Package ‘transcriptogramer’

May 30, 2024

Type Package

Title Transcriptional analysis based on transcriptograms

Version 1.26.0

Date 2019-12-13

Description R package for transcriptional analysis based on transcriptograms, a method to analyze transcriptomes that projects expression values on a set of ordered proteins, arranged such that the probability that gene products participate in the same metabolic pathway exponentially decreases with the increase of the distance between two proteins of the ordering. Transcriptograms are, hence, genome wide gene expression profiles that provide a global view for the cellular metabolism, while indicating gene sets whose expressions are altered.

Depends R (>= 3.4), methods

License GPL (>= 2)

Encoding UTF-8

LazyData true

biocViews Software, Network, Visualization, SystemsBiology, GeneExpression, GeneSetEnrichment, GraphAndNetwork, Clustering, DifferentialExpression, Microarray, RNASeq, Transcription, ImmunoOncology

Imports biomaRt, data.table, doSNOW, foreach, ggplot2, graphics, grDevices, igraph, limma, parallel, progress, RedeR, snow, stats, tidyr, topGO

RoxygenNote 6.1.1

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, RUnit, BiocGenerics

SystemRequirements Java Runtime Environment (>= 6)

URL https://github.com/arthurvinx/transcriptogramer

BugReports https://github.com/arthurvinx/transcriptogramer/issues

git_url https://git.bioconductor.org/packages/transcriptogramer
git_branch RELEASE_3_19
git_last_commit 6cc572c
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Diego Morais [aut, cre],
 Rodrigo Dalmolin [aut]
Maintainer Diego Morais <vinx@ufrn.edu.br>

Contents

transcriptogramer-package ... 3
association ... 4
clusterEnrichment .. 5
clusterVisualization .. 6
connectivityProperties .. 8
DE ... 9
DEsymbols .. 10
differentiallyExpressed ... 11
enrichmentPlot ... 13
GPL570 ... 14
GSE9988 .. 15
Hs700 ... 16
Hs800 ... 16
Hs900 ... 17
HsBPTerms ... 18
Mm700 ... 18
Mm800 ... 19
Mm900 ... 20
orderingProperties .. 20
radius< ... 22
Rn700 ... 23
Rn800 ... 24
Rn900 ... 24
Sc700 ... 25
Sc800 ... 26
Sc900 ... 26
Terms ... 27
Transcriptogram-class ... 28
transcriptogramPreprocess ... 29
transcriptogramStep1 ... 30
transcriptogramStep2 ... 31

Index 34
transcriptogramer-package

Transcriptional analysis based on transcriptograms

Description

R package for transcriptional analysis based on transcriptograms, a method to analyze transcriptomes that projects expression values on a set of ordered proteins, arranged such that the probability that gene products participate in the same metabolic pathway exponentially decreases with the increase of the distance between two proteins of the ordering. Transcriptograms are, hence, genome wide gene expression profiles that provide a global view for the cellular metabolism, while indicating gene sets whose expression are altered.

Author(s)

Diego Morais <vinx@ufrn.edu.br> [maintainer]
Rodrigo Dalmolin <rodrigo.dalmolin@imd.ufrn.br>

References

See Also

Bioconductor: release, devel
Github: source code, bug reports
References: (da Silva et al., 2014; de Almeida et al., 2016; Ferrareze et al., 2017; Morais et al., 2019; Rybarczyk-Filho et al., 2011; Xavier et al., 2017)

<table>
<thead>
<tr>
<th>association</th>
<th>Association</th>
</tr>
</thead>
</table>

Description

A subset of the Homo sapiens protein network data from STRINGdb, release 11. This subset contains only associations of proteins of combined score greater than or equal to 900.

Usage

`association`

Format

Each row of the data.frame contains two variables:

- **V1** The ENSEMBL Peptide ID of the first protein
- **V2** The ENSEMBL Peptide ID of the second protein

Author(s)

Diego Morais

See Also

`Hs900`

Examples

`association`
Description

If `species` is a character, this method uses the `biomaRt` package to build a Protein2GO list, if `species` is a data.frame, it will be used instead. The Protein2GO list will be used with the `topGO` package to detect the most significant terms of each cluster present in the DE slot of the object.

Usage

```r
clusterEnrichment(object, universe = NULL, species,
  ontology = "biological process", algorithm = "classic",
  statistic = "fisher", pValue = 0.05, adjustMethod = "BH",
  nCores = 1L, onlyGenesInDE = FALSE)
```

```r
## S4 method for signature 'Transcriptogram'
clusterEnrichment(object, universe = NULL,
  species, ontology = "biological process", algorithm = "classic",
  statistic = "fisher", pValue = 0.05, adjustMethod = "BH",
  nCores = 1L, onlyGenesInDE = FALSE)
```

Arguments

- **object**: An object of class Transcriptogram.
- **universe**: A character vector containing ENSEMBL Peptide IDs, or NULL, if the universe is composed by all the proteins present in the ordering slot of object.
- **species**: A character string specifying the species; or a data.frame containing two columns, the first one with ENSEMBL Peptide IDs (character), which may, or not, to contain the taxonomy ID of the species as prefix, and the second containing its respective Gene Ontology term (character).
- **ontology**: A character string specifying the Gene Ontology domain, ignoring case sensitivity, the possible values are 'biological process', 'cellular component' and 'molecular function'. The default value of this argument is 'biological process'.
- **algorithm**: Character string specifying which algorithm to use, the possible values are 'classic', 'elim', 'weight', 'weight01', 'lea' and 'parentchild'. The default value of this argument is 'classic'.
- **statistic**: Character string specifying which test to use, the possible values are 'fisher', 'ks', 't', 'sum' and 'globaltest'. The default value of this argument is 'fisher'.
- **pValue**: A numeric value between 0 and 1 giving the required family-wise error rate or false discovery rate. The default value of this argument is 0.05.
- **adjustMethod**: Character string specifying p-value adjustment method, the possible values are 'none', 'BH', 'fdr' (equivalent to 'BH'), 'BY', 'hochberg', 'hommel', 'bonferroni', and 'holm'. The default value of this argument is 'BH'.
clusterVisualization

Displays graphs of the differentially expressed clusters

Description

This method uses the RedeR package to display graphs of the differentially expressed clusters.

nCores

An integer number, referring to the number of processing cores to be used; or a logical value, TRUE indicating that all processing cores should be used, and FALSE indicating the use of just one processing core. The default value of this argument is 1.

onlyGenesInDE

Logical value, set as TRUE to use only the genes in the DE slot. Set as FALSE to use all the genes referring to the positions in the clusters slot. The default value of this argument is FALSE.

Value

This method creates a data.frame, containing the most significant terms of each cluster, to feed the Terms slot of an object of class Transcriptogram.

Author(s)

Diego Morais

See Also

differentiallyExpressed, transcriptogramPreprocess, GSE9988, GPL570, Hs900, HsBPTerms, association, transcriptogramStep1, transcriptogramStep2

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01)
transcriptogram <- clusterEnrichment(transcriptogram, species = "Homo sapiens", pValue = 0.005)
this call also works
transcriptogram <- clusterEnrichment(transcriptogram, species = HsBPTerms, pValue = 0.005)
End(Not run)
Usage

clusterVisualization(object, maincomp = FALSE, connected = FALSE, host = "127.0.0.1", port = 9091, clusters = NULL, onlyGenesInDE = FALSE, colors = NULL)

S4 method for signature 'Transcriptogram'
clusterVisualization(object, maincomp = FALSE, connected = FALSE, host = "127.0.0.1", port = 9091, clusters = NULL, onlyGenesInDE = FALSE, colors = NULL)

Arguments

object An object of class Transcriptogram.
maincomp Logical value, set as TRUE if you want to display only the main component of each cluster. The default value of this argument is FALSE.
connected Logical value, set as TRUE if you want to display only connected nodes. The default value of this argument is FALSE.
host The domain name of the machine that is running the RedeR XML-RPC server.
port An integer specifying the port on which the XML-RPC server should listen.
clusters An integer vector specifying the clusters to be displayed. If NULL, all clusters will be displayed.
onlyGenesInDE Logical value, set as TRUE to use only the genes in the DE slot. Set as FALSE to use all the genes referring to the positions in the clusters slot. The default value of this argument is FALSE.
colors Color vector used to distinguish the clusters. If NULL, the rainbow palette will be used to generate the colors. The color vector must contain a color for each cluster.

Details

RedeR package requirements: Java Runtime Environment (>= 6).

Value

This method returns an object of the RedPort Class.

Author(s)

Diego Morais

See Also
differentiallyExpressed, transcriptogramPreprocess, GSE9988, GPL570, Hs900, association, transcriptogramStep1, transcriptogramStep2, RedPort
connectivityProperties

connectivityProperties

Calculates average graph properties as function of node connectivity

Description

Calculates network properties as function of node connectivity/degree (k), such as: probability of a protein of the graph has degree k, average assortativity of the nodes of degree k, and the average clustering coefficient of the nodes of degree k.

Usage

```r
cconnectivityProperties(object)
```

S4 method for signature 'Transcriptogram'

cconnectivityProperties(object)

Arguments

- `object`: An object of class Transcriptogram.

Details

The assortativity of a node can be measured by the average degree of its neighbors.

Value

This method returns a data.frame containing: unique degrees (k) of the nodes of the graph, probability (pk) of a node of the graph has degree k, average assortativity (ak) of the nodes of degree k, and the average clustering coefficient (ck) of the nodes of degree k.

Author(s)

Diego Morais

Examples

```r
transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
## Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01, DEsymbols)
rdp <- clusterVisualization(transcriptogram)
## End(Not run)
```
See Also

transcriptogramPreprocess, Hs900, association

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900)
Not run:
cProperties <- connectivityProperties(transcriptogram)
End(Not run)

Description

Gets the content of the DE slot of an object of class Transcriptogram.

Usage

DE(object)

S4 method for signature 'Transcriptogram'
DE(object)

Arguments

object An object of class Transcriptogram.

Value

This method returns the content of the DE slot of an object of class Transcriptogram.

Author(s)

Diego Morais

See Also

Hs900, association, transcriptogramPreprocess
Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01)
DE(transcriptogram)

End(Not run)

DEsymbols

<table>
<thead>
<tr>
<th>Dictionary</th>
<th>Protein2Symbol</th>
</tr>
</thead>
</table>

Description

A mapping between ENSEMBL Peptide ID and Symbol (Gene Name). This dataset was created to map the Homo sapiens proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage

DEsymbols

Format

Each row of the data.frame contains two variables:

- **ensembl_peptide_id** The ENSEMBL Peptide ID
- **external_gene_name** The Gene Name

Author(s)

Diego Morais

Examples

DEsymbols
differentiallyExpressed

Identify which genes are differentially expressed

Description

This method uses the **limma** package to identify which genes are differentially expressed, meeting the pValue requirement, for the contrast "case-control". The levels length must be equal to the number of samples present in the transcriptogramS2 slot of the object, and its contents is related to the order that the samples appear. FALSE must be used to indicate case samples, and TRUE to indicate control samples. If species is **NULL**, no translation will be done, if species is a character, the **biomaRt** package will be used to translate the ENSEMBL Peptide ID to Symbol (Gene Name), and if species is a data.frame, it will be used instead. If the translation fail for some protein, its ENSEMBL Peptide ID will be present into the Symbol column. This method also groups the differentially expressed proteins detected in clusters, and plots a graphical representation of this clustering.

Usage

```r
differentiallyExpressed(object, levels, pValue = 0.05, 
                        species = object@Protein2Symbol, adjustMethod = "BH", 
                        trend = FALSE, title = "Differential expression", 
                        boundaryConditions = TRUE, colors = NULL)
```

```r
## S4 method for signature 'Transcriptogram'
differentiallyExpressed(object, levels, 
                        pValue = 0.05, species = object@Protein2Symbol, 
                        adjustMethod = "BH", trend = FALSE, 
                        title = "Differential expression", boundaryConditions = TRUE, 
                        colors = NULL)
```

Arguments

- **object**: An object of class Transcriptogram.
- **levels**: A logical vector that classify the columns, referring to samples, of the transcriptogramS2 slot of the object. FALSE must be used to indicate case samples, and TRUE to indicate control samples.
- **pValue**: A numeric value between 0 and 1 giving the required family-wise error rate or false discovery rate. The default value of this argument is 0.05.
- **species**: A character string that will be used, ignoring case sensitivity, to translate the ENSEMBL Peptide ID to Symbol (Gene Name); or a data.frame containing two columns, the first one with ENSEMBL Peptide IDs (character), which may, or not, to contain the taxonomy ID of the species as prefix, and the second containing its respective Symbol (character). The default value of this argument is the content of the object Protein2Symbol slot.
differentiallyExpressed

adjustMethod Character string specifying p-value adjustment method, the possible values are 'none', 'BH', 'fdr' (equivalent to 'BH'), 'BY' and 'holm'. The default value for this argument is 'BH'.

Trend Logical value, set as TRUE to use the limma-trend approach for RNA-Seq. The default value of this argument is FALSE.

title An overall title for the plot. The default value of this argument is "Differential expression".

boundaryConditions Logical value, defines whether the clusters limits will be extended using the current value of the radius slot. If TRUE, nearby clusters will be merged if its limits overlap. The default value of this argument is TRUE.

colors Color vector used to distinguish the clusters. If NULL, the rainbow palette will be used to generate the colors. The color vector must contain a color for each cluster.

Value

This method creates a data.frame to feed the DE slot of an object of class Transcriptogram. This data.frame of differentially expressed proteins contains log2-fold-change, raw p-values, adjusted p-values, and an integer number that indicates if the protein is downregulated (-1) or upregulated (1).

Author(s)

Diego Morais

See Also

transcriptogramPreprocess, GSE9988, GPL570, Hs900, association, DEsymbols, transcriptogramStep1, transcriptogramStep2

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01)

translating ENSEMBL Peptide IDs to Symbols
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01, "Homo sapiens")

these calls also works
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01, "H sapiens")

transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01, DEsymbols)
enrichmentPlot

End(Not run)

enrichmentPlot Projects Gene Ontology terms on the ordering

Description

Plots the ratio (number of genes related to a term inside the window/total number of genes in the window) from a set of Gene Ontology terms.

Usage

```r
enrichmentPlot(object, nCores = 1L, nTerms = 1L, GOIDs = NULL, 
    title = "Enrichment", alpha = 0.15, colors = NULL)
```

S4 method for signature 'Transcriptogram'

```r
enrichmentPlot(object, nCores = 1L, 
    nTerms = 1L, GOIDs = NULL, title = "Enrichment", alpha = 0.15, 
    colors = NULL)
```

Arguments

- **object**: An object of class Transcriptogram.
- **nCores**: An integer number, referring to the number of processing cores to be used; or a logical value, TRUE indicating that all processing cores should be used, and FALSE indicating the use of just one processing core. The default value of this argument is 1.
- **nTerms**: An integer number referring to the number of top terms from each cluster. The default value of this argument is 1.
- **GOIDs**: A character vector containing the Gene Ontology accessions to be plotted. If NULL, the top nTerms of each cluster will be used.
- **title**: An overall title for the plot. The default value of this argument is "Enrichment"
- **alpha**: The alpha value indicates the color transparency of the clusters regions. This value goes from 0 to 1, where 0 is completely transparent, and 1 is opaque.
- **colors**: Color vector used to distinguish the clusters. If NULL, the rainbow palette will be used to generate the colors. The color vector must contain a color for each cluster.

Value

This method returns an ggplot2 object.

Author(s)

Diego Morais
See Also
differentiallyExpressed, transcriptogramPreprocess, GSE9988, GPL570, Hs900, HsBPTerms, association, transcriptogramStep1, transcriptogramStep2, clusterEnrichment

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01)
transcriptogram <- clusterEnrichment(transcriptogram, species = "Homo sapiens",
pValue = 0.005)
enrichmentPlot(transcriptogram)
End(Not run)

GPL570 Dictionary Protein2Probe

Description

A mapping between ENSEMBL Peptide ID and probe identifier, for the Homo sapiens and the
platform GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

Usage

GPL570

Format

Each row of the data.frame contains two variables:

- **Protein** The ENSEMBL Peptide ID
- **Probe** The probe identifier

Details

This dataset was created to map the Homo sapiens proteins, from STRINGdb release 11, of com-
bined score greater than or equal to 700.

Author(s)

Diego Morais
Description

Expression values, obtained by microarray, of 3 cases and 3 controls referring to the Gene Expression Omnibus accession number GSE9988. The data.frame has 6 columns, each one contains expression values of a sample, the first 3 columns are case samples, and the last 3 are control samples. Each row contains expression values obtained by the probe mentioned in its respective row-name. The expression values were normalized using the \texttt{affy} package and, to reduce the required storage space, this data.frame contains only 6 samples (GSM252443, GSM252444, GSM252445, GSM252465, GSM252466, GSM252467). The rows of each sample are composed only by probes mapped, by the GPL570 dictionary, to proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage

GSE9988

Format

An object of class \texttt{data.frame} with 27828 rows and 6 columns.

Author(s)

Diego Morais

Source

GSE9988

See Also

GPL570

Examples

GSE9988
Description

A character vector containing the Homo sapiens proteins, from STRINGdb release 11, of combined score greater than or equal to 700.

Usage

Hs700

Format

An object of class character of length 17185.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 1451645000.

Author(s)

Diego Morais

Examples

Hs700

Description

A character vector containing the Homo sapiens proteins, from STRINGdb release 11, of combined score greater than or equal to 800.

Usage

Hs800
Hs900

Format

An object of class character of length 14711.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 808731532.

Author(s)

Diego Morais

Examples

Hs900

Description

A character vector containing the Homo sapiens proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage

Hs900

Format

An object of class character of length 12396.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 489730786.

Author(s)

Diego Morais

Examples

Hs900
Description

A mapping between ENSEMBL Peptide ID and Gene Ontology, biological processes, terms. This dataset was created to map the Homo sapiens proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage

HsBPTerms

Format

Each row of the data.frame contains two variables:

- **ensembl_peptide_id**: The ENSEMBL Peptide ID
- **go_id**: The Gene Ontology ID

Author(s)

Diego Morais

Examples

HsBPTerms

Description

Ordered Mus musculus proteins of combined score greater than or equal to 700

Usage

Mm700

Format

An object of class character of length 16690.
Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 964301098.

Author(s)

Diego Morais

Examples

Mm700

Mm800

Ordered Mus musculus proteins of combined score greater than or equal to 800

Description

A character vector containing the Mus musculus proteins, from STRINGdb release 11, of combined score greater than or equal to 800.

Usage

Mm800

Format

An object of class character of length 13655.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 497514808.

Author(s)

Diego Morais

Examples

Mm800
Mm900

Ordered Mus musculus proteins of combined score greater than or equal to 900

Description

A character vector containing the Mus musculus proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage

`Mm900`

Format

An object of class character of length 11141.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 282900384.

Author(s)

Diego Morais

Examples

`Mm900`

orderingProperties

Calculates graph properties projected on the ordered proteins

Description

Calculates protein (node) properties, such as: degree/connectivity, number of triangles and clustering coefficient; and properties of the window, region of n (radius * 2 + 1) proteins centered at a protein, such as: connectivity, clustering coefficient and modularity.

Usage

```r
orderingProperties(object, nCores = 1L)
```

```r
## S4 method for signature 'Transcriptogram'
orderingProperties(object, nCores = 1L)
```
Arguments

- **object**: An object of class Transcriptogram.
- **nCores**: An integer number, referring to the number of processing cores to be used; or a logical value, TRUE indicating that all processing cores should be used, and FALSE indicating the use of just one processing core. The default value of this argument is 1.

Details

Connectivity/degree of a node is the number of edges it presents. A triangle of a node represents a pair of connected neighbors, the number of triangles on the adjacency list of a node is required to calculate its clustering coefficient. The clustering coefficient of a node measures, in the interval [0, 1], the likelihood that any two of its neighbors are themselves connected, this is calculated by the ratio between the number of triangles that the node has, and the maximum possible number of edges on its cluster (nodeTriangles / (nodeDegree * (nodeDegree - 1) / 2)). The window connectivity is the average connectivity calculated over the window. The window clustering coefficient, a value in the interval [0, 1], is the average clustering coefficient calculated over the window. The window modularity, a value in the interval [0, 1], is defined as the ratio between the total number of edges between any two nodes of the window, and the sum of the degrees of the nodes presents in the window. The window considers periodic boundary conditions to deal with proteins near the ends of the ordering.

Value

This method returns a data.frame containing: ENSEMBL Peptide ID, its position on the ordering, node degree, number of triangles and clustering coefficient, and window connectivity, clustering coefficient and modularity.

Author(s)

Diego Morais

References

See Also

transcriptogramPreprocess, Hs900, association

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900, 2)
Not run:
oProperties <- orderingProperties(transcriptogram)
End(Not run)

Description

Retrieve or set the content of the radius slot of an object of class Transcriptogram.

Usage

radius(object) <- value
radius(object)

S4 replacement method for signature 'Transcriptogram'
radius(object) <- value

S4 method for signature 'Transcriptogram'
radius(object)

Arguments

object An object of class Transcriptogram.
value An non-negative integer referring to the window radius required for some methods.

Value

This method returns the content of the radius slot of an object of class Transcriptogram.
Author(s)

Diego Morais

See Also

Hs900, association, transcriptogramPreprocess, transcriptogramStep2, orderingProperties

Examples

```r
transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
radius(transcriptogram) <- 80
radius(transcriptogram)
```

Description

A character vector containing the Rattus norvegicus proteins, from STRINGdb release 11, of combined score greater than or equal to 700.

Usage

```r
Rn700
```

Format

An object of class `character` of length 17021.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 920071574.

Author(s)

Diego Morais

Examples

```r
Rn700
```
Rn800

Ordered Rattus norvegicus proteins of combined score greater than or equal to 800

Description
A character vector containing the Rattus norvegicus proteins, from STRINGdb release 11, of combined score greater than or equal to 800.

Usage
Rn800

Format
An object of class character of length 13887.

Details
Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 453159596.

Author(s)
Diego Morais

Examples
Rn800

Rn900

Ordered Rattus norvegicus proteins of combined score greater than or equal to 900

Description
A character vector containing the Rattus norvegicus proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage
Rn900
Format

An object of class character of length 10788.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 222438518.

Author(s)

Diego Morais

Examples

Rn900

Sc700

Ordered Saccharomyces cerevisiae proteins of combined score greater than or equal to 700

Description

A character vector containing the Saccharomyces cerevisiae proteins, from STRINGdb release 11, of combined score greater than or equal to 700.

Usage

Sc700

Format

An object of class character of length 6157.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 163374428.

Author(s)

Diego Morais

Examples

Sc700
Ordered Saccharomyces cerevisiae proteins of combined score greater than or equal to 800

Description
A character vector containing the Saccharomyces cerevisiae proteins, from STRINGdb release 11, of combined score greater than or equal to 800.

Usage
Sc800

Format
An object of class character of length 5847.

Details
Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 85930192.

Author(s)
Diego Morais

Examples
Sc800

Ordered Saccharomyces cerevisiae proteins of combined score greater than or equal to 900

Description
A character vector containing the Saccharomyces cerevisiae proteins, from STRINGdb release 11, of combined score greater than or equal to 900.

Usage
Sc900
Terms

Format

An object of class character of length 5213.

Details

Generated by The Transcriptogramer V.1.0 for Windows. Input arguments: isothermal steps - 100; Monte Carlo steps - 20000; cooling factor - 0.5; alpha value - 1.0; percentual energy for initial temperature - 0.0001. Final energy: 38447790.

Author(s)

Diego Morais

Examples

Sc900

<table>
<thead>
<tr>
<th>Terms</th>
<th>Get terms</th>
</tr>
</thead>
</table>

Description

Gets the content of the Terms slot of an object of class Transcriptogram.

Usage

Terms(object)

```r
## S4 method for signature 'Transcriptogram'
Terms(object)
```

Arguments

- `object` An object of class Transcriptogram.

Value

This method returns the content of the Terms slot of an object of class Transcriptogram.

Author(s)

Diego Morais

See Also

differentiallyExpressed, transcriptogramPreprocess, GSE9988, GPL570, Hs900, HsBPTerms, association, transcriptogramStep1, transcriptogramStep2, clusterEnrichment
Examples

```r
transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
# Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
transcriptogram <- differentiallyExpressed(transcriptogram, levels, 0.01)
transcriptogram <- clusterEnrichment(transcriptogram, species = "Homo sapiens", pValue = 0.005)
Terms(transcriptogram)

# End(Not run)
```

Transcriptogram-class Class Transcriptogram

Description

This S4 class includes methods to use expression values with ordered proteins.

Slots

- `association`: A data.frame containing two columns, with rows containing ENSEMBL Peptide IDs that are connected.
- `ordering`: A data.frame containing two columns, the first one with ENSEMBL Peptide IDs, and the second containing its respective position.
- `transcriptogramS1`: A data.frame produced as the result of averaging over all identifiers related to the same protein.
- `transcriptogramS2`: A data.frame produced as the result of averaging over the window.
- `radius`: An non-negative integer referring to the window radius.
- `status`: An integer used internally to check the status of the object.
- `clusters`: A list indicating the first and the last position belonging to each cluster.
- `pbc`: Logical value used internally to indicate the overlapping of the first and the last cluster.
- `Protein2Symbol`: A data.frame containing two columns, the first one with ENSEMBL Peptide IDs, and the second containing its respective Symbol.
- `Protein2GO`: A data.frame containing two columns, the first one with ENSEMBL Peptide IDs, and the second containing its respective Gene Ontology accession.
- `Terms`: A data.frame containing the enriched Gene Ontology terms.
- `genesInTerm`: A list of GO terms and its respective ENSEMBL Peptide IDs, feeded by the clusterEnrichment() method.
transcriptogramPreprocess

Author(s)
Diego Morais

See Also
transcriptogramPreprocess, DE, radius, orderingProperties, connectivityProperties, transcriptogramStep1, transcriptogramStep2, differentiallyExpressed, clusterVisualization, clusterEnrichment, enrichmentPlot

transcriptogramPreprocess

Creates an object of class Transcriptogram

Description
Constructor for the Transcriptogram object.

Usage
transcriptogramPreprocess(association, ordering, radius = 0L)

Arguments

association A matrix, or data.frame, containing two columns of ENSEMBL Peptide IDs (character); or the path for a file containing two columns, no header, with rows composed by the ENSEMBL Peptide IDs of two proteins that are connected.

ordering A character vector containing ordered ENSEMBL Peptide IDs; a data.frame containing two columns, the first one with ENSEMBL Peptide IDs (character), and the second containing its respective position (non-negative integer); or the path for a file containing two columns, a row for the headers, with rows composed respectively by a ENSEMBL Peptide ID and its respective position.

radius An non-negative integer referring to the window radius required for some methods.

Value
A preprocessed object of class Transcriptogram.

Author(s)
Diego Morais

See Also
Transcriptogram-class, association, Hs900
Examples

```r
transcriptogram <- transcriptogramPreprocess(association, Hs900)
```

transcriptogramStep1

Calculates the average of the expression values related to the same protein

Description

For each transcriptome sample, this method assigns to each protein the average of the expression values of all the identifiers related to it. It is necessary a dictionary to map the identifiers to proteins.

Usage

```r
transcriptogramStep1(object, expression, dictionary, nCores = 1L)
```

Arguments

- **object**: An object of class Transcriptogram.
- **expression**: A matrix, or data.frame, containing normalized expression values from samples of microarrays or RNA-Seq (\text{log2-counts-per-million}).
- **dictionary**: A matrix, or data.frame, containing two columns, the first column must contains the ENSEMBL Peptide ID, and the second column must contains values that appear as rownames in `expression`, in order to recognize the ENSEMBL Peptide ID of the other column.
- **nCores**: An integer number, referring to the number of processing cores to be used; or a logical value, `TRUE` indicating that all processing cores should be used, and `FALSE` indicating the use of just one processing core. The default value of this argument is 1.

Value

This method creates a data.frame to feed the transcriptogramS1 slot of an object of class Transcriptogram. Each row of the data.frame contains: an ENSEMBL Peptide ID, its respective position in the ordering and the mean of the expression values of the identifiers related to the same protein.

Author(s)

Diego Morais
References

See Also

transcriptogramPreprocess, GSE9988, GPL570, Hs900, association

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900)
Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
End(Not run)

transcriptogramStep2
Calculates the average of the expression values using a sliding window

Description

To each position of the ordering, this method assigns a value equal to the average of the expression values inside a window, region of n (radius * 2 + 1) proteins centered at a protein. The window considers periodic boundary conditions to deal with proteins near the ends of the ordering.
transcriptogramStep2

Usage

transcriptogramStep2(object, nCores = 1L)

S4 method for signature 'Transcriptogram'
transcriptogramStep2(object, nCores = 1L)

Arguments

- **object**: An object of class Transcriptogram.
- **nCores**: An integer number, referring to the number of processing cores to be used; or a logical value, TRUE indicating that all processing cores should be used, and FALSE indicating the use of just one processing core. The default value of this argument is 1.

Value

This method creates a data.frame to feed the transcriptogramS2 slot of an object of class Transcriptogram. Each row of the data.frame contains: the ENSEMBL Peptide ID used as center of the window, its position on the ordering, and the mean of the expression values of the window.

Author(s)

Diego Morais

References

transcriptogramStep2

See Also

transcriptogramPreprocess, GSE9988, GPL570, Hs900, association, transcriptogramStep1

Examples

transcriptogram <- transcriptogramPreprocess(association, Hs900, 50)
Not run:
transcriptogram <- transcriptogramStep1(transcriptogram, GSE9988, GPL570)
transcriptogram <- transcriptogramStep2(transcriptogram)

End(Not run)
Index

datasets

association, 4
DEsymbols, 10
GPL570, 14
GSE9988, 15
Hs700, 16
Hs800, 16
Hs900, 17
HsBPTerms, 18
Mm700, 18
Mm800, 19
Mm900, 20
Rn700, 23
Rn800, 24
Rn900, 24
Sc700, 25
Sc800, 26
Sc900, 26

association, 4, 6, 7, 9, 12, 14, 22, 23, 27, 29, 31, 33

clusterEnrichment, 5, 14, 27, 29
clusterEnrichment, Transcriptogram-method (clusterEnrichment), 5
clusterEnrichment-method (clusterEnrichment), 5
clusterVisualization, 6, 29
clusterVisualization, Transcriptogram-method (clusterVisualization), 6
clusterVisualization-method (clusterVisualization), 6
connectivityProperties, 8, 29
connectivityProperties, Transcriptogram-method (connectivityProperties), 8
connectivityProperties-method (connectivityProperties), 8

DE, 9, 29
DE, Transcriptogram-method (DE), 9

DE-method (DE), 9
DEsymbols, 10, 12
differentiallyExpressed, 6, 7, 11, 14, 27, 29
differentiallyExpressed, Transcriptogram-method (differentiallyExpressed), 11
differentiallyExpressed-method (differentiallyExpressed), 11

enrichmentPlot, 13, 29
enrichmentPlot, Transcriptogram-method (enrichmentPlot), 13
enrichmentPlot-method (enrichmentPlot), 13

GPL570, 6, 7, 12, 14, 15, 27, 31, 33
GSE9988, 6, 7, 12, 14, 15, 15, 27, 31, 33

Hs700, 16
Hs800, 16
Hs900, 4, 6, 7, 9, 12, 14, 17, 22, 23, 27, 29, 31, 33
HsBPTerms, 6, 14, 18, 27

Mm700, 18
Mm800, 19
Mm900, 20

orderingProperties, 20, 23, 29
orderingProperties, Transcriptogram-method (orderingProperties), 20
orderingProperties-method (orderingProperties), 20

radius, 29
radius (radius<->), 22
radius, Transcriptogram-method (radius<->), 22
radius-method (radius<->), 22
radius<-,Transcriptogram-method
(radius<->), 22

RedPort, 7
Rn700, 23
Rn800, 24
Rn900, 24

Sc700, 25
Sc800, 26
Sc900, 26

Terms, 27
Terms,Transcriptogram-method (Terms), 27
Terms-method (Terms), 27
Transcriptogram-class, 28, 29
transcriptogramer
(transcriptogramer-package), 3
transcriptogramer-package, 3
transcriptogramPreprocess, 6, 7, 9, 12, 14,
22, 23, 27, 29, 31, 33
transcriptogramStep1, 6, 7, 12, 14, 27, 29,
30, 33
transcriptogramStep1,Transcriptogram-method
(transcriptogramStep1), 30
transcriptogramStep1-method
(transcriptogramStep1), 30
transcriptogramStep2, 6, 7, 12, 14, 23, 27,
29, 31
transcriptogramStep2,Transcriptogram-method
(transcriptogramStep2), 31
transcriptogramStep2-method
(transcriptogramStep2), 31