Package ‘yamss’

May 30, 2024

Version 1.30.0

Title Tools for high-throughput metabolomics

Description Tools to analyze and visualize high-throughput metabolomics data acquired using chromatography-mass spectrometry. These tools preprocess data in a way that enables reliable and powerful differential analysis. At the core of these methods is a peak detection phase that pools information across all samples simultaneously. This is in contrast to other methods that detect peaks in a sample-by-sample basis.

Depends R (>= 4.3.0), methods, BiocGenerics (>= 0.15.3), SummarizedExperiment

Suggests BiocStyle, knitr, rmarkdown, digest, mtbls2, testthat

Imports IRanges, stats, S4Vectors, EBImage, Matrix, mzR, data.table, grDevices, limma

VignetteBuilder knitr

License Artistic-2.0

URL https://github.com/hansenlab/yamss

BugReports https://github.com/hansenlab/yamss/issues

biocViews MassSpectrometry, Metabolomics, PeakDetection, Software

git_url https://git.bioconductor.org/packages/yamss

git_branch RELEASE_3_19

git_last_commit 98af026

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Leslie Myint [cre, aut] (<https://orcid.org/0000-0003-2478-0331>), Kasper Daniel Hansen [aut]

Maintainer Leslie Myint <leslie.myint@gmail.com>
bakedpi

Process raw data to compute density estimate.

Description

The bakedpi method stands for bivariate approximate kernel density estimation for peak identification. It performs background correction, retention time correction, and bivariate kernel density estimation.

Usage

bakedpi(cmsRaw, dbandwidth = c(0.005, 10), dgridstep = c(0.005, 1),
 outfileDens = NULL, dortalign = FALSE, mzsubset = NULL, verbose = TRUE)

Arguments

cmsRaw An object of class CMSraw.
dbandwidth A length-2 vector indicating the kernel density bandwidth in the M/Z and retention time (scan) directions. Default: c(0.005, 10)
dgridstep A length-2 vector indicating the grid step sizes. Default: c(0.005, 1).
outfileDens Name of a file to save density estimate. If NULL, no output is saved.
dortalign A logical value. Should retention time correction be performed?
mzsubset A length-2 vector indicating a subset of the M/Z range to process. NULL otherwise.
verbose Should the function be verbose?
CMSproc-class

Details

bakedpi first performs region-specific background correction. An optional retention time correction step follows in which M/Z region-specific shifts are computed to align the raw data. Next the two-dimensional density estimate is computed. The purpose of this function is to take the raw data read in by readMSdata and perform the steps necessary for bivariate kernel density estimation. The output of this function is used by slicepi to detect peaks and provide peak quantifications.

Value

An object of class CMSproc containing background corrected intensities, the bivariate kernel density estimate, and quantiles of the nonzero values in the density estimate.

Examples

```r
## A very small dataset
data(cmsRawExample)
cmsProc1 <- bakedpi(cmsRawExample,
    dbandwidth = c(0.01, 10), dgridstep = c(0.01, 1),
    dortalign = TRUE, mzsubset = c(500,510))

## A longer example which takes a few minutes to run.
## This is still a smaller mz-slice of the full data.
if (require(mtbls2)) {
    data(mtbls2)
    filepath <- file.path(find.package("mtbls2"), "mzML")
    files <- list.files(filepath, pattern = "MSpos-Ex1", recursive = TRUE, full.names = TRUE)
    colData <- DataFrame(sampClasses = rep("wild-type", "mutant"), each = 4))
    cmsRaw <- readMSdata(files = files, colData = colData, verbose = TRUE)
    cmsProc2 <- bakedpi(cmsRaw, dbandwidth = c(0.01, 10), dgridstep = c(0.01, 1),
        outfileDens = NULL, dortalign = TRUE, mzsubset = c(500, 520))
}
```

CMSproc-class A class to hold chromatography-mass spectrometry preprocessing information.

Description

This class builds on the CMSraw class to additionally store background-corrected intensities as well as the bivariate kernel density estimate.
Slots

colData: a DataFrame of phenotype and sample information.
rawDT: a data.table of raw spectral information.
mzParams: a list containing the minimum and maximum M/Z value and number of scans in each sample.
rtAlign: a logical indicating whether the data has been retention time aligned or not.
bgcorrDT: a data.table of background-corrected spectral information.
density: a matrix with rows corresponding to M/Z values and columns corresponding to scans containing the kernel density estimate.
densityQuantiles: a numeric vector containing the 100 percent quantiles of the nonzero density values.

Utility functions

We have the following utility functions:

show: The show method; prints the object.
getEICS: Gets extracted ion chromatograms (EICs) for the supplied M/Z ranges.
plotDensityRegion: Makes an image plot of the density estimate in a specified M/Z and scan region.

Accessors

We have the following accessor functions:

colData: Gets the DataFrame containing phenotype and sample information.
densityEstimate: Gets the matrix containing the density estimate.
densityQuantiles: Gets the quantiles of the nonzero values in the density estimate.

Examples

Construct a completely fake example
densmat <- matrix(rnorm(600), nrow = 20, ncol = 30)
colnames(densmat) <- 1:ncol(densmat)
rownames(densmat) <- seq(350, by = 0.005, length.out = nrow(densmat))
cmsobj <- new("CMSproc", density = densmat)
head(densityEstimate(cmsobj))

Takes about 20s to run

data(cmsRawExample)
cmsProc <- bakedpi(cmsRawExample,
 dbandwidth = c(0.01, 10), dgridstep = c(0.01, 1),
 dortalign = TRUE, mzsubset = c(500,510))
cmsProc
A class to hold chromatography-mass spectrometry raw data and metadata.

Description

This class saves the data from raw mass spectral data files in a data.table and is used in subsequent processing. Objects of this class are created by the readMSdata function.

Slots

colData: a DataFrame of phenotype and sample information.
rawDT: a data.table of raw spectral information.
mzParams: a list containing the minimum and maximum M/Z value and number of scans in each sample.

Utility functions

We have the following utility functions:

show: The show method; prints the object.
getEICS: Gets extracted ion chromatograms (EICs) for the supplied M/Z ranges.

Accessors

We have the following accessor functions:

colData: Gets the DataFrame containing phenotype and sample information.

Examples

data(cmsRawExample)
cmsRawExample

if (require(mtbls2)) {
data(mtbls2)
filepath <- file.path(find.package("mtbls2"), "mzML")
files <- list.files(filepath, pattern = "MSpos-Ex1", recursive = TRUE, full.names = TRUE)[1]
colData <- DataFrame(group = "wild-type")
cmsRaw <- readMSdata(files = files, colData = colData, verbose = TRUE)
colData(cmsRaw)
}
CMSrawExample

An example cmsRaw object

Description

This object contains parsed raw data for 4 samples in the MTBLS2 dataset.

Usage

`cmsRawExample`

Format

A CMSraw object containing information on 4 samples in the MTBLS2 dataset.

Value

An object of class CMSraw containing parsed data for 4 samples in the MTBLS2 dataset.

Source

The mtbls2 Bioconductor data package.

CMSslice-class

A class to hold chromatography-mass spectrometry peak bounds and quantifications.

Description

This class is based on the SummarizedExperiment class. It holds information on peak quantifications, M/Z and scan bounds, sample information, and preprocessing metadata. Objects of the class can be constructed using CMSslice.

Utility functions

We have the following utility functions:

- `show`: The show method; prints the object.

Accessors

We have the following accessor functions:

- `colData`: Gets the DataFrame containing phenotype and sample information.
- `densityCutoff`: Gets the value used to threshold the density for peak calling.
- `densityQuantiles`: Gets the quantiles of the nonzero values in the density estimate.
- `peakBounds`: Gets the DataFrame of M/Z bounds, scan bounds, and ID numbers for detected peaks.
- `peakQuants`: Gets the matrix of peak quantifications (rows: peaks, columns: samples).
diffrep

Perform differential analysis.

Description

Performs differential abundance analysis on quantification information in a CMSslice object.

Usage

diffrep(cms, classes)

Arguments

- **cms**
 - An object of class CMSslice.

- **classes**
 - A character vector of class labels for the samples.

Details

Differential analysis is performed using the limma package which uses empirical Bayes methods in the estimation of feature-wise variances.

Value

A data.frame containing differential analysis information including log fold changes and p-values.

Examples

```r
## Construct a fake class
quants <- matrix(rnorm(12*5000), nrow = 5000, ncol = 12)
bounds <- cbind(mzmin = seq(from = 100, to = 1100, length.out = 5000),
                mzmax = seq(from = 100, to = 1100, length.out = 5000) + 0.1,
                scan.min = rep(10, 5000), scan.max = rep(20, 5000),
                peaknum = 1:5000)
cmsobj <- CMSslice(assays = SimpleList(peakQuants = quants),
                    rowData = DataFrame(bounds))
head(peakQuants(cmsobj))

## A better example which takes 20s to run

data(cmsRawExample)
cmsProc <- bakedpi(cmsRawExample,
                    dbandwidth = c(0.01, 10), dgridstep = c(0.01, 1),
                    dortalign = TRUE, mzsubset = c(500, 510))
cutoff <- tail(densityQuantiles(cmsProc), 2)[1]
sliced <- slicepi(cmsProc, cutoff = cutoff, verbose = TRUE)
sliced
```
getEICS

Examples

```r
quantmat <- matrix(rnorm(12*5000), nrow = 5000, ncol = 12)
cmsobj <- CMSslice(assays = SimpleList(peakQuants = quantmat))
classes <- rep(c("case", "control"), each = 6)
difftab <- diffrep(cmsobj, classes)
```

getEICS

Compute extracted ion chromatograms for multiple regions.

Description

Computes extracted ion chromatograms (EICs) for the given M/Z ranges. Intensities are on the log2 scale.

Usage

```r
getEICS(object, mzranges)
```

Arguments

- `object`: An object of class CMSraw or CMSproc.
- `mzranges`: A 2-column matrix where each row corresponds to one M/Z range and the first and second columns are the minimum and maximum M/Z values for the range respectively.

Details

In a given M/Z range, the maximum intensity observed in each scan gives the extracted ion chromatogram.

Value

A list with length equal to the number of rows of `mzranges` where each list element is a # scans by # samples matrix of EICs (on the log2 scale).

Examples

```r
data(cmsRawExample)
mzranges <- rbind(c(500.01, 500.03), c(501.3, 501.5))
eicList <- getEICS(cmsRawExample, mzranges)
```
getTIC

Compute total ion chromatogram (TIC) for a sample.

Description

Computes total ion chromatogram (TIC) for a single sample. Intensities are on the log2 scale. This requires a CMSraw object, typically produced from readMSdata.

Usage

getTIC(object, sample)

Arguments

- **object**: An object of class CMSraw.
- **sample**: An integer - for which sample should the TIC be computed?.

Value

A vector with length equal to the number of scans containing the log2 sum of intensities at each scan.

Examples

data(cmsRawExample)
tic <- getTIC(cmsRawExample, sample = 1)

plotDensityRegion

Image plot of region of density estimate.

Description

Makes an image plot of the density estimate in the specified M/Z and scan region.

Usage

plotDensityRegion(cms, mzrange, scanrange)

Arguments

- **cms**: An object of class CMSproc.
- **mzrange**: A length-2 vector indicating the M/Z range to plot.
- **scanrange**: A length-2 vector indicating the scan range to plot.
Value
This function is invoked for its side effect of plotting.

Examples

```r
## For illustration purposes, we make a "dummy" object
## with a random matrix as the density estimate

densmat <- matrix(rnorm(600), nrow = 20, ncol = 30)
colnames(densmat) <- 1:ncol(densmat)
rownames(densmat) <- seq(350, by = 0.005, length.out = nrow(densmat))
densityQuantiles <- quantile(densmat, seq(from = 0, to = 1, by = 0.001))
cmsobj <- new("CMSproc", density = densmat, densityQuantiles = densityQuantiles)
plotDensityRegion(cmsobj, mzrange = c(350.01, 350.03), scanrange = c(10,20))
```

readMSdata
Read raw mass spectral data files.

Description
Creates a CMSraw object that contains a data.table of raw mass spectral information for all samples. The resulting object also stores phenotype and sample information. This object is the basic encapsulation of essential raw experimental data and serves as the output for further processing methods.

Usage

```r
readMSdata(files, colData, mzsubset, verbose)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>files</td>
<td>A character vector of filenames pointing to the raw data.</td>
</tr>
<tr>
<td>colData</td>
<td>A DataFrame of phenotype and sample information.</td>
</tr>
<tr>
<td>mzsubset</td>
<td>A length-2 vector indicating a subset of the M/Z range to process. NULL otherwise.</td>
</tr>
<tr>
<td>verbose</td>
<td>Should the function be verbose?</td>
</tr>
</tbody>
</table>

Value
A vector with length equal to the number of scans containing the log2 sum of intensities at each scan.
slice pi

Examples

```r
if (require(mtbls2)) {
  data(mtbls2)
  filepath <- file.path(find.package("mtbls2"), "mzML")
  file <- list.files(filepath, pattern = "MSpos-Ex1",
                     recursive = TRUE, full.names = TRUE)[1]
  colData <- DataFrame(group = "wild-type")
  cmsRaw <- readMSdata(files = file, colData = colData, verbose = TRUE)
}
```

slice pi
Process raw data to compute density estimate.

Description

The slice pi method uses the bivariate approximate kernel density estimate computed by bakedpi and uses a cutoff to bound and quantify peaks.

Usage

```
slice pi(object, cutoff = NULL, verbose = TRUE)
```

Arguments

- `object`: An object of class CMSproc.
- `cutoff`: A number indicating the threshold to apply to the density estimate. NULL indicates that a data-driven threshold should be chosen.
- `verbose`: Should the function be verbose?

Details

slice pi uses the most intense features in set regions of the M/Z space to identify a data-driven density cutoff to detect peaks. Once peak bounds have been computed, the extracted ion chromatograms for the peaks are computed, and the EICs are integrated to obtain peak quantifications.

Value

An object of class CMSslice containing peak bounds and quantifications as well as sample and preprocessing metadata.

Examples

```
data(cmsRawExample)
cmsProc <- bakedpi(cmsRawExample, dbandwidth = c(0.01, 10), dgridstep = c(0.01, 1),
                    outfileDens = NULL, dortalign = FALSE, verbose = TRUE)
dqs <- densityQuantiles(cmsProc)
cmsSlice <- slice pi(cmsProc, cutoff = dqs[996], verbose = TRUE)
cmsSlice
```
Index

* datasets
 cmsRawExample, 6

bakedpi, 2

CMSproc-class, 3
CMSraw-class, 5
cmsRawExample, 6
CMSslice (CMSslice-class), 6
CMSslice-class, 6
colData, CMSraw-method (CMSraw-class), 5
densityCutoff (CMSslice-class), 6
densityEstimate (CMSproc-class), 3
densityQuantiles (CMSproc-class), 3
diffrep, 7
getEICS, 8
getTIC, 9

peakBounds (CMSslice-class), 6
peakQuants (CMSslice-class), 6
plotDensityRegion, 9

readMSdata, 10

show, CMSproc-method (CMSproc-class), 3
show, CMSraw-method (CMSraw-class), 5
show, CMSslice-method (CMSslice-class), 6
slicepi, 11