Package ‘supersigs’

April 9, 2024

Title Supervised mutational signatures
Version 1.10.0
Date 2021-12-02
Depends R (>= 4.1)
Imports assertthat, caret, dplyr, tidyr, rsample, methods, rlang,
 utils, Biostrings, stats, SummarizedExperiment
Suggests BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38,
 knitr, rmarkdown, ggplot2, testthat, VariantAnnotation
Description Generate SuperSigs (supervised mutational signatures) from single nucleotide vari-
 ants in the cancer genome. Functions included in the package allow the user to learn super-
 vised mutational signatures from their data and apply them to new data. The methodol-
 ogy is based on the one described in Afsari (2021, ELife).
biocViews FeatureExtraction, Classification, Regression, Sequencing,
 WholeGenome, SomaticMutation
BugReports https://github.com/TomasettiLab/supersigs/issues
URL https://tomasettilab.github.io/supersigs/
License GPL-3
Encoding UTF-8
LazyData true
LazyDataCompression gzip
RoxygenNote 7.1.1
VignetteBuilder knitr
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/supersigs
git_branch RELEASE_3_18
git_last_commit 51c1733
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-08
Author Albert Kuo [aut, cre] (<https://orcid.org/0000-0001-5155-0748>),
Yifan Zhang [aut],
Bahman Afsari [aut],
Cristian Tomasetti [aut]

Maintainer Albert Kuo <albertkuo@jhu.edu>

R topics documented:

example_dt ... 2
get_signature ... 3
make_matrix ... 3
partial_signature .. 4
predict_signature ... 5
process_vcf ... 5
simplify_signature .. 6
SuperSig-class ... 7
supersig_ls ... 7

Index 8

example_dt Example dataset of mutations

Description

A dataset containing a list of mutations and other necessary attributes

Usage

example_dt

Format

A data frame with 10 rows and 5 columns:

sample_id ID of the patient
age age of the patient
chromosome chromosomal position of the mutation
position position of the mutation
ref original nucleotide
alt mutated nucleotide
get_signature

Function to obtain a SuperSig

Description

Generate a tissue-specific SuperSig for a given dataset of mutations and exposure factor. Returns the SuperSig and a classification model trained with the SuperSig.

Usage

get_signature(data, factor, wgs = FALSE)

Arguments

data a data frame of mutations containing columns for sample_id, age, IndVar, and the 96 trinucleotide mutations (see vignette for details)
factor the factor/exposure (e.g. "age", "smoking"). If the factor = "age", the SuperSig is computed using counts. Otherwise, rates (counts/age) are used.
wgs logical value indicating whether sequencing data is whole-genome (wgs = TRUE) or whole-exome (wgs = FALSE)

Value

get_signature returns an object of class SuperSig

Examples

head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
input_dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
get_signature(data = input_dt, factor = "Age") # get SuperSig

make_matrix

Function to transform mutations into "matrix" format

Description

Transform a data frame of mutations in long format into a data frame of trinucleotide mutations with flanking bases in a wide matrix format.

Usage

make_matrix(data, genome = "hg19")
Arguments

- `data` a data frame of mutations in VCF format (see vignette for details)
- `genome` the reference genome used ("hg19" or "hg38")

Value

`make_matrix` returns a data frame of mutations, one row per sample

Examples

```
head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
head(input_dt)
```

partial_signature
Function to remove the contribution of a SuperSig

Description

Remove the contribution of a SuperSig from the data and return the data.

Usage

```
partial_signature(data, object)
```

Arguments

- `data` a data frame of mutations containing columns for `sample_id`, `age`, `IndVar`, and the 96 trinucleotide mutations (see vignette for details)
- `object` an object of class `SuperSig`

Value

`predict_signature` returns the original data frame with the contribution of a supervised signature removed

Examples

```
head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
input_dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
supersig <- get_signature(data = input_dt, factor = "Age") # get SuperSig
partial_signature(data = input_dt, object = supersig)
```
predict_signature

Function to predict using SuperSig object

Description

Using a generated SuperSig, predict on a new dataset and return predicted probabilities for each observation.

Usage

```r
predict_signature(object, newdata, factor)
```

Arguments

- **object**: an object of class `SuperSig`
- **newdata**: a data frame of mutations containing columns for `sample_id`, `age`, `IndVar`, and the 96 trinucleotide mutations (see vignette for details)
- **factor**: the factor/exposure (e.g. "age", "smoking")

Value

`predict_signature` returns the original data frame with additional columns for the feature counts and classification score

Examples

```r
head(example_dt) # use example data from package
input_dt <- make_matrix(example_dt) # convert to correct format
input_dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
out <- get_signature(data = input_dt, factor = "Age") # get SuperSig
newdata <- predict_signature(out, newdata = input_dt, factor = "age")
suppressPackageStartupMessages({library(dplyr)})
head(newdata %>% select(score))
```

process_vcf

Function to transform VCF object into "matrix" format

Description

Transform a VCF object into a data frame of trinucleotide mutations with flanking bases in a wide matrix format. The function assumes that the VCF object contains only one sample and that each row in `rowRanges` represents an observed mutation in the sample.

Usage

```r
process_vcf(vcf)
```
simplify_signature

Arguments

vcf a VCF object (from VariantAnnotation package)

Value

process_vcf returns a data frame of mutations, one row per mutation

Examples

Use example vcf from VariantAnnotation
suppressPackageStartupMessages({library(VariantAnnotation)})
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- VariantAnnotation::readVcf(fl, "hg19")

Subset to first sample
vcf <- vcf[, 1]
Subset to row positions with homozygous or heterozygous alt positions <- geno(vcf)$GT != "0|0"
vcf <- vcf[positions[, 1],]
colData(vcf)$age <- 50 # Add patient age to colData (optional)

Run function
dt <- process_vcf(vcf)
head(dt)

simplify_signature Function to simplify signature representation into interpretable labels for visualization purposes

Description

Take a signature representation from SuperSig and group trinucleotides within each feature into interpretable labels, with optional IUPAC labeling from IUPAC_CODE_MAP in the Biostrings package

Usage

simplify_signature(object, iupac)

Arguments

object an object of class SuperSig
iupac logical value indicating whether to use IUPAC labels (iupac = TRUE) or not (iupac = FALSE)
Value

`simplify_signature` returns a vector of simplified features and their difference in mean mean rates between exposed and unexposed (or average rate if the factor is "age")

Examples

```r
head(example_dt) # use example data from package
dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column
supersig <- get_signature(data = dt, factor = "Smoking")
simplify_signature(object = supersig, iupac = FALSE)
simplify_signature(object = supersig, iupac = TRUE)
```

SuperSig-class

An S4 class for SuperSig

Description

An S4 class for SuperSig

Slots

- `Signature`: data frame of features and their difference in mean rates between exposed and unexposed (or the average rate if the factor is "age")
- `Features`: list of features that comprise the signature and their representation in terms of the fundamental (trinucleotide) mutations
- `AUC`: length-one numeric vector of the apparent AUC (i.e. not cross-validated)
- `Model`: list of a glm class for trained logistic regression model

supersig_ls

Trained SuperSigs from TCGA

Description

A list containing 67 SuperSigs

Usage

`supersig_ls`

Format

A named list with 67 elements, each of which is a ‘SuperSig’
Index

* datasets
 example_dt, 2
 supersig_ls, 7

example_dt, 2
get_signature, 3
make_matrix, 3

partial_signature, 4
predict_signature, 5
process_vcf, 5

simplify_signature, 6
SuperSig (SuperSig-class), 7
SuperSig-class, 7
supersig_ls, 7