1 Overview

The MultiMed package implements a permutation method which adjusts for “multiple comparisons” when testing whether multiple biomarkers are mediators between a known risk factor and a disease. The approach is described in the companion paper [Boca et al., 2014], “Testing multiple biological mediators simultaneously.” This method can significantly improve the power to detect mediators over the standard Bonferroni correction.

We first need to load the package:

> library(MultiMed)

2 Performing the test of mediation

The scenarios which can be considered are shown in Figure 1 for the single mediator case and Figure 2 (also shown in the [Boca et al. 2014] paper) for the multiple mediator case. Here, we consider simulating data where the exposure E, the mediator(s) M (or $M_i, i = 1, \ldots, K$), and the outcome Y are normally distributed. We denote by σ_E^2 the variance of E, by $\sigma_M^2 (\sigma_{M_i}^2)$ the variance of $M (M_i)$ conditional on E, and by σ_Y^2 the variance of Y conditional on E and $M (M_i)$.

Figure 1: A scenario with a single possible mediator between exposure and outcome.

\[E \xrightarrow{\alpha} M \xrightarrow{\beta} Y \]

2.1 The medTest function

The function used to perform the test of mediation is medTest. It has seven arguments: $E, M, Y, Z, nperm, w,$ and useWeightsZ. $E, M,$ and Y represent matrices of size $n \times 1$, $n \times K$, and $n \times 1$, respectively, giving the exposure, mediator, and outcome values, where n is the sample size and K is the number of mediators.
E and Y can also be inputted as vectors. The Z argument is either \texttt{NULL} or a numerical matrix having \(n \) rows. If it is not \texttt{NULL}, then the exposure, mediators, and outcome will all be initially regressed on \(Z \), with the residuals being used in the mediation analysis. The \texttt{nperm} argument gives the number of permutations used to estimate the null distribution, the default being 100. The \texttt{w} argument specifies whether any weighting should be done for the \(E-M \) association, as would be needed, for instance, in a scenario which considers a case-control study. The default is \(w = 1 \), which means that all the study participants are equally weighted; \(w \) may also be given as a vector of length \(n \), in which case it is first standardized to sum to 1. The \texttt{useWeightsZ} argument can be \(\text{TRUE} \), in which case the weights in \(w \) are used for the initial regression on \(Z \), or \(\text{FALSE} \), in which case equal weights are used for this initial step.

2.2 Simulated example: Single mediator case

For a sample size of \(n = 100 \), we can simulate a dataset with a single mediator in the following way:

```r
> set.seed(20183)
> alpha <- 0.2
> beta <- 0.2
> gamma <- 0.4
> n <- 100
> sigma2E <- 1
> sigma2M <- 1 - alpha^2
> sigma2Y <- 1 - beta^2 * (1 - alpha^2) - (alpha * beta + gamma)^2
> ## exposure:
> E <- rnorm(n, 0, sd = sqrt(sigma2E))
> ## mediator:
> M <- matrix(0, nrow = n, ncol = 1)
> M[, 1] <- rnorm(n, alpha * E, sd = sqrt(sigma2M))
> ## outcome:
> Y <- rep(0, n)
> for (subj in 1:n) Y[subj] <- rnorm(1, beta * M[subj, ], sd = sqrt(sigma2Y))
```

Note that the values of \(\sigma_E^2 \), \(\sigma_M^2 \), and \(\sigma_Y^2 \) were chosen so that the marginal variances of \(E \), \(M \), and \(Y \) are 1.

To perform a test of mediation, we use the \texttt{medTest} function. The output is a matrix with two columns: \(S \), the test statistic used (the absolute value of the product of the correlations between \(E \) and \(M \) and between \(r_{M|E} \) and \(r_{Y|E} \)), where \(r_{Z_1|Z_2} \) represents the residual obtained from regressing \(Z_1 \) on \(Z_2 \)) and \(p \), the p-value:

```r
> medTest(E, M, Y, nperm = 500)
```

\[
\begin{array}{cc}
S & p \\
0.01322964 & 0.53
\end{array}
\]

2.3 Simulated example: Multiple mediator case

Now consider a scenario with \(K = 10 \) mediators and a sample size of \(n = 100 \).

```r
> set.seed(380184)
> alpha <- c(rep(0, 6), rep(0.3, 2), rep(0, 2))
> beta <- c(rep(0, 6), rep(0, 2), rep(0, 3, 2))
> gamma <- 0.6
> alpha

[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0

> beta

[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3
```
Figure 2: A scenario with \(K \) possible mediators between exposure and outcome.

\[
\begin{align*}
E &\rightarrow a_1 \rightarrow M_1 \rightarrow \beta_1 \rightarrow Y \\
&\rightarrow a_2 \rightarrow M_2 \rightarrow \beta_2 \\
&\vdots \\
&\rightarrow a_{K-1} \rightarrow M_{K-1} \rightarrow \beta_{K-1} \\
&\rightarrow a_K \rightarrow M_K \rightarrow \beta_k \\
\end{align*}
\]

\(\sigma^2_{E}, \sigma^2_{M_i}, \sigma^2_{Y} \) were chosen so that the marginal variances of \(E, M_i, Y \) are 1.

We first simulate the data:

```r
> n <- 100
> sigma2E <- 1
> sigma2M <- 1-alpha^2
> sigma2Y <- 1-sum(beta^2*sigma2M)-(sum(alpha*beta)+gamma)^2
> sigma2M
[1] 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 1.00 1.00
> sigma2Y
[1] 0.46
```

```
Note that in this case \( \alpha \) and \( \beta \) are vectors having the \( i^{th} \) elements be \( \alpha_i \), respectively \( \beta_i \), where \( i = 1, \ldots, 10 \) indexes the mediators. Similarly, \( \sigma^2_{M_i} \) is a vector, with the \( i^{th} \) element being \( \sigma^2_{M_i} \). The
```

values of \(\sigma^2_{E}, \sigma^2_{M_i}, \) and \(\sigma^2_{Y} \) were chosen so that the marginal variances of \(E, M_i, Y \) are 1.

We then use the \texttt{medTest} once again to perform the test of mediation. The output is now a matrix with 10 rows, each row giving the test statistic \(S \) and the p-value \(p \) for each mediator. Note that the p-values are already implicitly considering the multiple tests being performed, so no further adjustment is necessary:

```
> medTest(E, M, Y, nperm = 500)
```

\[
\begin{array}{ll}
S & p \\
\hline
[1,] 0.0115086655 1.000 \\
[2,] 0.0008037094 1.000 \\
\end{array}
\]
2.4 Data analysis: Metabolites as mediators

We consider a data example from the [Boca et al., 2014] paper, using the Navy Colorectal Adenoma case-control study [Sinha et al., 1999], with daily fish intake as the exposure of interest E and colorectal adenoma status as the outcome Y. The possible mediators are 149 serum metabolites, whose values were previously batch normalized and log transformed.

We first load the dataset:

```R
> data(NavyAdenoma)
```

The first 5 columns of the `NavyAdenoma` object represent: daily fish intake, BMI, gender (coded as 0 for male, 1 for female), age, and current smoking status (coded as 0 for non-smoker, 1 for current smoker):

```R
> colnames(NavyAdenoma)[1:5]
[1] "Fish"  "BMI"  "Female"  "Age"  "Smoking"
```

The next 149 columns represent the metabolite values, while the last column represents the case-control status:

```R
> colnames(NavyAdenoma)[c(6:9,154)]
[1] "glycine"  "serine"  "betaine"  "alanine"  "erythritol"
> colnames(NavyAdenoma)[155]
[1] "Adenoma"
> table(NavyAdenoma$Adenoma)
  0  1
129 129
```

Due to the retrospective sampling, we consider weights incorporating the prevalence of adenoma in this age category (approximately 0.228) and the fraction of cases in the dataset for the E-M associations:

```R
> prev <- 0.228
> p <- sum(NavyAdenoma$Adenoma==1)/nrow(NavyAdenoma)
> p
[1] 0.5
> w <- rep(NA, nrow(NavyAdenoma))
> w[NavyAdenoma$Adenoma == 1] <- prev/p
> w[NavyAdenoma$Adenoma == 0] <- (1-prev)/(1-p)
> table(w)
w
0.456 1.544
129 129
```
We use `medTest` to perform the test of mediation, adjusting for the covariates BMI, gender, age, and current smoking status. As in the Boca et al. [2014] paper, we perform this adjustment using equal weights, rather than using the weights in \(w \), but users can consider using the weights in \(w \) both here and downstream:

```r
> set.seed(840218)
> medsFish <- medTest(E=NavyAdenoma$Fish,
+                     M=NavyAdenoma[, 6:154],
+                     Y=NavyAdenoma$Adenoma,
+                     Z=NavyAdenoma[, 2:5],
+                     nperm=1000, w=w,
+                     useWeightsZ=FALSE)
```

Now find metabolite which has the lowest p-values:

```r
> rownames(medsFish) <- colnames(NavyAdenoma[-c(1:5, 154)])
> medsFish[which.min(medsFish[,"p"]),,drop=FALSE]
```

<table>
<thead>
<tr>
<th>S</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>docosahexaenoate (DHA; 22:6n3)</td>
<td>0.04989712 0.051</td>
</tr>
</tbody>
</table>

Thus, we conclude that DHA (fish oil) is a possible mediator of the association between fish intake and colorectal adenoma.

References
