Package ‘traseR’

July 14, 2023

Type Package

Title GWAS trait-associated SNP enrichment analyses in genomic intervals

Version 1.30.0

Depends R (>= 3.2.0), GenomicRanges, IRanges, BSgenome.Hsapiens.UCSC.hg19

Suggests BiocStyle, RUnit, BiocGenerics

Date 2021-11-21

Author Li Chen, Zhaohui S. Qin

Maintainer li.chen@emory.edu

Description traseR performs GWAS trait-associated SNP enrichment analyses in genomic intervals using different hypothesis testing approaches, also provides various functionalities to explore and visualize the results.

License GPL

LazyLoad yes

biocViews Genetics, Sequencing, Coverage, Alignment, QualityControl, DataImport

NeedsCompilation no

git_url https://git.bioconductor.org/packages/traseR

git_branch RELEASE_3_17

git_last_commit f394759

git_last_commit_date 2023-04-25

Date/Publication 2023-07-13

R topics documented:

 traseR-package .. 2
 CEU ... 2
 plots ... 3
 print.traseR ... 4
GWAS trait-associated SNP enrichment analyses in genomic intervals

Description

Perform GWAS trait-associated SNP enrichment analyses in genomic intervals. Explore and visualize the results.

Details

Package: traseR
Type: Package
Version: 1.0
Date: 2015-11-18
License: GPL

Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui S.Qin<zhaohui.qin@emory.edu>

Usage

data(CEU)
Value

The data frame CEU contains three columns,

- **SNP_ID**: SNP rs number
- **seqnames**: Chromosome number associated with rs number
- **ranges**: Chromosomal position, in base pairs, associated with rs number

Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui S. Qin <zhaohui.qin@emory.edu>

plots

Visualize of trait-associated SNPs

Description

These are a group of functions to generate plots to visualize the trait-associated SNPs.

Usage

- `plotContext(snpdb, region=NULL, keyword = NULL, pvalue = 1e-3)`
- `plotPvalue(snpdb, region=NULL, keyword = NULL, plot.type = c("densityplot", "boxplot"), pvalue = 1e-3, xymax = 50)`
- `plotSNP(snpdb, snpid, ext = 10000)`
- `plotGene(snpdb, gene, ext = 10000)`
- `plotInterval(snpdb, interval, ext = 10000)`

Arguments

- **snpdb**: A GRange object or data frame, which is GWAS trait-associated SNPs downloaded from up-to-date dbGaP and NHGRI public database. It is maintained to be updated to the latest version. The data frame contains the following columns: Trait, SNP, p.value, Chr, Position, Context, GENE_NAME, GENE_START, GENE_END, GENE_STRAND. The data frame is in data subdirectory. Users are free to add more SNP records to the data frame for practical use.
- **region**: A data frame, which is genomic intervals with three columns, chromosome, genomic start position, genomic end position.
- **keyword**: The keyword is used when specific trait is of interest. If keyword is specified, only the SNPs associated to the trait are used for analyses. Otherwise, all traits will be analyzed.
- **snpid**: SNP rs number
print.traseR

<table>
<thead>
<tr>
<th>gene</th>
<th>Gene name</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvalue</td>
<td>SNPs with p-value less than this threshold are used for analyses.</td>
</tr>
<tr>
<td>plot.type</td>
<td>Either "densityplot" or "boxplot"</td>
</tr>
<tr>
<td>ext</td>
<td>Bp extended upstream and downstream</td>
</tr>
<tr>
<td>xymax</td>
<td>The maximum range on x-axis and y-axis</td>
</tr>
<tr>
<td>interval</td>
<td>A data frame, genomic interval: chromosome, genomic start position, genomic end position</td>
</tr>
</tbody>
</table>

Value

- **plotContext**: A pie plot with the distribution of SNP function class
- **plotPvalue**: A density plot of -logPvalue of trait-associated SNPs
- **plotSNP**: A plot of trait-associated SNP on chromosome
- **plotGene**: A plot with the gene and possible nearby trait-associated SNPs
- **plotInterval**: A plot with chromosome interval with possible nearby genes and trait-associated SNPs

Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui Qin <zhaohui.qin@emory.edu>

Examples

```r
data(taSNP)
plotContext(snpdb = taSNP, keyword="Autoimmune")
plotGene(snpdb = taSNP, gene="ZFP92", ext=50000)
plotSNP(snpdb= taSNP, snpid="rs766420", ext=50000)
plotInterval(snpdb= taSNP, data.frame(chr="chrX", start=152633780, end=152737085))
```

Description

Print the outcome of taSNP enrichment analyses. Print the overall taSNP enrichment, trait-specific taSNP enrichment,trait-class-specific taSNP enrichment.

Usage

```r
## S3 method for class 'traseR'
print(x, isTopK1=FALSE, topK1=10, isTopK2=FALSE, topK2=10, trait.threshold=10, traitclass.threshold=10,)
```
Arguments

- **x**: Object returned from `traseR`.
- **isTopK1**: If `isTopK1` is `TRUE`, topK1 traits are printed; otherwise, traits with p-value below Bonferroni correction threshold are printed. Default is `FALSE`.
- **topK1**: Top K1 traits are printed. Default is 10.
- **isTopK2**: If `isTopK2` is `TRUE`, topK2 trait class are printed; otherwise, trait class with p-value below Bonferroni correction threshold are printed. Default is `FALSE`.
- **topK2**: Top K2 trait class are printed. Default is 10.
- **trait.threshold**: Traits above this threshold are reported. Default is 10.
- **traitclass.threshold**: Trait class above this threshold are reported. Default is 10.
- **...**: Other parameters to print

Value

Print a data frame of traits ranked by p-value

Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui S. Qin <zhaohui.qin@emory.edu>

Examples

```r
data(taSNP)
data(Tcell)
x=traseR(snpdb=taSNP,region=Tcell)
print(x)
```

Description

These are a group of functions to retrieve the trait-associated SNPs based on input

Usage

- `queryKeyword(snpdb, region=NULL, keyword = NULL, returnby = c("SNP_ID", "trait"), pvalue = 1e-3)`
- `queryGene(snpdb, genes = NULL)`
- `querySNP(snpdb, snpid, region = NULL)`
Arguments

snpdb A GRRange object or data frame, which is GWAS trait-associated SNPs downloaded from up-to-date dbGaP and NHGRI public database. It is maintained to be updated to the latest version. The data frame contains the following columns, Trait, SNP_ID, p.value, Chr, Position, Context, GENE_NAME, GENE_START, GENE_END, GENE_STRAND. The data frame is in data subdirectory. Users are free to add more SNP records to the data frame for practical use.

region A data frame, which is genomic intervals with three columns, chromosome, genomic start position, genomic end position.

keyword The keyword is used when specific trait is of interest. If keyword is specified, only the SNPs associated to the trait are used for analyses. Otherwise, all traits will be analyzed.

snpid SNP rs number

genes Gene name

pvalue SNPs with p-value less than this threshold are used for analyses.

returnby Either SNP or trait. If returnby is specified as 'SNP_ID', a data frame based on 'SNP_ID' is returned. If returnby is specified as 'trait', a data frame based on 'trait' is returned.

Value

queryKeyword: Return a data frame of traits containing the keyword queryGene: Return a data frame of traits associated with the gene querySNP: Return a data frame of traits associated with the SNP

Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui Qin <zhaohui.qin@emory.edu>

Examples

data(taSNP)
data(Tcell)
x=queryKeyword(snpdb=taSNP, region=Tcell, keyword="Autoimmune", returnby="SNP_ID")
x=queryGene(snpdb=taSNP, genes=c("AGRN", "UBE2J2", "SSU72"))
x=querySNP(snpdb=taSNP, snpid=c("rs3766178", "rs880051"))

taSNP trait-associated SNPs in dbGaP and NHGRI downloaded from Association Results Browser

Description

A GRRange object taSNP contains trait-associated SNPs from dbGaP and NHGRI downloaded from Association Results Browser.
Usage

 data(taSNP)

Value

The data frame taSNP contains the following columns

- **Trait**: Trait
- **Trait Class**: Trait class which is formed based on the phenotype tree. Close traits are grouped together to form one class
- **SNP_ID**: SNP rs number
- **p.value**: GWAS SNP p-value
- **seqnames**: Chromosome
- **ranges**: Chromosomal position
- **Context**: SNP functional class
- **GENE_NAME**: Nearest gene name
- **GENE_START**: Gene start genomic position
- **GENE_END**: Gene end genomic position
- **GENE_STRAND**: Gene strand

Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui S.Qin<zhaohui.qin@emory.edu>

taSNPLD

linkage disequilibrium (>0.8) within 100kb SNPs of all trait-associated SNPs from dbGaP and NHGRI

Description

A GRanger object taSNPLD contains linkage disequilibrium (>0.8) SNPs of all trait-associated SNPs from dbGaP and NHGRI.

Usage

 data(taSNPLD)

Value

The data frame taSNPLD contains four columns,

- **SNP_ID**: SNP rs number
- **seqnames**: Chromosome number associated with rs number
- **ranges**: Chromosomal position, in base pairs, associated with rs number
- **Trait**: Trait the SNP is associated with
- **Trait Class**: Trait class which is formed based on the phenotype tree. Close traits are grouped together to form one class
Author(s)

Li Chen <li.chen@emory.edu>, Zhaohui S. Qin <zhaohui.qin@emory.edu>

Tcell
Peak regions of H3K4me1 in Peripheral blood T cell

Description

A `GRanges` object `Tcell` contains three columns: chromosome, genomic start position and genomic end position.

Usage

```r
data(Tcell)
```

Value

The data frame `Tcell` contains three columns,

- `seqnames`: Chromosome id
- `ranges`: Chromosome position

traseR
TRait-Associated SNP EnRichment analyses

Description

Perform GWAS trait-associated SNP enrichment analyses in genomic intervals using different approaches

Usage

```r
traseR.snpdb, region, snpdb.bg=NULL, keyword = NULL, rankby = c("pvalue", "odds.ratio"),
          test.method = c("binomial", "fisher", "chisq", "nonparametric"), alternative = c("greater", "less", "two.sided"),
          ntimes=100, nbatch=1,
          trait.threshold = 0, traitclass.threshold=0, pvalue = 1e-3)
```
traseR

Arguments

- **snpdb**: A GRange object. It could be GWAS trait-associated SNPs downloaded from up-to-date dbGaP and NHGRI public database. It is maintained to be updated to the latest version. The data frame contains the following columns, Source, Trait, SNP, p.value, Chr, Position. The data frame is in data subdirectory. Users are free to add more SNP records to the data frame for practical use. It could also be a data frame with columns as, SNP, Chr, Position.

- **region**: A GRange object or data frame, which is genomic intervals with three columns, chromosome, genomic start position, genomic end position.

- **snpdb.bg**: A GRange object contains non-trait-associated SNPs. They are treated as background for statistical testing instead of whole genome as background if specified.

- **keyword**: The keyword is used when specific trait is of interest. If keyword is specified, only the SNPs associated to the trait are used for analyses. Otherwise, all traits will be analyzed.

- **rankby**: Traits could be ranked by either p-value or adds.ratio based on the enrichment level of trait-associated SNPs in genomic intervals.

- **test.method**: Several hypothesis testing options are provided: binomial (binomial test), fisher (Fisher's exact test), chisq (Chi-squared test), chisq (nonparametric test). Default is binomial (binomial test)

- **alternative**: Indicate the alternative hypothesis. If greater, test if the genomic intervals are enriched in trait-associated SNPs than background. If less, test if the genomic intervals are depleted in trait-associated SNPs than background. If two.sided, test if there is difference between the enrichment of trait-associated SNPs in genomic intervals and in background.

- **ntimes**: The number of shuffling time for one batch. See nbatch.

- **nbatch**: The number of batches. The product of ntimes and nbatch is the total number of shuffling time.

- **trait.threshold**: Test traits with number of SNPs more than the threshold.

- **traitclass.threshold**: Test trait class with number of SNPs more than the threshold.

- **pvalue**: SNPs with p-value less than this threshold are used for analyses.

Details

Return a list that contains three data frames. One data frame tb.all contains the results of enrichment analyses for all trait-associated SNPs in genomic intervals. Another data frame tb1 contains the results of enrichment analyses for each trait-associated SNPs in genomic intervals separately. Another data frame tb2 contains the results of enrichment analyses for each trait-class-associated SNPs in genomic intervals separately.

Value

The data frame tb1 has columns,

Trait Name of trait
p.value P-value calculated from hypothesis testing
q.value Adjusted p-value from multiple testing using FDR correction
odds.ratio Odds ratio calculated based on number of trait-associated SNPs in genomic intervals, number of trait-associated SNPs across whole genome, genomic intervals size (bps) and genome size (bps)
taSNP.hits Number of trait-associated SNPs in genomic intervals
taSNP.num Number of SNPs for specific trait

Author(s)
Li Chen <li.chen@emory.edu>, Zhaohui S. Qin <zhaohui.qin@emory.edu>

See Also
print.traseR

Examples
data(taSNP)
data(Tcell)
x=traseR(snpdb=taSNP, region=Tcell)
print(x)
Index

* package
 traseR-package, 2

CEU, 2

plotContext (plots), 3
plotGene (plots), 3
plotInterval (plots), 3
plotPvalue (plots), 3
plots, 3
plotSNP (plots), 3
print.traseR, 4

queryGene (querys), 5
queryKeyword (querys), 5
querys, 5
querySNP (querys), 5

taSNP, 6
taSNPLD, 7
Tcell, 8
traseR, 8
traseR-package, 2