1 Running CRLMM on a nontrivial set of CEL files

To use the crlmm algorithm, the user must load the crlmm package, as described below:

```r
> library(crlmm)
```

We work with the 90 CEU samples hybridized to Affy 6.0 chips. When CEL files are available, they must be identified and passed to `crlmm`, as shown below. In this example, we assume that the results are stored in a variable called `crlmmResult`.

```r
> celFiles <- list.celfiles()
> crlmmResult <- crlmm(celFiles)
```

Alternatively, the data aforementioned are available through the `hapmapsnp6` package (required minimum version 1.3.6) and can be loaded by using:

```r
> suppressPackageStartupMessages(library(hapmapsnp6))
> data(crlmmResult)
```

This is currently a `SnpSet` object.

```r
> class(crlmmResult)
[1] "SnpSet"
attr(,"package")
[1] "Biobase"
```

2 Adding information to a `SnpSet`

We will use the `GGdata` package to obtain extra information on the samples. This will be later used when building an `eSet` extension to store the genotyping results.
> suppressPackageStartupMessages(library(GGdata))
> hmceuB36 <- getSS('GGdata', as.character(1:22))
> pd <- phenoData(hmceuB36)
> ggn <- sampleNames(pd)
> preSN <- sampleNames(crlmmResult)
> simpSN <- gsub("_/.*", ",", preSN)
> if (!all.equal(simpSN, ggn)) stop("align GGdata phenoData with crlmmResult read")

The additional information obtained from GGdata can be easily combined to what is already available on crlmmResult.

> sampleNames(crlmmResult) <- simpSN
> phenoData(crlmmResult) <- combine(pd, phenoData(crlmmResult))
> dim(calls(crlmmResult))

[1] 906600 90
> dim(confs(crlmmResult, FALSE))

[1] 906600 90
> calls(crlmmResult)[1:10, 1:2]

 NA06985 NA06991
SNP_A-2131660 2 2
SNP_A-1967418 3 3
SNP_A-1969580 3 3
SNP_A-4263484 2 1
SNP_A-1978185 1 1
SNP_A-4264431 1 1
SNP_A-1980898 3 3
SNP_A-1983139 1 1
SNP_A-4265735 2 2
SNP_A-1995832 2 3
> confs(crlmmResult, FALSE)[1:10, 1:2]

 NA06985 NA06991
SNP_A-2131660 10561 11574
SNP_A-1967418 12517 14866
SNP_A-1969580 7632 7606
SNP_A-4263484 15621 20059
SNP_A-1978185 14030 18021
SNP_A-4264431 17792 17235
SNP_A-1980898 7640 7642
SNP_A-1983139 14127 9974
SNP_A-4265735 8976 9153
SNP_A-1995832 10336 17920
3 Coercing to SnpMatrix as a prelude to a GWAS

From this point on, we will use only the genotype calls. Therefore, to reduce memory requirements, we will recode the \texttt{crilmm} genotype calls, so the \texttt{snpStats} package can be used, and delete the remaining \texttt{crilmm} results.

\begin{verbatim}
> theCalls <- t(calls(crlmmResult))-1L
> rm(crlmmResult)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 7631568 407.6 11161382 596.1 8125770 434.0
Vcells 109939505 838.8 295584944 2255.2 295028076 2250.9

SNP’s for which all the samples have the same genotype are not informative for association studies. Therefore, we remove such SNP’s prior to fitting the models.

> gtypeCounts <- rbind(AA=colSums(theCalls == 0L),
+ AB=colSums(theCalls == 1L),
+ BB=colSums(theCalls == 2L))
> gtypeCounts[, 1:5]

<table>
<thead>
<tr>
<th>SNP_A-2131660</th>
<th>SNP_A-1967418</th>
<th>SNP_A-1969580</th>
<th>SNP_A-4263484</th>
<th>SNP_A-1978185</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>AB</td>
<td>32</td>
<td>14</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>BB</td>
<td>57</td>
<td>73</td>
<td>88</td>
<td>42</td>
</tr>
</tbody>
</table>

> toRemove <- which(colSums(gtypeCounts == 0) == 2L)
> gtypeCounts[, , toRemove[1:4]]

<table>
<thead>
<tr>
<th>SNP_A-1978185</th>
<th>SNP_A-1983139</th>
<th>SNP_A-1997689</th>
<th>SNP_A-1997709</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>90</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>AB</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BB</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>

> theCalls <- theCalls[, , -toRemove]

The \texttt{snpStats} provides tools to simplify the analysis of GWAS. The snippet below shows how to load the package and convert the genotype calls to a format that \texttt{snpStats} is able to handle.

\begin{verbatim}
> suppressPackageStartupMessages(library(snpStats))
> crlmmSM <- new("SnpMatrix", theCalls)
coercing object of mode numeric to SnpMatrix
> crlmmSM

A SnpMatrix with 90 rows and 774475 columns
Row names: NA06985 ... NA12892
Col names: SNP_A-2131660 ... SNP_A-8573964
\end{verbatim}
4 Conducting a GWAS

We want to find SNP for which genotype is predictive of expression of CPNE1. We will use expression data available from GGdata, using a naive analysis.

```r
> suppressPackageStartupMessages(library(illuminaHumanv1.db))
> rmm <- revmap(illuminaHumanv1SYMBOL)
> mypr <- get("CPNE1", rmm)
> ex <- as.numeric(exprs(hmceuB36)[mypr[1],])
> subjdata <- pData(hmceuB36)
> subjdata["ex"] <- ex
> head(subjdata)

<table>
<thead>
<tr>
<th>famid</th>
<th>persid</th>
<th>mothid</th>
<th>fathid</th>
<th>sampid</th>
<th>isFounder</th>
<th>male</th>
<th>ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA06985</td>
<td>1341</td>
<td>14</td>
<td>0</td>
<td>NA06985</td>
<td>TRUE</td>
<td>FALSE</td>
<td>9.654887</td>
</tr>
<tr>
<td>NA06991</td>
<td>1341</td>
<td>2</td>
<td>14</td>
<td>NA06991</td>
<td>FALSE</td>
<td>FALSE</td>
<td>9.551434</td>
</tr>
<tr>
<td>NA06993</td>
<td>1341</td>
<td>13</td>
<td>0</td>
<td>NA06993</td>
<td>TRUE</td>
<td>TRUE</td>
<td>10.083945</td>
</tr>
<tr>
<td>NA06994</td>
<td>1340</td>
<td>9</td>
<td>0</td>
<td>NA06994</td>
<td>TRUE</td>
<td>TRUE</td>
<td>9.930053</td>
</tr>
<tr>
<td>NA07000</td>
<td>1340</td>
<td>10</td>
<td>0</td>
<td>NA07000</td>
<td>TRUE</td>
<td>FALSE</td>
<td>9.645724</td>
</tr>
<tr>
<td>NA07019</td>
<td>1340</td>
<td>2</td>
<td>12</td>
<td>NA07019</td>
<td>FALSE</td>
<td>FALSE</td>
<td>9.788195</td>
</tr>
</tbody>
</table>

With the expression data now available in `subjdata`, we can use the tools from `SnpMatrix` to fit models that will be used to evaluate the association between the genotypes of each available SNP and the expression levels of CPNE1.

```r
> gwas <- snp.rhs.tests(ex~male, data=subjdata, snp.data=crlmmSM, family="gaussian")
> ok <- which(p.value(gwas) < 1e-10)
> gwas[ok,]

| SNP_A-2047882 | 41.82453 | 1 | 9.984311e-11 |
| SNP_A-2216659 | 41.82453 | 1 | 9.984311e-11 |
| SNP_A-2220183 | 46.38761 | 1 | 9.702689e-12 |
| SNP_A-2231469 | 46.38761 | 1 | 9.702689e-12 |
| SNP_A-2275065 | 46.38761 | 1 | 9.702689e-12 |
| SNP_A-1890801 | 42.67888 | 1 | 6.450512e-11 |

> snp <- names(gwas[ok,])[1]
> gtypes <- theCalls[,snp]+1L
> boxplot(ex~gtypes, xlab=paste("Genotype Call for", snp),
+ ylab="CPNE1 Expression", xaxt="n", range=0)
> points(ex~jitter(gtypes), col=gtypes, pch=19)
> axis(1, at=1:3, labels=c("AA", "AB", "BB"))
```
5 Session Info

This vignette was created using the following packages:

> sessionInfo()

R version 2.15.0 beta (2012-03-20 r58793)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
locale:

attached base packages:
[1] splines stats graphics grDevices datasets utils methods
[8] base
other attached packages:
[1] GGdata_1.0.18  illuminaHumanv1.db_1.12.2
[3] org.Hs.eg.db_2.7.1  RSQLite_0.11.1
[5] DBI_0.2-5  AnnotationDbi_1.17.27
[7] GGBase_3.16.5  snpStats_1.5.5
[9] Matrix_1.0-6  lattice_0.20-6
[11] survival_2.36-12  Biobase_2.15.4
[13] BiocGenerics_0.1.14  hapmapsnp6_1.3.6
[15] crlmm_1.13.16  oligoClasses_1.17.36
[17] RColorBrewer_1.0-5  BiocInstaller_1.1.28

loaded via a namespace (and not attached):
[1] affyio_1.23.2  annotate_1.33.8  Biostrings_2.23.6
[4] bit_1.1-9  codetools_0.2-8  ellipse_0.3-7
[7] ff_2.2-5  foreach_1.3.5  genefilter_1.37.1
[10] grid_2.15.0  IRanges_1.13.32  iterators_1.0.5
[13] mvtnorm_0.9-9992  preprocessCore_1.17.7  stats4_2.15.0
[16] tools_2.15.0  xtable_1.7-0  zlibbioc_1.1.1