658</td>
<td>1</td>
<td>793</td>
<td>&lt;NA&gt;</td>
</tr>
</tbody>
</table>
```
18.1.6 DGEList object

Form a DGEList object combining the counts and associated annotation:

```r
> library(edgeR)
> y <- DGEList(counts = Counts, genes = Ann)
```

18.1.7 Filtering

Keep genes with total counts more than 50.

```r
> A <- rowSums(y$counts)
> isexpr <- A > 50

Keep only genes with defined annotation:

```r
> hasannot <- rowSums(is.na(y$genes)) == 0
> y <- y[isexpr & hasannot, , keep.lib.size = FALSE]
```

```r
> dim(y)
[1] 16918 86
```

18.1.8 Scale normalization

Apply scale normalization:

```r
> y <- calcNormFactors(y)
```

Separation of female and male profiles is evident from an MDS plot.

```r
> Gender <- substring(Targets$gender,1,1)
> plotMDS(y, labels=Gender, top=50, col=ifelse(Gender=="M","blue","red"), gene.selection="common", +
 prior.count = 5)
```
Separation of low cDNA concentration from high cDNA concentration is evident from an MDS plot.

> plotMDS(y, labels=Gender, col=col.concent[Targets$concentration], prior.count=5)
> legend("topleft", legend = c("1.5","2.5","3.5"), col = col.concent, pch = 15)
18.1.9 Linear modeling

Create design matrix.

\[
> \text{design} <- \text{model.matrix}(\sim \text{gender} + \text{concentration}, \text{data} = \text{Targets})
\]

Use \text{voom()} [13] to convert the read counts to log$_2$-cpm, with associated weights, ready for linear modelling:

\[
> \text{v} <- \text{voom}(y, \text{design})
\]

Estimate the correlation between the duplicated cell lines that were sequenced more than once.

\[
> \text{cor} <- \text{duplicateCorrelation}(\text{v}, \text{design}, \text{block} = \text{Targets$cellline})
> \text{cor$consensus}
\]

[1] 0.446
The intra cell line correlation will change the voom weights slightly, so we run voom a second time:

```r
> v <- voom(y, design, plot = TRUE, block = Targets$cellline, correlation = cor$consensus)
```

![voom: Mean-variance trend](image)

Similarly, we run update the correlation for the new voom weights:

```r
> cor <- duplicateCorrelation(v, design, block = Targets$cellline)
> cor$consensus

[1] 0.446
```

The correlation has hardly changed on the second iteration.

Now find genes differentially expression between male and females. Positive log-fold-changes mean higher in males.
```r
fit <- lmFit(v, design, block = Targets$cellline, correlation = cor$consensus)
fit <- eBayes(fit)
summary(decideTests(fit))
```

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>p.Value</th>
<th>adj.P.Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1464</td>
<td>1469</td>
<td>4105</td>
</tr>
<tr>
<td>genderMale</td>
<td>3352</td>
<td>16869</td>
<td>9704</td>
</tr>
<tr>
<td>concentration2.5</td>
<td>13622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concentration3.5</td>
<td>9042</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```r
> topTable(fit, coef = "genderMale", n = Inf, sort = "p", p = 0.05)[-,-1]
```

<table>
<thead>
<tr>
<th>Chr</th>
<th>Length</th>
<th>Symbol</th>
<th>type_of_gene</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>64595</td>
<td>Y</td>
<td>5242</td>
<td>TTTY15</td>
<td>6.529</td>
<td>-0.258</td>
<td>52.97</td>
<td>3.63e-68</td>
<td>6.14e-64</td>
<td>123.983</td>
</tr>
<tr>
<td>6192</td>
<td>Y</td>
<td>897</td>
<td>RPS4Y1</td>
<td>9.691</td>
<td>2.224</td>
<td>44.08</td>
<td>1.91e-61</td>
<td>1.62e-57</td>
<td>117.215</td>
</tr>
<tr>
<td>9086</td>
<td>Y</td>
<td>1390</td>
<td>EIF1AY</td>
<td>7.962</td>
<td>0.659</td>
<td>42.44</td>
<td>4.52e-60</td>
<td>2.55e-56</td>
<td>113.661</td>
</tr>
<tr>
<td>8284</td>
<td>X</td>
<td>19271</td>
<td>XIST</td>
<td>-10.223</td>
<td>4.135</td>
<td>-37.53</td>
<td>1.20e-55</td>
<td>3.37e-52</td>
<td>107.001</td>
</tr>
<tr>
<td>8287</td>
<td>Y</td>
<td>10040</td>
<td>USP9Y</td>
<td>5.693</td>
<td>1.982</td>
<td>36.51</td>
<td>1.14e-54</td>
<td>2.75e-51</td>
<td>107.303</td>
</tr>
<tr>
<td>7404</td>
<td>Y</td>
<td>7055</td>
<td>UTY</td>
<td>5.945</td>
<td>1.670</td>
<td>34.29</td>
<td>1.93e-52</td>
<td>4.08e-49</td>
<td>102.661</td>
</tr>
<tr>
<td>8288</td>
<td>Y</td>
<td>10040</td>
<td>USP9Y</td>
<td>5.693</td>
<td>1.982</td>
<td>36.51</td>
<td>1.14e-54</td>
<td>2.75e-51</td>
<td>107.303</td>
</tr>
<tr>
<td>7543</td>
<td>X</td>
<td>5772</td>
<td>KDM6A</td>
<td>-0.699</td>
<td>0.751</td>
<td>-4.08</td>
<td>4.08e-02</td>
<td>6.90e-02</td>
<td>12.512</td>
</tr>
<tr>
<td>100506003</td>
<td>Y</td>
<td>525</td>
<td>ZFY-AS1</td>
<td>1.689</td>
<td>-2.543</td>
<td>9.67</td>
<td>1.83e-15</td>
<td>1.82e-12</td>
<td>24.206</td>
</tr>
<tr>
<td>7543</td>
<td>X</td>
<td>7883</td>
<td>ZFX</td>
<td>-0.739</td>
<td>5.039</td>
<td>-8.56</td>
<td>3.52e-13</td>
<td>2.83e-10</td>
<td>19.434</td>
</tr>
<tr>
<td>8226</td>
<td>X</td>
<td>2447</td>
<td>HDH1D</td>
<td>-0.900</td>
<td>5.373</td>
<td>-10.99</td>
<td>2.56e-16</td>
<td>2.92e-13</td>
<td>26.572</td>
</tr>
</tbody>
</table>
```

129
As expected, the highly ranked genes are mostly on the X or Y chromosomes.

```
> chrom <- fit$genes$Chr
> plotMD(fit, column=2, status=chrom, values=c("X","Y", "X|Y"),
+       hl.col=c("red","blue", "green3"), main="Male vs Female",legend="bottomright")
> abline(h=0,col="darkgrey")
```

18.1.10 Gene set testing

Get the list of genes belonging to the male-specific region of chromosome Y [31], and a list of genes located in the X chromosome that have been reported to escape X-inactivation [4]. The gender
genes are available at http://bioinf.wehi.edu.au/software/GenderGenes/. We expect genes in the first list to be up-regulated in males, whereas genes in the second list should be up-regulated in females.

```r
> load(url("http://bioinf.wehi.edu.au/software/GenderGenes/GenderGenes.RData"))
> Ymale <- v$genes$GeneID %in% msYgenes
> Xescape <- v$genes$GeneID %in% XiEgenes
```

Roast gene set tests confirm that the male-specific genes are significantly up as a group in our comparison of males with females, whereas the X genes are significantly down as a group [41]:

```r
> index <- list(Y = Ymale, X = Xescape)
> mroast(v,index,design,2, block = Targets$cellline, correlation = cor$consensus, nrot=9999)
```

<table>
<thead>
<tr>
<th>NGenes</th>
<th>PropDown</th>
<th>PropUp</th>
<th>Direction</th>
<th>PValue</th>
<th>FDR</th>
<th>PValue.Mixed</th>
<th>FDR.Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>13</td>
<td>0.000</td>
<td>Up</td>
<td>1e-04</td>
<td>1e-04</td>
<td>1e-04</td>
<td>1e-04</td>
</tr>
<tr>
<td>X</td>
<td>54</td>
<td>0.574</td>
<td>0.0926</td>
<td>Down</td>
<td>1e-04</td>
<td>1e-04</td>
<td>1e-04</td>
</tr>
</tbody>
</table>

The results from competitive camera gene sets tests are even more convincing [42]:

```r
> camera(v,index,design,2)
```

<table>
<thead>
<tr>
<th>NGenes</th>
<th>Direction</th>
<th>PValue</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Up</td>
<td>2.40e-262</td>
<td>4.80e-262</td>
</tr>
<tr>
<td>X</td>
<td>Down</td>
<td>5.58e-26</td>
<td>5.58e-26</td>
</tr>
</tbody>
</table>

We can highlight the male-specific and X-escape genes on the mean-difference plot:

```r
> status <- rep("Other",nrow(fit))
> status[Ymale] <- "Ymale"
> status[Xescape] <- "Xescape"
> plotMD(fit,column=2,status=status,values=c("Xescape","Ymale"),hl.col=c("blue","red"),

+ main="Male vs Female",legend="bottomright")
> abline(h=0,col="darkgrey")
```
Another way to view the gene sets is to view the ranking of the Y and X specific genes in the differential expression results. This shows that, with a couple of exceptions, the Y specific genes are highly ranked (positive) while the X specific genes are low ranked (negative):

```
> barcodeplot(fit$t[,2], Ymale, Xescape, labels=c("Down in male","Up in male"))
> legend("top",legend=c("Ymale genes","Xescape genes"),lty=1,col=c("red","blue"))
```
18.1.11 Session information

```r
> sessionInfo()

R version 4.1.0 (2021-05-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252

attached base packages:
```

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Down in male</th>
<th>Up in male</th>
</tr>
</thead>
<tbody>
<tr>
<td>−37.53</td>
<td>−1.65</td>
<td>−1.11</td>
</tr>
<tr>
<td>−0.71</td>
<td>−0.37</td>
<td>−0.05</td>
</tr>
<tr>
<td>0.27</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>1.54</td>
<td>52.97</td>
<td></td>
</tr>
</tbody>
</table>

![Plot showing gene expression in male and escape genes](plot.png)

Ymale genes

Xescape genes
18.1.12 Acknowledgements

Thanks for Yang Liao for mapping the reads and running featureCounts.

18.2 Differential Splicing after Pasilla Knockdown

18.2.1 Background

This case study re-analyzes data produced by Brooks et al [2].

The proteins NOVA1 and NOVA2 are known to regulate splicing in mammals. Brooks et al used *Drosophila melanogaster* as a model system, and used an RNA interference system (RNAi) to knock down the expression of the *D. melanogaster* ortholog of NOVA1 and NOVA2, which is Pasilla (ps). The experiment compared treated and untreated cells from the S2-DRSC cell line.

In this case study we find exons and genes that are differentially expressed after ps knockdown, and we find genes are that are differentially spliced in the knockdown samples as compared to wild-type.

For completeness, we will describe all the steps in the analysis from raw data files including mapping and alignment. If you want to skip the mapping and read counting steps, go straight to Section 18.2.6 where the statistical analysis begins.

18.2.2 GEO samples and SRA Files


```r
> library(limma)
> GEO <- readTargets("GEO-samples.csv", sep=",")
> GEO

<table>
<thead>
<tr>
<th>GEO</th>
<th>Title</th>
<th>Pasilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>Normal</td>
</tr>
<tr>
<td>GSM461177</td>
<td>S2_DRSC_Untreated-3</td>
<td>Normal</td>
</tr>
<tr>
<td>GSM461178</td>
<td>S2_DRSC_Untreated-4</td>
<td>Normal</td>
</tr>
<tr>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>Down</td>
</tr>
<tr>
<td>GSM461180</td>
<td>S2_DRSC_CG8144_RNAi-3</td>
<td>Down</td>
</tr>
<tr>
<td>GSM461181</td>
<td>S2_DRSC_CG8144_RNAi-4</td>
<td>Down</td>
</tr>
</tbody>
</table>
```

There are three untreated biological samples, in which ps should be expressed at normal levels, and three treated biological samples, in which ps should be expressed at reduced levels.
While GEO records the sample information, the sequencing data file are actually held on the NCBI Short Read Archive (SRA). The RNA samples were sequenced on an Illumina Genome Analyzer II. Multiple sequencing runs were used for several of the samples, resulting in a total of 20 SRA files:

```
> SRA <- readTargets("SRA-Files.csv", sep=",")
> SRA

<table>
<thead>
<tr>
<th>SRA</th>
<th>GEO</th>
<th>Title</th>
<th>RunDate</th>
<th>FlowCellID</th>
<th>Type</th>
<th>ReadLength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR031708</td>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>7/15/08</td>
<td>308T2AAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031709</td>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>7/15/08</td>
<td>308T2AAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031710</td>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031711</td>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031712</td>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031713</td>
<td>GSM461176</td>
<td>S2_DRSC_Untreated-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031714</td>
<td>GSM461177</td>
<td>S2_DRSC_Untreated-3</td>
<td>11/14/08</td>
<td>30MNEAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031715</td>
<td>GSM461177</td>
<td>S2_DRSC_Untreated-3</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031716</td>
<td>GSM461178</td>
<td>S2_DRSC_Untreated-4</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031717</td>
<td>GSM461178</td>
<td>S2_DRSC_Untreated-4</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031718</td>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>7/15/08</td>
<td>308T2AAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031719</td>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>7/18/08</td>
<td>308UEAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031720</td>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031721</td>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031722</td>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031723</td>
<td>GSM461179</td>
<td>S2_DRSC_CG8144_RNAi-1</td>
<td>8/15/08</td>
<td>30AYWAAXX</td>
<td>SE</td>
<td>45</td>
</tr>
<tr>
<td>SRR031724</td>
<td>GSM461180</td>
<td>S2_DRSC_CG8144_RNAi-3</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031725</td>
<td>GSM461180</td>
<td>S2_DRSC_CG8144_RNAi-3</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031726</td>
<td>GSM461181</td>
<td>S2_DRSC_CG8144_RNAi-4</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
<tr>
<td>SRR031727</td>
<td>GSM461181</td>
<td>S2_DRSC_CG8144_RNAi-4</td>
<td>12/23/08</td>
<td>30M2BAAXX</td>
<td>PE</td>
<td>37</td>
</tr>
</tbody>
</table>
```

Run dates are in American format, so that 7/15/08 denotes 15 July 2008. All runs in July and August 2008 used single end (SE) sequencing with 45 base-pair reads, while the later runs used paired end (PE) sequencing with 37 bp reads.

18.2.3 Mapping reads to the reference genome

The reads were mapped to the reference *D. melanogaster* genome using Rsubread [15].

First the SRA format files need to be converted to FASTQ format, which is the *de facto* standard for representing high-throughput sequencing data. The was done using the SRA Toolkit version 2.3.4. Specifically the Unix SRA toolkit command `fastq-dump --split-spot --split-files` was used to produce one FASTQ file for each single-end SRA file and two FASTQ files for each paired-end SRA file.

Second, FASTA files representing the *D. melanogaster* genome were downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48. There are five FASTA files corresponding to chromosome arms:

```
> DM <- readTargets("FASTA-GFF-files.csv",sep=",")
> DM

<table>
<thead>
<tr>
<th>FASTA</th>
<th>GFF</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR_2/NT_033778.fna</td>
<td>CHR_2/NT_033778.gff</td>
<td>Chr2R</td>
</tr>
<tr>
<td>CHR_2/NT_033779.fna</td>
<td>CHR_2/NT_033779.gff</td>
<td>Chr2L</td>
</tr>
<tr>
<td>CHR_3/NT_033777.fna</td>
<td>CHR_3/NT_033777.gff</td>
<td>Chr3R</td>
</tr>
<tr>
<td>CHR_3/NT_037436.fna</td>
<td>CHR_3/NT_037436.gff</td>
<td>Chr3L</td>
</tr>
<tr>
<td>CHR_4/NC_004353.fna</td>
<td>CHR_4/NC_004353.gff</td>
<td>Chr4</td>
</tr>
<tr>
<td>CHR_X/NC_004354.fna</td>
<td>CHR_X/NC_004354.gff</td>
<td>ChrX</td>
</tr>
</tbody>
</table>
```
The five *.fna files were concatenated into a single FASTA-format file Drosophila_ref.fasta, and an index file was built using Rsubread

```r
> library(Rsubread)
> buildindex(basename="index",reference="Drosophila_ref.fasta")
```

Third, reads were aligned to the genome. The SE reads were mapped using:

```r
> align("index",SE_fastq_files,input_format="FASTQ")
```

where SE_fastq_files is a character vector containing the names of the SE FASTQ files. The PE reads were mapped using:

```r
> align("index",PE_fastq_files1,PE_fastq_files2,input_format="FASTQ")
```

where PE_fastq_files1 and PE_fastq_files2 are vectors containing the names of the PE FASTQ files. These commands produce BAM files containing aligned reads (SE) or fragments (PE).

18.2.4 Read counts for exons

Next we counted the number of reads or fragments overlapping each annotated exon of each gene. GFF files containing gene and exon annotation were downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48. There is one GFF file for each chromosome arm as shown above.

The five *.gff files were concatenated into one file, and repeated exons instances of the same exon (same start and stop position) were removed, to create a data.frame of start/stop positions called unique.gff. SE reads were counted by:

```r
> fc_SE <- featureCounts(SE_bam_files, annot.ext="unique.gff",
+   isGTFAnnotationFile=TRUE,
+   GTF.featureType="exon", GTF.attrType="ID",
+   useMetaFeatures=FALSE, allowMultiOverlap=TRUE)
```

where SE_bam_files is a vector of BAM file names for the SE reads. PE reads were counted by

```r
> fc_PE <- featureCounts(PE_bam_files, annot.ext="unique.gff",
+   isGTFAnnotationFile=TRUE,
+   GTF.featureType="exon", GTF.attrType="ID",
+   useMetaFeatures=FALSE, allowMultiOverlap=TRUE,
+   isPairedEnd=TRUE)
```

where PE_bam_files is a vector of BAM file names for the PE reads.

18.2.5 Assemble DGEList and sum counts for technical replicates

We assemble all the counts into an edgeR DGEList object:

```r
> library(edgeR)
> y.all <- DGEList(counts=cbind(fc_SE$counts,fc_PE$counts), genes=fc_SE$annotation)
> dim(y.all)
[1] 74184 20
> head(y.all$genes)
```

136
<table>
<thead>
<tr>
<th>GeneID</th>
<th>Chr</th>
<th>Start</th>
<th>End</th>
<th>Strand</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>138088</td>
<td>30970</td>
<td>NC_004354.3</td>
<td>138094</td>
<td>139379</td>
<td>-</td>
</tr>
<tr>
<td>138087</td>
<td>30970</td>
<td>NC_004354.3</td>
<td>139445</td>
<td>139611</td>
<td>-</td>
</tr>
<tr>
<td>138089</td>
<td>30970</td>
<td>NC_004354.3</td>
<td>139445</td>
<td>139889</td>
<td>-</td>
</tr>
<tr>
<td>138086</td>
<td>30970</td>
<td>NC_004354.3</td>
<td>139713</td>
<td>139889</td>
<td>-</td>
</tr>
<tr>
<td>138091</td>
<td>30971</td>
<td>NC_004354.3</td>
<td>140011</td>
<td>141629</td>
<td>+</td>
</tr>
<tr>
<td>138092</td>
<td>30971</td>
<td>NC_004354.3</td>
<td>142415</td>
<td>144271</td>
<td>+</td>
</tr>
</tbody>
</table>

The annotation includes Entrez ID and the length, chromosome and start and stop position of each exon.

Resort back to original SRA order:

```r
> y.all <- y.all[,SRA$SRA]
```

Then we collapse the data so that there is a single column for each GEO sample by summing the counts over the technical replicates:

```r
> y <- sumTechReps(y.all, ID=SRA$GEO)
> y$samples
```

<table>
<thead>
<tr>
<th>group</th>
<th>lib.size</th>
<th>norm.factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM461176</td>
<td>31007529</td>
<td>1</td>
</tr>
<tr>
<td>GSM461177</td>
<td>13040952</td>
<td>1</td>
</tr>
<tr>
<td>GSM461178</td>
<td>15030819</td>
<td>1</td>
</tr>
<tr>
<td>GSM461179</td>
<td>28143539</td>
<td>1</td>
</tr>
<tr>
<td>GSM461180</td>
<td>14901292</td>
<td>1</td>
</tr>
<tr>
<td>GSM461181</td>
<td>16264066</td>
<td>1</td>
</tr>
</tbody>
</table>

```r
> colnames(y) <- c("N1","N3","N4","D1","D3","D4")
```

18.2.6 Gene annotation


```r
> ncbi.L1 <- readLines("Drosophila_melanogaster.gene_info", n = 1)
> ncbi.colname <- unlist(strsplit(substring(ncbi.L1, 10, 234), ' '))
> ncbi <- read.delim("Drosophila_melanogaster.gene_info", + skip=1, header=FALSE, stringsAsFactors=FALSE)
> colnames(ncbi) <- ncbi.colname
> m <- match(y$genes$GeneID, ncbi$GeneID)
> y$genes$Chr <- ncbi$chromosome[m]
> y$genes$Symbol <- ncbi$Symbol[m]
> y$genes$Strand <- NULL
> head(y$genes)

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Chr</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>138088</td>
<td>30970</td>
<td>X</td>
<td>138094</td>
<td>139379</td>
<td>1286</td>
</tr>
<tr>
<td>138087</td>
<td>30970</td>
<td>X</td>
<td>139445</td>
<td>139611</td>
<td>167</td>
</tr>
<tr>
<td>138089</td>
<td>30970</td>
<td>X</td>
<td>139445</td>
<td>139889</td>
<td>445</td>
</tr>
<tr>
<td>138086</td>
<td>30970</td>
<td>X</td>
<td>139713</td>
<td>139889</td>
<td>177</td>
</tr>
<tr>
<td>138091</td>
<td>30971</td>
<td>X</td>
<td>140011</td>
<td>141629</td>
<td>1619</td>
</tr>
<tr>
<td>138092</td>
<td>30971</td>
<td>X</td>
<td>142415</td>
<td>144271</td>
<td>1857</td>
</tr>
</tbody>
</table>
18.2.7 Filtering

Keep exons that have more than 1 cpm in at least 3 samples.

```r
> isexpr <- rowSums(cpm(y) > 1) >=3
> y <- y[isexpr,,keep.lib.sizes=FALSE]
```

18.2.8 Scale normalization

Apply TMM normalization.

```r
> y <- calcNormFactors(y)
> y$sample

<table>
<thead>
<tr>
<th>group</th>
<th>lib.size</th>
<th>norm.factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>30872843</td>
<td>0.955</td>
</tr>
<tr>
<td>N3</td>
<td>12962245</td>
<td>1.031</td>
</tr>
<tr>
<td>N4</td>
<td>14908555</td>
<td>0.976</td>
</tr>
<tr>
<td>D1</td>
<td>27989806</td>
<td>1.005</td>
</tr>
<tr>
<td>D3</td>
<td>14760887</td>
<td>1.022</td>
</tr>
<tr>
<td>D4</td>
<td>16172265</td>
<td>1.014</td>
</tr>
</tbody>
</table>
```

An MDS plot shows clear separation of the Pasilla down vs normal samples, but also a batch effect associated with sequencing type and date:

```r
> plotMDS(y)
```
18.2.9 Linear modelling

Create design matrix:

> Batch <- factor(c(1,3,4,1,3,4))
> Pasilla <- factor(GEO$Pasilla,levels=c("Normal","Down"))
> design <- model.matrix(~ Batch + Pasilla)

Apply voom to convert the read counts to log2-cpm with associated weights:

> v <- voom(y,design,plot=TRUE)
Linear modelling:

```r
> fit <- lmFit(v, design)
```

Test for differentially expressed exons:

```r
> fit.de <- eBayes(fit, robust=TRUE)
> topTable(fit.de, coef="PasillaDown")
```

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Chr</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>Symbol</th>
<th>logFC</th>
<th>AveExpr</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>150709</td>
<td>32007</td>
<td>X</td>
<td>10674926</td>
<td>10676128</td>
<td>1203</td>
<td>sesB</td>
<td>-3.26</td>
<td>6.41</td>
<td>-32.1</td>
<td>4.45e-14</td>
<td>8.35e-10</td>
</tr>
<tr>
<td>150713</td>
<td>32007</td>
<td>X</td>
<td>10675026</td>
<td>10676128</td>
<td>1103</td>
<td>sesB</td>
<td>-3.26</td>
<td>6.41</td>
<td>-32.1</td>
<td>4.48e-14</td>
<td>8.35e-10</td>
</tr>
<tr>
<td>96435</td>
<td>43230</td>
<td>3R</td>
<td>22694960</td>
<td>22695852</td>
<td>893</td>
<td>BM-40-SPARC</td>
<td>-2.47</td>
<td>10.50</td>
<td>-28.2</td>
<td>2.51e-13</td>
<td>2.61e-09</td>
</tr>
<tr>
<td>150697</td>
<td>32008</td>
<td>X</td>
<td>10672987</td>
<td>10673728</td>
<td>742</td>
<td>Ant2</td>
<td>2.85</td>
<td>5.53</td>
<td>28.0</td>
<td>2.80e-13</td>
<td>2.61e-09</td>
</tr>
<tr>
<td>96434</td>
<td>43230</td>
<td>3R</td>
<td>22695915</td>
<td>22696094</td>
<td>180</td>
<td>BM-40-SPARC</td>
<td>-2.27</td>
<td>8.11</td>
<td>-26.9</td>
<td>4.72e-13</td>
<td>3.52e-09</td>
</tr>
<tr>
<td>96433</td>
<td>43230</td>
<td>3R</td>
<td>22697648</td>
<td>22697717</td>
<td>70</td>
<td>BM-40-SPARC</td>
<td>-2.17</td>
<td>6.27</td>
<td>-23.5</td>
<td>2.70e-12</td>
<td>1.46e-08</td>
</tr>
<tr>
<td>107856</td>
<td>44030</td>
<td>3L</td>
<td>2561932</td>
<td>2562843</td>
<td>912</td>
<td>msn</td>
<td>-2.46</td>
<td>5.12</td>
<td>-23.5</td>
<td>2.80e-12</td>
<td>1.46e-08</td>
</tr>
</tbody>
</table>

![voom: Mean-variance trend](image-url)
18.2.10 Alternate splicing

Test for differences in exon retention between Pasilla down vs normal:

```r
> ex <- diffSplice(fit[, "PasillaDown"], geneid = "GeneID", exonid = "Start")
```

Total number of exons: 37258  
Total number of genes: 8192  
Number of genes with 1 exon: 1619  
Mean number of exons in a gene: 5  
Max number of exons in a gene: 56

Show top genes that show differential splicing.

```r
> topSplice(ex, test="simes", n=20)

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Chr</th>
<th>Symbol</th>
<th>NExons</th>
<th>P.Value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>11214</td>
<td>44548</td>
<td>2R</td>
<td>lola</td>
<td>30</td>
<td>5.52e-32</td>
</tr>
<tr>
<td>95956</td>
<td>44448</td>
<td>3R</td>
<td>scrib</td>
<td>35</td>
<td>1.99e-20</td>
</tr>
<tr>
<td>141235</td>
<td>45320</td>
<td>X</td>
<td>trol</td>
<td>44</td>
<td>2.01e-20</td>
</tr>
<tr>
<td>16060</td>
<td>36542</td>
<td>2R</td>
<td>shot</td>
<td>38</td>
<td>5.12e-18</td>
</tr>
<tr>
<td>107810</td>
<td>44030</td>
<td></td>
<td>msn</td>
<td>24</td>
<td>5.93e-18</td>
</tr>
<tr>
<td>19880</td>
<td>36773</td>
<td>2R</td>
<td>Dg</td>
<td>15</td>
<td>5.15e-17</td>
</tr>
<tr>
<td>32242</td>
<td>37893</td>
<td>2R</td>
<td>slik</td>
<td>19</td>
<td>1.93e-16</td>
</tr>
<tr>
<td>41795</td>
<td>3771968</td>
<td>2L</td>
<td>Msp-300</td>
<td>33</td>
<td>2.27e-16</td>
</tr>
<tr>
<td>82117</td>
<td>42130</td>
<td>3R</td>
<td>osa</td>
<td>17</td>
<td>1.14e-15</td>
</tr>
<tr>
<td>150694</td>
<td>32008</td>
<td>X</td>
<td>Ant2</td>
<td>5</td>
<td>6.26e-14</td>
</tr>
<tr>
<td>52823</td>
<td>34652</td>
<td>2L</td>
<td>vir-1</td>
<td>7</td>
<td>4.62e-13</td>
</tr>
<tr>
<td>115767</td>
<td>38879</td>
<td>3L</td>
<td>pbl</td>
<td>12</td>
<td>7.60e-13</td>
</tr>
<tr>
<td>163416</td>
<td>32817</td>
<td>X</td>
<td>CrebB-17A</td>
<td>12</td>
<td>1.22e-11</td>
</tr>
<tr>
<td>110493</td>
<td>38491</td>
<td>3L</td>
<td>ens</td>
<td>16</td>
<td>2.31e-11</td>
</tr>
<tr>
<td>2032</td>
<td>2768716</td>
<td>2R</td>
<td>mim</td>
<td>25</td>
<td>1.51e-10</td>
</tr>
<tr>
<td>166094</td>
<td>33098</td>
<td>X</td>
<td>CG32521</td>
<td>8</td>
<td>1.63e-10</td>
</tr>
<tr>
<td>131170</td>
<td>40205</td>
<td>3L</td>
<td>CG42674</td>
<td>16</td>
<td>2.16e-10</td>
</tr>
<tr>
<td>109416</td>
<td>38418</td>
<td>3L</td>
<td>kst</td>
<td>18</td>
<td>3.92e-10</td>
</tr>
<tr>
<td>150710</td>
<td>32007</td>
<td>X</td>
<td>sesB</td>
<td>7</td>
<td>1.06e-09</td>
</tr>
<tr>
<td>526</td>
<td>35494</td>
<td>2R</td>
<td>laccase2</td>
<td>9</td>
<td>1.08e-09</td>
</tr>
</tbody>
</table>
```

```r
> topSplice(ex, test="F", n=20)

<table>
<thead>
<tr>
<th>GeneID</th>
<th>Chr</th>
<th>Symbol</th>
<th>NExons</th>
<th>F</th>
<th>P.Value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>141235</td>
<td>45320</td>
<td>X</td>
<td>trol</td>
<td>44</td>
<td>30.87</td>
<td>1.93e-40</td>
</tr>
<tr>
<td>11214</td>
<td>44548</td>
<td>2R</td>
<td>lola</td>
<td>30</td>
<td>41.80</td>
<td>4.81e-33</td>
</tr>
<tr>
<td>95956</td>
<td>44448</td>
<td>3R</td>
<td>scrib</td>
<td>35</td>
<td>16.20</td>
<td>1.53e-23</td>
</tr>
</tbody>
</table>
```

We can plot all the exons for the most differentially spliced genes:

> plotSplice(ex, geneid="lola", genecol="Symbol")

This plot highlights exons that are individually significant in that they have fold changes larger or smaller than most other exons.
> plotSplice(ex, geneid="scrib", genecol="Symbol")

```
> plotSplice(ex, geneid="scrib", genecol="Symbol")
```

```
> plotSplice(ex, geneid="trol", genecol="Symbol")
```

> plotSplice(ex, geneid="trol", genecol="Symbol")
We can see that a block of five or six exons at the right end of the trol gene are relatively lost when Pasilla is down, at the expense of an earlier block of twelve exons which become relatively more highly expressed when Pasilla is down. Most exons in the first half of the gene behave similarly to each other. This gene is on the negative strand, so transcription is from right to left. Thus figure can be compared to Supplementary Figure 8A in Brooks et al [2]. The gene trol was identified by Brooks et al to have a novel set of coordinately regulated exons. Brooks et al said:

“A particularly striking example involving these unannotated splice junctions is found in the trol gene in which a group of nine contiguous exons, which are annotated as being constitutive, are coordinately skipped in untreated cells . . . but coordinately included in the ps(RNAi) cells . . .”

18.2.11 Session information

> sessionInfo()

R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 15063)

Matrix products: default
locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252

attached base packages:
[1] stats  graphics  grDevices  utils  datasets  methods  base

other attached packages:
[1] edgeR_3.27.13 limma_3.41.15

loaded via a namespace (and not attached):
[1] compiler_3.6.1 tools_3.6.1 Rcpp_1.0.2 grid_3.6.1 locfit_1.5-9.1 statmod_1.4.32
[7] lattice_0.20-38

18.2.12 Acknowledgements

Thanks for Yang Liao for mapping the reads and running featureCounts.
Notes

Acknowledgements

Thanks to Jean Yee Hwa Yang and Sandrine Dudoit for the first three data sets. The Swirl zebrafish data were provided by Katrin Wuennenburg-Stapleton from the Ngai Lab at UC Berkeley. Laurent Gautier made the ecoliLeucine data set available on Bioconductor. Lynn Corcoran provided the Bob1 Mutant data. Andrew Holloway, Ryan van Laar and Dileepa Diyagama provided the quality control data set. Marnie Blewitt and Natasha Jansz provided the Smchd1 RNA-seq data.

Many current and former members of the Smyth Lab (students, programmers, postdocs) have contributed to the development of particular functions in limma as acknowledged in the limma package description and on the function help pages.

The limma package has benefited from many people who have made suggestions or reported bugs including Kemal Akat, Naomi Altman, Gioia Altobelli, James Arnold, Alain Bateman, Ido Ben-Zvi, Henrik Bengtsson, Lourdes Peña Castillo, Dongseok Choi, Marcus Davy, Simon de Bernard, Ramon Diaz-Uriarte, Lars Eijssen, Pär Engström, Egil Ferkingstad, Anthoula Gaigneaux, Robert Gentleman, Guido Hooiveld, Wolfgang Huber, Derek Janszen, William Kenworthy, Axel Klenk, Kevin Koh, Erik Kristiansson, Mette Langaas, Michael Lawrence, Gildas Le Corguille, Gregory Lefebvre, Philip Lijnzaad, Andrew Lynch, James MacDonald, Martin Maechler, Aaron Mackey, Steffen Moeller, Duarte Molha, Florian Nigsch, Ashley Ng, Mario Novkovic, Ron Ophir, Francois Pepin, Sergi Sayols Puig, Hubert Rehrauer, Davide Risso, Mark Robinson, Ken Simpson, Dario Strbenac, Laurentiu Adi Tarca, Dan Tenenbaum, Gregory Theiler, Ryan C. Thompson, Joern Toedling, Michael Turewicz, Björn Usadel, Chris Wilkinson, Beth Wilmot, Jean Yee Hwa Yang, John Zhang.

Conventions

Where possible, limma tries to use the convention that class names are in upper CamelCase, i.e., the first letter of each word is capitalized, while function names are in lower camelCase, i.e., first word is lowercase. When periods appear in function names, the first word should be an action while the second word is the name of a type of object on which the function acts.

Software Projects Using limma

The limma package is used as a building block or as the underlying computational engine by many software projects designed to provide user-interfaces for microarray or RNA-seq data analysis.
Bibliography


