By specifying the dimensions through aes
and selecting the cell population through subset
, ggcyto
can easily visualize the gated data stored in GatingSet
.
p <- ggcyto(gs, aes(x = CD4, y = CD8), subset = "CD3+")
# 2d plot
p <- p + geom_hex(bins = 64)
p
We can use the instrument range to automatically filter out these outlier cell events
p + ggcyto_par_set(limits = "instrument")
Or by setting limits manually
myPars <- ggcyto_par_set(limits = list(x = c(0,3.5e3), y = c(-10, 4.1e3)))
p <- p + myPars# or xlim(0,3.5e3) + ylim(-10, 4e3)
p
To check what kind of visualization parameters can be changed through ggcyto_par_set
, simply print the default settings
ggcyto_par_default()
## $limits
## [1] "data"
##
## $facet
## <ggproto object: Class FacetWrap, Facet, gg>
## compute_layout: function
## draw_back: function
## draw_front: function
## draw_labels: function
## draw_panels: function
## finish_data: function
## init_scales: function
## map_data: function
## params: list
## setup_data: function
## setup_params: function
## shrink: TRUE
## train_scales: function
## vars: function
## super: <ggproto object: Class FacetWrap, Facet, gg>
##
## $hex_fill
## <ScaleContinuous>
## Range:
## Limits: 0 -- 1
##
## $lab
## $labels
## [1] "both"
##
## attr(,"class")
## [1] "labs_cyto"
##
## attr(,"class")
## [1] "ggcyto_par"
To plot a gate, simply pass the gate name to the geom_gate
layer
p + geom_gate("CD4")