DelayedArray / HDF5Array update

Hervé Pagès

Fred Hutch, Seattle

April 2021
Recent additions to package DelayedArray

Recent additions to package HDF5Array

Work in progress and future work
Recent additions to package DelayedArray

Recent additions to package HDF5Array

Work in progress and future work
This would ordinarily take up 8 TB of memory:

```r
library(DelayedArray)
CM <- ConstantArray(c(1e6, 1e6), value=NA_real_)
CM
## <1000000 x 1000000> ConstantMatrix object of type "double":
## [,1] [,2]    [,3] ...   [,999999] [,1000000]
## [1,] NA NA NA .   NA   NA
## [2,] NA NA NA .   NA   NA
## [3,] NA NA NA .   NA   NA
## [4,] NA NA NA .   NA   NA
## [5,] NA NA NA .   NA   NA
## ... . . . . . .
## [999996,] NA NA NA .   NA   NA
## [999997,] NA NA NA .   NA   NA
## [999998,] NA NA NA .   NA   NA
## [999999,] NA NA NA .   NA   NA
## [1000000,] NA NA NA .   NA   NA

lobstr::obj_size(CM)
## 1.33 kB
```
sinkApply()

sinkApply(): a convenience function for walking on a *RealizationSink* derivative for the purpose of filling it with blocks of data

Example: Fill a 1e6 x 1e6 on-disk matrix with random data

```r
sink <- HDF5RealizationSink(c(1e6L, 1e6L)) # or TileDBRealizationSink
sink_grid <- defaultSinkAutoGrid(sink)
FUN <- function(sink, viewport) {
    block <- array(runif(length(viewport)), dim=dim(viewport))
    write_block(sink, viewport, block)
}
sink <- sinkApply(sink, FUN, grid=sink_grid)
close(sink)
M <- as(sink, "DelayedArray")
```
rbind(), cbind(), and sparsity

rbind() and cbind() of DelayedArray objects now propagate sparsity

```
ten1 <- HDF5Array::TENxMatrix("tenx1.h5")  # is_sparse(ten1) is TRUE
ten2 <- HDF5Array::TENxMatrix("tenx2.h5")  # is_sparse(ten2) is TRUE

bigtenx <- cbind(ten1, tenx2)  # is_sparse(bigtenx)  # TRUE
blockApply(bigtenx, FUN, ...)  # will take advantage of sparsity
```
1 Recent additions to package DelayedArray

2 Recent additions to package HDF5Array

3 Work in progress and future work
Recent additions to package HDF5Array

HDF5Array(): can now take an URL to a file on Amazon S3 (kind of slow!)

H5SparseMatrix: a DelayedMatrix subclass for representing and operating on an HDF5 sparse matrix stored in CSR/CSC/Yale format (e.g. 10x Genomics and h5ad formats)
Recent additions to package DelayedArray

Recent additions to package HDF5Array

Work in progress and future work
Work in progress and future work

Work in progress:

\texttt{h5summarize(..., op=\texttt{"sum"})}: Optimized summarization of an HDF5 dataset or subset:
- Implemented in C (direct calls to HDF5 C lib in \texttt{Rhdf5lib})
- Operates at the level of the physical chunks
- More efficient than \texttt{blockApply()}
- Integration to \texttt{DelayedArray/DelayedMatrixStats}: \texttt{h5summarize()} will be used behind the scene by things like \texttt{rowVars()}

Future work:

\texttt{SparseArray} objects: In-memory sparse representation of arrays of arbitrary dimensions
- Already used internally by block processing of sparse \texttt{DelayedArray} objects (current name is \texttt{SparseArraySeed})
- Will go to their own package (currently in \texttt{DelayedArray})
- Implement fast native operations: arithmetic, \texttt{Math} group (e.g. \texttt{log}), summarization, etc..
 This will benefit block processing of sparse \texttt{DelayedArray} objects