flowClean

Christopher Fletez-Brant, Pratip Chattopadhyay

Modified: April 1, 2014. Compiled: October 24, 2023

Introduction

This package contains the flowCore method for performing quality control on flow cytometry datasets. This method is described in [1].

> library(flowClean)
> library(flowViz)
> library(grid)
> library(gridExtra)

Data

Example data is a real FCS file in which we intentionally perturbed the fluorescent intensity (FI) of a subset of cells along the V705 channel ('<V705-A>').

> data(synPerturbed)
> synPerturbed

flowFrame object '9301d9e4-a160-477f-a5fb-ee7d785d5655'
with 76466 cells and 17 observables:

<table>
<thead>
<tr>
<th>name</th>
<th>desc</th>
<th>range</th>
<th>minRange</th>
<th>maxRange</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P1</td>
<td>FSC-A</td>
<td>262144</td>
<td>0.0000</td>
<td>262144</td>
</tr>
<tr>
<td>$P2</td>
<td>FSC-H</td>
<td>262144</td>
<td>0.0000</td>
<td>262144</td>
</tr>
<tr>
<td>$P3</td>
<td>SSC-A</td>
<td>261589</td>
<td>0.0000</td>
<td>261589</td>
</tr>
<tr>
<td>$P4</td>
<td>Time</td>
<td>2048</td>
<td>0.0000</td>
<td>2048</td>
</tr>
<tr>
<td>$P5</td>
<td><B515-A></td>
<td>CD27 FITC</td>
<td>260954</td>
<td>-26.8846</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$P13</td>
<td><V450-A></td>
<td>CD127 BV421</td>
<td>260964</td>
<td>-35.9838</td>
</tr>
<tr>
<td>$P14</td>
<td><V545-A></td>
<td>Aq Blu</td>
<td>260949</td>
<td>-22.0722</td>
</tr>
<tr>
<td>$P15</td>
<td><V585-A></td>
<td>CD8 QD585</td>
<td>261965</td>
<td>111.0000</td>
</tr>
<tr>
<td>$P16</td>
<td><R660-A></td>
<td>CD45RA APC</td>
<td>261023</td>
<td>-96.5092</td>
</tr>
<tr>
<td>$P17</td>
<td><V605-A></td>
<td>CD4 BV605</td>
<td>261131</td>
<td>111.0000</td>
</tr>
</tbody>
</table>

212 keywords are stored in the 'description' slot
Quality Control

The full details are available in [1]. The motivating idea for this methodology is that populations in a flow experiment should be collected nearly uniformly with respect to time of collection. The primary actor in flowClean is the `clean`, which tests for deviations from uniformity of collection. Specifically, the collection time is discretized into l periods, each of which can be considered a N-part composition

$$D_{j=1..l} = [P_1, P_2, \ldots, P_N]$$

with each P_i the frequency of a population defined as +/- with respect to some threshold; the default is the median FI of a flow parameter. By default $l = 100$.

Each D_j then undergoes the centered log ratio (CLR) transformation [2]:

$$CLR(D_j) = \left[\ln \frac{P_1}{g(D_j)}; \ldots; \ln \frac{P_N}{g(D_j)} \right]$$

where

$$g(D_j) = \sqrt[|CLR(D_j)|]{P_1P_2...P_N}$$

To avoid $-\text{Inf}$ values, substitution of zeroes is performed using the 'modified Aitchison’ of [3].

The L_p norm of the subset $CLR(D_j) > 0$, denoted $L_p = \|CLR(D_j)\|_p^+$, where $p = |CLR(D_j)| > 0$, is then calculated for each D_j and changepoint analysis is performed on the set of all $\|CLR(D_j)\|_p^+$. If there are no changes then the FCS is assumed to contain no errors. Otherwise, the means of the periods are compared relative to the mean of the longest period between changepoints and thresholded according to some k, which empirically works well with $k = 1.3$.

Actually calling `clean` requires only specifying a flowFrame, which markers are to be analyzed (generally without the 'scatter' parameters), the name to be given to the output (directory structure can be included) and the file extension:

```r
> synPerturbed.c <- clean(synPerturbed, vectMarkers=c(5:16),
+       filePrefixWithDir="sample_out", ext="fcs", diagnostic=TRUE)
```

[1] "flowClean has identified problems in synPerturbed.FCS with 24, 25, 26, 27, 28, 29, 30, 31, 32."

> synPerturbed.c

flowFrame object '9301d9e4-a160-477f-a5fb-ee7d785d5655'
with 76466 cells and 18 observables:

<table>
<thead>
<tr>
<th>name</th>
<th>desc</th>
<th>range</th>
<th>minRange</th>
<th>maxRange</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P1$</td>
<td>FSC-A</td>
<td>NA</td>
<td>262144</td>
<td>0.0000</td>
</tr>
<tr>
<td>$P2$</td>
<td>FSC-H</td>
<td>NA</td>
<td>262144</td>
<td>0.0000</td>
</tr>
<tr>
<td>$P3$</td>
<td>SSC-A</td>
<td>NA</td>
<td>261589</td>
<td>0.0000</td>
</tr>
<tr>
<td>$P4$</td>
<td>Time</td>
<td>NA</td>
<td>2048</td>
<td>0.0000</td>
</tr>
<tr>
<td>$P5$</td>
<td><B515-A></td>
<td>CD27 FITC</td>
<td>260954</td>
<td>-26.8846</td>
</tr>
</tbody>
</table>
The result is an FCS file identical to the input file with a new parameter, 'GoodVsBad', in which 'Good' cells all are given $FI < 10000$ and 'Bad' cells are given $FI \geq 10000$, which allows for easy programmatic gating out of 'Bad' cells from multiple FCS files. This parameter can also be used in plots as any other flow parameter as well.

```
> lgcl <- estimateLogicle(synPerturbed.c, unname(parameters(synPerturbed.c)$name[5:16]))
> synPerturbed.cl <- transform(synPerturbed.c, lgcl)
> p1 <- xyplot(`V705-A` ~ `Time`, data=synPerturbed.cl,
+  abs=TRUE, smooth=FALSE, alpha=0.5, xlim=c(0, 100))
> p2 <- xyplot(`GoodVsBad` ~ `Time`, data=synPerturbed.cl,
+  abs=TRUE, smooth=FALSE, alpha=0.5, xlim=c(0, 100), ylim=c(0, 20000))
> rg <- rectangleGate(filterId="gvb", list("GoodVsBad"=c(0, 9999))
> idx <- filter(synPerturbed.cl, rg)
> synPerturbed.clean <- Subset(synPerturbed.cl, idx)
> p3 <- xyplot(`V705-A` ~ `Time`, data=synPerturbed.clean,
+  abs=TRUE, smooth=FALSE, alpha=0.5, xlim=c(0, 100))
> grid.arrange(p1, p2, p3, ncol=3)
```

SessionInfo

- R version 4.3.1 (2023-06-16), x86_64-pc-linux-gnu
- Time zone: America/New_York
- TZcode source: system (glibc)
- Running under: Ubuntu 22.04.3 LTS
- Matrix products: default
- BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
Figure 1: Left) FCS before flowClean. Center) New 'GoodVsBad' parameter. Right) FCS after flowClean and filtering.

- LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
- Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils
- Other packages: S4Vectors 0.40.0, flowClean 1.40.0, flowCore 2.14.0, flowViz 1.66.0, gridExtra 2.3, lattice 0.22-5
- Loaded via a namespace (and not attached): Biobase 2.62.0, BiocGenerics 0.48.0, IDPmisc 1.1.20, KernSmooth 2.23-22, MASS 7.3-60, RColorBrewer 1.1-3, RProtoBufLib 2.14.0, Rcpp 1.0.11, bit 4.0.5, changepoint 2.2.4, cli 3.6.1, compiler 4.3.1, cytolib 2.14.0, deldir 1.0-9, glue 1.6.2, gtable 0.3.4, hexbin 1.28.3, interp 1.1-4, jpeg 0.1-10, latticeExtra 0.6-30, lifecycle 1.0.3, matrixStats 1.0.0, png 0.1-8, rlang 1.1.1, sfsmisc 1.1-16, stats4 4.3.1, tools 4.3.1, zoo 1.8-12

References
