Package ‘supersigs’
March 14, 2024

Title Supervised mutational signatures

Version 1.10.0

Date 2021-12-02

Depends R (>= 4.1)

Imports assertthat, caret, dplyr, tidyrr, rsample, methods, rlang,
 utils, Biostrings, stats, SummarizedExperiment

Suggests BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38,
 knitr, rmarkdown, ggplot2, testthat, VariantAnnotation

Description Generate SuperSigs (supervised mutational signatures) from single nucleotide variants in the cancer genome. Functions included in the package allow the user to learn supervised mutational signatures from their data and apply them to new data. The methodology is based on the one described in Afsari (2021, ELife).

biocViews FeatureExtraction, Classification, Regression, Sequencing,
 WholeGenome, SomaticMutation

BugReports https://github.com/TomasettiLab/supersigs/issues

URL https://tomasettilab.github.io/supersigs/

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression gzip

RoxygenNote 7.1.1

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/supersigs

git_branch RELEASE_3_18

git_last_commit 51c1733

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-13
Author Albert Kuo [aut, cre] (<https://orcid.org/0000-0001-5155-0748>),
 Yifan Zhang [aut],
 Bahman Afsari [aut],
 Cristian Tomasetti [aut]
Maintainer Albert Kuo <albertkuo@jhu.edu>

R topics documented:

example_dt ... 2
get_signature .. 3
make_matrix ... 3
partial_signature .. 4
predict_signature .. 5
process_vcf ... 5
simplify_signature .. 6
SuperSig-class .. 7
supersig_ls ... 7

Index 8

example_dt Example dataset of mutations

Description

A dataset containing a list of mutations and other necessary attributes

Usage

example_dt

Format

A data frame with 10 rows and 5 columns:

 sample_id ID of the patient
 age age of the patient
 chromosome chromosomal position of the mutation
 position position of the mutation
 ref original nucleotide
 alt mutated nucleotide
get_signature
Function to obtain a SuperSig

Description
Generate a tissue-specific SuperSig for a given dataset of mutations and exposure factor. Returns the SuperSig and a classification model trained with the SuperSig.

Usage
```r
get_signature(data, factor, wgs = FALSE)
```

Arguments
- `data` : a data frame of mutations containing columns for `sample_id`, `age`, `IndVar`, and the 96 trinucleotide mutations (see vignette for details).
- `factor` : the factor/exposure (e.g. "age", "smoking"). If the factor = "age", the SuperSig is computed using counts. Otherwise, rates (counts/age) are used.
- `wgs` : logical value indicating whether sequencing data is whole-genome (`wgs = TRUE`) or whole-exome (`wgs = FALSE`).

Value
`get_signature` returns an object of class `SuperSig`.

Examples
```r
head(example_dt) # use example data from package
c <- make_matrix(example_dt) # convert to correct format
c$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
get_signature(data = c, factor = "Age") # get SuperSig
```

make_matrix
Function to transform mutations into "matrix" format

Description
Transform a data frame of mutations in long format into a data frame of trinucleotide mutations with flanking bases in a wide matrix format.

Usage
```r
make_matrix(data, genome = "hg19")
```
Arguments

data a data frame of mutations in VCF format (see vignette for details)
genome the reference genome used ("hg19" or "hg38")

Value

make_matrix returns a data frame of mutations, one row per sample

Examples

head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
head(input_dt)

partial_signature Function to remove the contribution of a SuperSig

Description

Remove the contribution of a SuperSig from the data and return the data.

Usage

partial_signature(data, object)

Arguments

data a data frame of mutations containing columns for sample_id, age, IndVar, and
 the 96 trinucleotide mutations (see vignette for details)
object an object of class SuperSig

Value

predict_signature returns the original data frame with the contribution of a supervised signature
 removed

Examples

head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
input_dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
supersig <- get_signature(data = input_dt, factor = "Age") # get SuperSig
partial_signature(data = input_dt, object = supersig)
predict_signature

Function to predict using SuperSig object

Description

Using a generated SuperSig, predict on a new dataset and return predicted probabilities for each observation.

Usage

```r
predict_signature(object, newdata, factor)
```

Arguments

- **object**: an object of class SuperSig
- **newdata**: a data frame of mutations containing columns for `sample_id`, `age`, `IndVar`, and the 96 trinucleotide mutations (see vignette for details)
- **factor**: the factor/exposure (e.g. "age", "smoking")

Value

`predict_signature` returns the original data frame with additional columns for the feature counts and classification score

Examples

```r
head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
input_dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
out <- get_signature(data = input_dt, factor = "Age") # get SuperSig
newdata <- predict_signature(out, newdata = input_dt, factor = "age")
suppressPackageStartupMessages({library(dplyr)})
head(newdata %>% select(score))
```

process_vcf

Function to transform VCF object into "matrix" format

Description

Transform a VCF object into a data frame of trinucleotide mutations with flanking bases in a wide matrix format. The function assumes that the VCF object contains only one sample and that each row in `rowRanges` represents an observed mutation in the sample.

Usage

```r
process_vcf(vcf)
```
simplify_signature

Arguments

vcf a VCF object (from VariantAnnotation package)

Value

process_vcf returns a data frame of mutations, one row per mutation

Examples

Use example vcf from VariantAnnotation
suppressPackageStartupMessages(library(VariantAnnotation))
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- VariantAnnotation::readVcf(fl, "hg19")

Subset to first sample
vcf <- vcf[, 1]
Subset to row positions with homozygous or heterozygous alt
positions <- geno(vcf)$GT != "0|0"
vcf <- vcf[positions[, 1],]
colData(vcf)$age <- 50 # Add patient age to colData (optional)

Run function
dt <- process_vcf(vcf)
head(dt)

simplify_signature Function to simplify signature representation into interpretable labels for visualization purposes

Description

Take a signature representation from SuperSig and group trinucleotides within each feature into interpretable labels, with optional IUPAC labeling from IUPAC_CODE_MAP in the Biostrings package

Usage

simplify_signature(object, iupac)

Arguments

object an object of class SuperSig
iupac logical value indicating whether to use IUPAC labels (iupac = TRUE) or not (iupac = FALSE)
SuperSig-class

Value

simplify_signature returns a vector of simplified features and their difference in mean mean rates between exposed and unexposed (or average rate if the factor is "age")

Examples

head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
input_dt$IndVar <- c(1, 1, 0, 0) # add IndVar column
supersig <- get_signature(data = input_dt, factor = "Smoking")
simplify_signature(object = supersig, iupac = FALSE)
simplify_signature(object = supersig, iupac = TRUE)

SuperSig-class

An S4 class for SuperSig

Description

An S4 class for SuperSig

Slots

Signature data frame of features and their difference in mean rates between exposed and unexposed (or the average rate if the factor is "age")

Features list of features that comprise the signature and their representation in terms of the fundamental (trinucleotide) mutations

AUC length-one numeric vector of the apparent AUC (i.e. not cross-validated)

Model list of a glm class for trained logistic regression model

supersig_ls

Trained SuperSigs from TCGA

Description

A list containing 67 SuperSigs

Usage

supersig_ls

Format

A named list with 67 elements, each of which is a ‘SuperSig’
Index

* datasets
 example_dt, 2
 supersig_ls, 7

example_dt, 2

generate_signature, 3

make_matrix, 3

partial_signature, 4
predict_signature, 5
process_vcf, 5

simplify_signature, 6
SuperSig (SuperSig-class), 7
SuperSig-class, 7
supersig_ls, 7