By specifying the dimensions through aes and selecting the cell population through subset, ggcyto can easily visualize the gated data stored in GatingSet.

p <- ggcyto(gs, aes(x = CD4, y = CD8), subset = "CD3+") 
# 2d plot 
p <- p + geom_hex(bins = 64)
p

ggcyto_par_set

We can use the instrument range to automatically filter out these outlier cell events

p + ggcyto_par_set(limits = "instrument")

Or by setting limits manually

myPars <- ggcyto_par_set(limits = list(x = c(0,3.5e3), y = c(-10, 4.1e3)))
p <- p + myPars# or xlim(0,3.5e3) + ylim(-10, 4e3) 
p

To check what kind of visualization parameters can be changed through ggcyto_par_set, simply print the default settings

ggcyto_par_default()
## $limits
## [1] "data"
## 
## $facet
## <ggproto object: Class FacetWrap, Facet, gg>
##     compute_layout: function
##     draw_back: function
##     draw_front: function
##     draw_labels: function
##     draw_panels: function
##     finish_data: function
##     init_scales: function
##     map_data: function
##     params: list
##     setup_data: function
##     setup_params: function
##     shrink: TRUE
##     train_scales: function
##     vars: function
##     super:  <ggproto object: Class FacetWrap, Facet, gg>
## 
## $hex_fill
## <ScaleContinuous>
##  Range:  
##  Limits:    0 --    1
## 
## $lab
## $labels
## [1] "both"
## 
## attr(,"class")
## [1] "labs_cyto"
## 
## attr(,"class")
## [1] "ggcyto_par"

geom_gate

To plot a gate, simply pass the gate name to the geom_gate layer

p + geom_gate("CD4")