Package ‘spatialDE’

February 28, 2024

Title R wrapper for SpatialDE
Date 2024-02-11
Version 1.8.1

Description SpatialDE is a method to find spatially variable genes (SVG) from
spatial transcriptomics data. This package provides wrappers to use the
Python SpatialDE library in R, using reticulate and basilisk.

License MIT + file LICENSE
Encoding UTF-8
LazyData FALSE
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1

URL https://github.com/sales-lab/spatialDE,
 https://bioconductor.org/packages/spatialDE/

BugReports https://github.com/sales-lab/spatialDE/issues
Depends R (>= 4.3)
Imports reticulate, basilisk (>= 1.9.10), checkmate, stats,
 SpatialExperiment, methods, SummarizedExperiment, Matrix,
 ggplot2, ggrepel, scales, gridExtra
Suggests knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr
biocViews Software, Transcriptomics

StagedInstall no

Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/spatialDE
git_branch RELEASE_3_18
git_last_commit 2f7926f
git_last_commit_date 2024-02-08
Repository Bioconductor 3.18
.importPyModule

Description

This function loads the SpatialDE Python module and optionally monkey-patches it to remove tqdm calls.

Usage

.importPyModule(proc, patch_tqdm)

Arguments

- **proc**: A process object generated by `basilisk::basiliskStart()`.
- **patch_tqdm**: If TRUE patch calls to tqdm.

Value

An R wrapper for the SpatialDE Python module.
FSV_sig

Plot Fraction Spatial Variance vs Q-value

Description

Plot Fraction Spatial Variance vs Q-value

Usage

FSV_sig(
 results,
 ms_results = NULL,
 certain_only = FALSE,
 log_x = FALSE,
 do_label = TRUE,
 covariate_names = NULL
)

Arguments

results results from SpatialDE.
ms_results model selection results, should be a data frame with columns g for gene names and model for the model selected.
certain_only only plot results with narrow 95% confidence interval.
log_x Whether to display x axis in log scale.
do_label display gene names for statistically significant genes, default TRUE.
covariate_names names of covariates as a reference, default to NULL.

Value

A ggplot2 object.

Author(s)

Davide Corso, Milan Malfait, Lambda Moses

References

SpatialDE 1.1.3: the version of the Python package used under the hood.
Examples

Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
spe <- mockSVG(size = 20, tot_genes = 3, de_genes = 1, return_SPE = TRUE)

Run spatialDE with S4 integration
results <- spatialDE(spe)

Run model search
msearch <- modelSearch(spe, de_results = results, qval_thresh = NULL,
 verbose = FALSE)

plot <- FSV_sig(results, msearch)

MOB_sample_info Mouse Olfactory Bulb sample metadata

Description

Coordinates and total counts for the samples from the Mouse Olfactory Bulb data generated by Stahl et al. (2016). This data was originally downloaded from https://github.com/Teichlab/SpatialDE/blob/master/Analysis/MouseOB/MOB_sample_info.csv.

Usage

data(MOB_sample_info)

Format

A data.frame with 262 rows and 3 variables as columns: the x and y coordinates and total_counts corresponding to each spot.

References

mockSVG

Generate count matrix for spatially variable genes.

Description
Generate count matrix for spatially variable genes.

Usage
mockSVG(size, tot_genes, de_genes, return_SPE = FALSE)

Arguments
- **size**: An integer scalar. Cells will be spatially arranged on a size x size grid. Default: 10, corresponding to 100 cells.
- **tot_genes**: An integer scalar. Total number of genes. Default: 1000.
- **de_genes**: An integer scaler. The number of spatially variable genes. Default: 100.
- **return_SPE**: A logical, whether to return result as a SpatialExperiment. Default: FALSE.

Value
If return_SPE = TRUE, returns a SpatialExperiment object.
If not, a list containing:
- coordinates: data.frame with x and y columns;
- counts: matrix with generated gene counts.

Examples
```r
spe <- mockSVG(size = 20, tot_genes = 3, de_genes = 1, return_SPE = TRUE)
spe
```

modelSearch
Classify Spatially Variable Genes to interpretable fitting classes

Description
Compare model fits with different models, using the SpatialDE Python package.
Usage

modelSearch(x, de_results, ...)

S4 method for signature 'matrix'
modelSearch(x, de_results, coordinates, qval_thresh = 0.05, verbose = FALSE)

S4 method for signature 'SpatialExperiment'
modelSearch(
 x,
 de_results,
 assay_type = "counts",
 qval_thresh = 0.05,
 verbose = FALSE
)

Arguments

- **x**: A numeric matrix of counts where genes are rows and cells are columns. Alternatively, a SpatialExperiment object.
- **de_results**: data.frame resulting from run() or spatialDE().
- **coordinates**: A data.frame with sample coordinates. Each row is a sample, the columns with coordinates should be named 'x' and 'y'. For the SpatialExperiment method, coordinates are taken from spatialCoords(x).
- **qval_thresh**: numeric scalar, specifying the q-value significance threshold to filter de_results. Only rows in de_results with qval < qval_thresh will be kept. To disable, set qval_thresh = NULL.
- **verbose**: A logical controlling the display of a progress bar from the Python package.
- **assay_type**: A character string specifying the assay from x to use as input. Defaults to "counts".

Value

data.frame of model_search results.

Author(s)

Davide Corso, Milan Malfait, Lambda Moses

References

SpatialDE 1.1.3: the version of the Python package used under the hood.
model_search

See Also

The individual steps performed by this function: `stabilize()`, `regress_out()` and `model_search()`.

Examples

```r
## Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
spe <- mockSVG(size = 20, tot_genes = 3, de_genes = 1, return_SPE = TRUE)

## Run spatialDE with S4 integration
de_results <- spatialDE(spe)

## Run model search
model_search <- modelSearch(spe, de_results = de_results,
                            qval_thresh = NULL, verbose = FALSE)
```

Description

Classify DE genes to interpretable fitting classes.

Usage

```r
model_search(x, coordinates, de_results, qval_thresh = 0.05, verbose = FALSE)
```

Arguments

- **x**
 - matrix-like object of normalized counts. E.g. resulting from `regress_out()`.
- **coordinates**
 - data.frame with sample coordinates. Each row is a sample, the columns with coordinates must be named 'x' and 'y'.
- **de_results**
 - data.frame resulting from `run()`.
- **qval_thresh**
 - numeric scalar, specifying the q-value significance threshold to filter `de_results`. Only rows in `de_results` with `qval < qval_thresh` will be kept. To disable, set `qval_thresh = NULL`.
- **verbose**
 - logical controlling the display of the progress bar.

Value

- data.frame of model_search results.

References

Examples

Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
mock <- mockSVG(size = 20, tot_genes = 3, de_genes = 1)

stabilized <- stabilize(mock$counts)
sample_info <- mock$coordinates
sample_info$total_counts <- colSums(mock$counts)
regressed <- regress_out(counts = stabilized, sample_info = sample_info)

Run SpatialDE
de_results <- run(regressed, coordinates = mock$coordinates)

Run model search
ms_results <- model_search(
 x = regressed,
 coordinates = mock$coordinates,
 de_results = de_results,
 qval_thresh = NULL
)

multiGenePlots

Plot Spatial Patterns of Multiple Genes

Description

Plot Spatial Patterns of Multiple Genes

Usage

multiGenePlots(x, ...)

S4 method for signature 'matrix'
multiGenePlots(
 x,
 coordinates,
 genes_plot,
 viridis_option = "D",
 ncol = 2,
 point_size = 1,
 dark_theme = TRUE
)

S4 method for signature 'SpatialExperiment'
multiGenePlots(
 x,
 assay_type = "counts",
)
genes_plot,
viridis_option = "D",
ncol = 2,
point_size = 1,
dark_theme = TRUE
)

Arguments

x A numeric matrix of stabilized counts (e.g. resulting from \texttt{stabilize()}) where
genes are rows and cells are columns.
Alternatively, a \texttt{SpatialExperiment} object.

... For the generic, arguments to pass to specific methods.

coordinates A \texttt{data.frame} with sample coordinates. Each row is a sample, the columns
with coordinates should be named ‘x’ and ‘y’.
For the \texttt{SpatialExperiment} method, coordinates are taken from \texttt{spatialCoords(x)}.

genesis_plot character vector specifying which genes are to be plotted.

viridis_option This function uses the \texttt{viridis} palette to color cells for gene expression. Four
options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"),
"viridis" (or "D", the default option) and "cividis" (or "E").

ncol Number of columns to arrange the plots.

point_size Point size of each plot.

dark_theme Whether dark background should be used; this is helpful to highlight cells with
high expression when using the \texttt{viridis} palette.

assay_type A character string specifying the assay from \texttt{x} to use as input. Defaults to
"counts".

Value

This function draws a plot for each specified genes

Author(s)

Davide Corso, Milan Malfait, Lambda Moses

References

Methods 15, 343–346 (2018). \url{https://doi.org/10.1038/nmeth.4636}

\texttt{SpatialDE 1.1.3}: the version of the Python package used under the hood.

See Also

The individual steps performed by this function: \texttt{stabilize()}, \texttt{spatialDE()}.
For further analysis of the DE results: \texttt{model_search()} and \texttt{spatial_patterns()}.
Examples

```r
## Mock up a SpatialExperiment object wit 400 cells and 3 genes
set.seed(42)
spe <- mockSVG(size = 20, tot_genes = 3, de_genes = 1, return_SPE = TRUE)

## Run spatialDE
results <- spatialDE(spe)

ordered_spe_results <- results[order(results$qval), ]
head(ordered_spe_results)

plots <- multiGenePlots(spe,
    assay_type = "counts",
    ordered_spe_results$g,
    point_size = 4,
    viridis_option = "D"
)
```

regress_out

Regress out library size effect

Description

Regresses out the effect of library size. This function is a wrapper for `regress_out` from the NaiveDE Python package.

Usage

`regress_out(counts, sample_info)`

Arguments

- `counts` matrix of variance stabilized counts, e.g. resulting from `stabilize()`.
- `sample_info` data.frame with samples as rows and at least a column with `total_counts`.

Value

matrix of normalized counts.

Examples

```r
## Mock up a SpatialExperiment object wit 400 cells and 3 genes
set.seed(42)
mock <- mockSVG(20, 3, 1)

stabilized <- stabilize(mock$counts)
sample_info <- mock$coordinates
sample_info$total_counts <- colSums(mock$counts)
```
regressed <- regress_out(counts = stabilized, sample_info = sample_info)

Rep11_MOB_0
Mouse Olfactory Bulb spatial gene expression data

Description
Replicate 11 from the spatially dependent gene expression data from the mouse olfactory bulb generated by Stahl et al. (2016). This data was originally downloaded from https://github.com/Teichlab/SpatialDE/blob/master/Analysis/MouseOB/data/Rep11_MOB_0.csv.

Usage
data(Rep11_MOB_0)

Format
A matrix with 16218 genes as rows and 262 spots as columns.

References

run
Perform SpatialDE test

Description
Wraps the run function from the *SpatialDE* Python package.

Usage
run(x, coordinates, verbose = FALSE)

Arguments
- **x**: matrix-like object of normalized counts. E.g. resulting from `regress_out()`.
- **coordinates**: data.frame with sample coordinates. Each row is a sample, the columns with coordinates must be named ‘x’ and ‘y’.
- **verbose**: logical controlling the display of the progress bar.
Value

A data.frame with DE results where each row is a gene and columns contain relevant statistics. The most important columns are:

- **g**: the name of the gene
- **pval**: the p-value for spatial differential expression
- **qval**: the q-value, indicating significance after correcting for multiple testing
- **l**: A parameter indicating the distance scale a gene changes expression over

References

Examples

```r
## Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
mock <- mockSVG(size = 20, tot_genes = 3, de_genes = 1)

stabilized <- stabilize(mock$counts)
sample_info <- mock$coordinates
sample_info$total_counts <- colSums(mock$counts)
regressed <- regress_out(counts = stabilized, sample_info = sample_info)

## Run SpatialDE
de_results <- run(regressed, coordinates = mock$coordinates)
```

spatialDE
Find spatially variable genes with SpatialDE

Description

Identify genes that significantly depend on spatial coordinates with the **SpatialDE** Python package.

Usage

```r
spatialDE(x, ...)
```

S4 method for signature 'matrix'
```r
spatialDE(x, coordinates, verbose = FALSE)
```

S4 method for signature 'SpatialExperiment'
```r
spatialDE(x, assay_type = "counts", verbose = FALSE)
```
spatialDE

Arguments

x A numeric matrix of counts where genes are rows and cells are columns. Alternatively, a SpatialExperiment object.

coordinates A data.frame with sample coordinates. Each row is a sample, the columns with coordinates should be named 'x' and 'y'. For the SpatialExperiment method, coordinates are taken from spatialCoords(x).

verbose A logical controlling the display of a progress bar from the Python package.

assay_type A character string specifying the assay from x to use as input. Defaults to "counts".

Value

A data.frame with DE results where each row is a gene and columns contain relevant statistics. The most important columns are:

- **g**: the name of the gene
- **pval**: the p-value for spatial differential expression
- **qval**: the q-value, indicating significance after correcting for multiple testing
- **l**: A parameter indicating the distance scale a gene changes expression over

Author(s)

Davide Corso, Milan Malfait, Lambda Moses

References

SpatialDE 1.1.3: the version of the Python package used under the hood.

See Also

The individual steps performed by this function: stabilize(), regress_out() and run(). For further analysis of the DE results: model_search() and spatial_patterns().

Examples

```r
## Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
spe <- mockSVG(size = 20, tot_genes = 3, de_genes = 1, return_SPE = TRUE)

## Run spatialDE
de_results <- spatialDE(spe)

head(de_results)
```
Description

Group spatially variable genes into spatial patterns using Automatic Expression Histology, using the **SpatialDE** Python package.

Usage

```r
spatialPatterns(x, de_results, ...)
```

```r
## S4 method for signature 'matrix'
spatialPatterns(
  x,
  de_results,
  coordinates,
  qval_thresh = 0.05,
  n_patterns,
  length,
  verbose = FALSE
)
```

```r
## S4 method for signature 'SpatialExperiment'
spatialPatterns(
  x,
  de_results,
  qval_thresh = 0.05,
  n_patterns,
  length,
  assay_type = "counts",
  verbose = FALSE
)
```

Arguments

- **x**

 A numeric matrix of counts where genes are rows and cells are columns.

 Alternatively, a **SpatialExperiment** object.

- **de_results**

 data.frame resulting from `run()` or `spatialDE()`.

- **coordinates**

 A data.frame with sample coordinates. Each row is a sample, the columns with coordinates should be named 'x' and 'y'.

 For the **SpatialExperiment** method, coordinates are taken from `spatialCoords(x)`.

- **qval_thresh**

 numeric scalar, specifying the q-value significance threshold to filter `de_results`. Only rows in `de_results` with `qval < qval_thresh` will be kept. To disable, set `qval_thresh = NULL`.

- **n_patterns**

 number of patterns to output.
spatialPatterns

 n_patterns integer The number of spatial patterns
 length numeric The characteristic length scale of the clusters
 verbose A logical controlling the display of a progress bar from the Python package.
 assay_type A character string specifying the assay from x to use as input. Defaults to "counts".

Value

A list of two data.frames (pattern_results, patterns):

• pattern_results: data.frame with pattern membership information for each gene.
• patterns the posterior mean underlying expression from genes in given spatial patterns.

Author(s)

Davide Corso, Milan Malfait, Lambda Moses

References

SpatialDE 1.1.3: the version of the Python package used under the hood.

See Also

The individual steps performed by this function: stabilize(), regress_out() and spatial_patterns().

Examples

Mock up a SpatialExperiment object with 100 cells and 3 genes
set.seed(42)
spe <- mockSVG(size = 10, tot_genes = 3, de_genes = 1, return_SPE = TRUE)

Run spatialDE
de_results <- spatialDE(spe)

spatial_patterns <- spatialPatterns(spe, de_results = de_results,
 qval_thresh = NULL, n_patterns = 4L, length = 1.5,
 verbose = FALSE)

head(spatial_patterns$pattern_results)
head(spatial_patterns$patterns)
spatial_patterns

Group spatially variable genes into spatial patterns using automatic expression histology (AEH)

Description

Group spatially variable genes into spatial patterns using automatic expression histology (AEH)

Usage

spatial_patterns(
 x,
 coordinates,
 de_results,
 qval_thresh = 0.05,
 n_patterns,
 length,
 verbose = FALSE
)

Arguments

x
 matrix-like object of normalized counts. E.g. resulting from `regress_out()`.
coordinates
data.frame with sample coordinates. Each row is a sample, the columns with coordinates must be named 'x' and 'y'.
de_results
data.frame resulting from `run()`.
qval_thresh
 numeric scalar, specifying the q-value significance threshold to filter de_results. Only rows in de_results with qval < qval_thresh will be kept. To disable, set qval_thresh = NULL.
n_patterns
 integer The number of spatial patterns
length
 numeric The characteristic length scale of the clusters
verbose
 logical controlling the display of the progress bar.

Value

list of two dataframe (pattern_results, patterns): pattern_results dataframe with pattern membership information for each gene. patterns the posterior mean underlying expression fro genes in given spatial patterns.

References

Examples

```r
## Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
mock <- mockSVG(size = 20, tot_genes = 3, de_genes = 1)

stabilized <- stabilize(mock$counts)
sample_info <- mock$coordinates
sample_info$total_counts <- colSums(mock$counts)
regressed <- regress_out(counts = stabilized, sample_info = sample_info)

## Run SpatialDE
de_results <- run(x = regressed, coordinates = mock$coordinates)

## Run Spatial_patterns
sp <- spatial_patterns(
  x = regressed,
  coordinates = mock$coordinates,
  de_results = de_results,
  qval_thresh = NULL,
  n_patterns = 5, length = 1.5
)

sp$pattern_results
sp$patterns
```

stabilize
Stabilize variance of counts

Description

Stabilize variance of negative binomial data using Anscombe’s approximation. This function is a wrapper for stabilize from the NaiveDE Python package.

Usage

```r
stabilize(counts)
```

Arguments

- **counts**: matrix with expression values for samples in columns and genes in rows.

Value

matrix of variance stabilized counts.
Examples

```r
## Mock up a SpatialExperiment object with 400 cells and 3 genes
set.seed(42)
mock <- mockSVG(20, 3, 1)

stabilized <- stabilize(mock$counts)
```

stabilize
Index

* datasets
 MOB_sample_info, 4
 Rep11_MOB_0, 11

* internal
 .importPyModule, 2
 .importPyModule, 2

basilisk::basiliskStart(), 2

FSV_sig, 3

MOB_sample_info, 4
mockSVG, 5
model_search, 7
model_search(), 7, 9, 13
modelSearch, 5
modelSearch,matrix-method
 (modelSearch), 5
modelSearch,SpatialExperiment-method
 (modelSearch), 5
multiGenePlots, 8
multiGenePlots,matrix-method
 (multiGenePlots), 8
multiGenePlots,SpatialExperiment-method
 (multiGenePlots), 8

regress_out, 10
regress_out(), 7, 11, 13, 15, 16
Rep11_MOB_0, 11
run, 11
run(), 6, 7, 13, 14, 16

spatial_patterns, 16
spatial_patterns(), 9, 13, 15
spatialDE, 12
spatialDE(), 6, 9, 14
spatialDE,matrix-method(spatialDE), 12
spatialDE,SpatialExperiment-method
 (spatialDE), 12
SpatialExperiment, 5, 6, 9, 13, 14
spatialPatterns, 14
spatialPatterns, matrix-method
 (spatialPatterns), 14
spatialPatterns,SpatialExperiment-method
 (spatialPatterns), 14
stabilize, 17
stabilize(), 7, 9, 10, 13, 15