Package ‘simPIC’

May 3, 2024

Version 1.0.0
Date 2023-02-02
Type Package
Title simPIC: flexible simulation of paired-insertion counts for single-cell ATAC-sequencing data
Depends R (>= 4.4.0), SingleCellExperiment
Imports BiocGenerics, checkmate (>= 2.0.0), fitdistrplus, matrixStats, Matrix, stats, SummarizedExperiment, actuar, rlang, S4Vectors, methods, scales, scuttle
Description simPIC is a package for simulating single-cell ATAC-seq count data. It provides a user-friendly, well documented interface for data simulation. Functions are provided for parameter estimation, realistic scATAC-seq data simulation, and comparing real and simulated datasets.
biocViews SingleCell, ATACSeq, Software, Sequencing, ImmunoOncology, DataImport
License GPL-3
Encoding UTF-8
Suggests ggplot2 (>= 3.4.0), knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0)
VignetteBuilder knitr
RoxygenNote 7.3.1
Config/testthat/edition 3
URL https://github.com/sagrikachugh/simPIC
BugReports https://github.com/sagrikachugh/simPIC/issues
git_url https://git.bioconductor.org/packages/simPIC
git_branch RELEASE_3_19
git_last_commit 51db9ff
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
simPIC-package

simPIC: A uniform quantification based method for simulating Paired-Insertion count matrices for single-cell ATAC sequencing data

Description

simPIC is a package for simulating single-cell ATAC-seq count data. It provides a user-friendly, well documented interface for data simulation. Functions are provided for parameter estimation, realistic scATAC-seq data simulation, and comparing real and simulated datasets.

- count class (newsimPICcount)
- estimate (simPICestimate)
- simulate (simPICsimulate)
- plots (simPICcompare)
addFeatureStats

Author(s)

Maintainer: Sagrika Chugh <sagrika.chugh@gmail.com> (ORCID)

Authors:

- Davis McCarthy
- Heejung Shim

See Also

Useful links:

- https://github.com/sagrikachugh/simPIC

addFeatureStats

Add feature statistics

Description

Add additional feature statistics to a SingleCellExperiment object

Usage

```r
addFeatureStats(
  sce,  # SingleCellExperiment to add feature statistics to.
  value = "counts",  # the count value to calculate statistics.
  log = FALSE,  # logical. Whether to take log2 before calculating statistics.
  offset = 1,  # offset to add to avoid taking log of zero.
  no.zeros = FALSE  # logical. Whether to remove all zeros from each feature before calculating statistics.
)
```

Arguments

- **sce**: SingleCellExperiment to add feature statistics to.
- **value**: the count value to calculate statistics.
- **log**: logical. Whether to take log2 before calculating statistics.
- **offset**: offset to add to avoid taking log of zero.
- **no.zeros**: logical. Whether to remove all zeros from each feature before calculating statistics.

Details

Currently adds the following statistics: mean and variance. Statistics are added to the *rowData* slot and are named **Stat[Log]Value[No0]** where Log and No0 are added if those arguments are true.

Value

SingleCellExperiment with additional feature statistics
convert_to_SCE
Convert Sparse Matrix to SingleCellExperiment object

Description
This function converts a dgc/sparse matrix into a SingleCellExperiment(SCE) object.

Usage
```
convert_to_SCE(sparse_data)
```

Arguments

- `sparse_data` A sparse matrix containing count data, where rows are peaks and columns represent cells.

Value
A SingleCellExperiment(SCE) object with the sparse matrix stored in the "counts" assay.

getCounts
Get counts from Single Cell Experiment object

Description
Get counts matrix from a SingleCellExperiment object. If counts is missing a warning is issued and the first assay is returned.

Usage
```
getCounts(sce)
```

Arguments

- `sce` SingleCellExperiment object

Value
counts matrix
Description

simPIC: Simulate single-cell ATAC-seq data

Value

globalvariables

Usage

newsimPICcount(...)

Arguments

... Variables to set newsimPICcount object parameters.

Details

This function creates the object variable which is passed in all functions.

Value

new object from class simPICcount.

Examples

object <- newsimPICcount()
plot_theme
Custom theme for ggplot2

Description
This function defines a custom theme for ggplot2 to ensure consistent visual appearance across multiple plots.

Usage
```r
ggplot2::plot_theme()
```

Value
A ggplot2 theme object with predefined settings.

rbindMatched
Bind rows (matched)

Description
Bind the rows of two data frames, keeping only the columns that are common to both.

Usage
```r
rbindMatched(df1, df2)
```

Arguments
- `df1`: first data.frame to bind.
- `df2`: second data.frame to bind.

Value
data.frame containing rows from df1 and df2 but only common columns.
selectFit

Description

Trying two fitting methods and selecting the best one.

Usage

```r
selectFit(data, distr, verbose = TRUE)
```

Arguments

- `data`: The data to fit.
- `distr`: Name of the distribution to fit.
- `verbose`: logical. To print messages or not.

Details

The distribution is fitted to the data using each of the `fitdist` fitting methods. The fit with the smallest Cramer-von Mises statistic is selected.

Value

The selected fit object

setsimPICparameters

Description

Set input parameters of the simPICcount object.

Usage

```r
setsimPICparameters(object, update = NULL, ...)
```

Arguments

- `object`: input simPICcount object.
- `update`: new parameters.
- `...`: set new parameters for simPICcount object.

Value

simPICcount object with updated parameters.
Examples

```r
object <- newsimPICcount()
object <- setsimPICparameters(object, nCells = 200, nPeaks = 500)
```

Description

Combine data from several SingleCellExperiment objects and produce some basic plots comparing them.

Usage

```r
simPICcompare(
    sces,
    point.size = 0.2,
    point.alpha = 0.1,
    fits = TRUE,
    colours = NULL
)
```

Arguments

- `sces` named list of SingleCellExperiment objects to combine and compare.
- `point.size` size of points in scatter plots.
- `point.alpha` opacity of points in scatter plots.
- `fits` whether to include fits in scatter plots.
- `colours` vector of colours to use for each dataset.

Details

The returned list has three items:

- **RowData** Combined row data from the provided SingleCellExperiments.
- **ColData** Combined column data from the provided SingleCellExperiments.
- **Plots** Comparison plots
 - **Means** Boxplot of mean distribution.
 - **Variances** Boxplot of variance distribution.
 - **MeanVar** Scatter plot with fitted lines showing the mean-variance relationship.
 - **LibrarySizes** Boxplot of the library size distribution.
 - **ZerosPeak** Boxplot of the percentage of each peak that is zero.
 - **ZerosCell** Boxplot of the percentage of each cell that is zero.
MeanZeros Scatter plot with fitted lines showing the mean-zeros relationship.

The plots returned by this function are created using ggplot and are only a sample of the kind of plots you might like to consider. The data used to create these plots is also returned and should be in the correct format to allow you to create further plots using ggplot.

Value

List containing the combined datasets and plots.

Examples

```r
sim1 <- simPICsimulate(
  nPeaks = 1000, nCells = 500,
  pm.distr = "weibull", seed = 7856
)
sim2 <- simPICsimulate(
  nPeaks = 1000, nCells = 500,
  pm.distr = "gamma", seed = 4234
)
comparison <- simPICcompare(list(weibull = sim1, gamma = sim2))
names(comparison)
names(comparison$Plots)
```

Description

S4 class that holds parameters for simPIC simulation.

Value

a simPIC class object. The parameters not shown in brackets can be estimated from real data using simPICestimate. For details of the simPIC simulation see simPICsimulate. The default parameters are based on PBMC10k dataset and can be reproduced using test data and script provided in inst/script

Parameters

simPIC simulation parameters:

- **nPeaks** The number of peaks to simulate.
- **nCells** The number of cells to simulate.
- **[seed]** Seed to use for generating random numbers.
- **[default]** The logical variable whether to use default parameters (TRUE) or learn from data (FALSE)
Library size parameters
`lib.size.meanlog` meanlog (location) parameter for the library size log-normal distribution.

`lib.size.sdlog` sdlog (scale) parameter for the library size log-normal distribution.

Peak mean parameters
`mean.scale` scale parameter for the mean weibull distribution.

`mean.shape` shape parameter for the mean weibull distribution.

Cell sparsity parameters
`sparsity` probability of openness to be multiplied to the input of poisson distribution to generate final simulated matrix.

simPICestimate
Estimate simPIC simulation parameters

Description

Estimate simulation parameters for library size, peak means, and sparsity for simPIC simulation from a real peak by cell input matrix.

Usage

```r
simPICestimate(  
counts,  
object = newsimPICcount(),  
pm.distr = c("gamma", "weibull", "pareto", "lngamma"),  
verbose = TRUE  
)
```

```r
## S3 method for class 'SingleCellExperiment'
simPICestimate(  
counts,  
object = newsimPICcount(),  
pm.distr = "weibull",  
verbose = TRUE  
)
```

```r
## S3 method for class 'dgCMatrix'
simPICestimate(  
counts,  
object = newsimPICcount(),  
pm.distr = "weibull",  
verbose = TRUE  
)
```

Arguments

- `counts` either a sparse peak by cell count matrix, or a SingleCellExperiment object containing count data to estimate parameters.
- `object` simPICcount object to store estimated parameters and counts.
simPICestimateLibSize

Estimate simPIC library size parameters.

Description

Estimate the library size parameters for simPIC simulation.

Usage

simPICestimateLibSize(counts, object, verbose)

Arguments

counts count matrix.
object simPICcount object to store estimated values.
verbose logical. To print messages or not.

Details

Parameters for the lognormal distribution are estimated by fitting the library sizes using fitdist. All the fitting methods are tried and the fit with the best Cramer-von Mises statistic is selected.

Value

simPICcount object with estimated library size parameters.
simPICestimatePeakMean

Estimate simPIC peak means

Description
Estimate peak mean parameters for simPIC simulation

Usage
simPICestimatePeakMean(norm.counts, object, pm.distr, verbose)

Arguments

- **norm.counts** library size normalised counts matrix.
- **object** simPICcount object to store estimated values.
- **pm.distr** distribution parameter for peak means.
- **verbose** logical. To print progress messages or not.

Details
Parameters for gamma distribution are estimated by fitting the mean normalised counts using `fitdist`. All the fitting methods are tried and the fit with the best Cramer-von Mises statistic is selected.

Value
simPICcount object containing all estimated parameters

simPICestimateSparsity

Estimate simPIC peak sparsity.

Description
Extract the accessibility proportion (sparsity) of each cell among all peaks from the input count matrix.

Usage
simPICestimateSparsity(norm.counts, object, verbose)

Arguments

- **norm.counts** A sparse count matrix to estimate parameters from.
- **object** simPICcount object to store estimated parameters.
- **verbose** logical. To print messages or not.
Details

Vector of non-zero cell proportions of peaks is calculated by dividing the number of non-zero entries over the number of all cells for each peak.

Value

simPICcount object with updated non-zero cell proportion parameter.

simPICget
Get a single simPICcount parameter

Description

Get the value of a single variable from input simPICcount object.

Usage

`simPICget(object, name)`

Arguments

- `object`: input simPICcount object.
- `name`: name of the parameter.

Value

Value of the input parameter.

Examples

```r
object <- newsimPICcount()
nPeaks <- simPICget(object, "nPeaks")
```

simPICgetparameters
Get parameters

Description

Get multiple parameter values from a simPIC object.

Usage

`simPICgetparameters(object, names)`
Arguments

- **object**
 - input object to get values from.

- **names**
 - vector of names of the parameters to get.

Value

List with the values of the selected parameters.

Examples

```r
object <- newsimPICcount()
simPICgetparameters(object, c("nPeaks", "nCells", "peak.mean.shape"))
```

Description

Simulate peak by cell count matrix from a sparse single-cell ATAC-seq peak by cell input using simPIC methods.

Usage

```r
simPICsimulate(
  object = newsimPICcount(),
  verbose = TRUE,
  pm.distr = "weibull",
  ...
)
```

Arguments

- **object**
 - simPICcount object with simulation parameters. See `simPICcount` for details.

- **verbose**
 - logical variable. Prints the simulation progress if TRUE.

- **pm.distr**

- **...**
 - Any additional parameter settings to override what is provided in `simPICcount` object.

Details

simPIC provides the option to manually adjust each of the `simPICcount` object parameters by calling `setsimPICparameters`.

The simulation involves following steps:

1. Set up simulation parameters
2. Set up SingleCellExperiment object
3. Simulate library sizes
4. Simulate sparsity
5. Simulate peak means
6. Create final synthetic counts

The final output is a `SingleCellExperiment` object that contains the simulated count matrix. The parameters are stored in the `colData` (for cell specific information), `rowData` (for peak specific information) or `assays` (for peak by cell matrix) slots. This additional information includes:

Value

SingleCellExperiment object containing the simulated counts.

Examples

```r
# default simulation
sim <- simPICsimulate(pm.distr = "weibull")
```

simPICsimulateLibSize

Simulate simPIC library sizes

Description

Generate library sizes for cells in simPIC simulation based on the estimated values of mus and sigmas.

Usage

```r
simPICsimulateLibSize(object, sim, verbose)
```

Arguments

- **object**: simPICcount object with simulation parameters.
- **sim**: SingleCellExperiment object containing simulation parameters.
- **verbose**: logical. To print progress messages.

Value

SingleCellExperiment object with simulated library sizes.
simPICsimulatePeakMean

Simulate simPIC peak means.

Description

Generate peak means for cells in simPIC simulation based on the estimated values of shape and rate parameters.

Usage

```r
simPICsimulatePeakMean(object, sim, pm.distr, verbose)
```

Arguments

- `object` simPICcount object with simulation parameters.
- `sim` SingleCellExperiment object containing simulation parameters.
- `pm.distr` distribution parameter for peak means. Available distributions: gamma, weibull, lgamma, pareto. Default is weibull.
- `verbose` logical. Whether to print progress messages.

Value

SingleCellExperiment object with simulated peak means.

simPICsimulateTrueCounts

Simulate true counts.

Description

Counts are simulated from a poisson distribution where each peak has a mean, expected library size and proportion of accessible chromatin.

Usage

```r
simPICsimulateTrueCounts(object, sim)
```

Arguments

- `object` simPICcount object with simulation parameters.
- `sim` SingleCellExperiment object containing simulation parameters.

Value

SingleCellExperiment object with simulated true counts.
Index

* internal
 simPIC-package, 2

addFeatureStats, 3
assays, 15

colData, 15
convert_to_SCE, 4

fitdist, 7, 11, 12

getCounts, 4
ggplot, 9
global, 5

newsimPICcount, 2, 5

plot_theme, 6

rbindMatched, 6
rowData, 3, 15

selectFit, 7

setsimPICparameters, 7, 14

simPIC (simPIC-package), 2
simPIC-package, 2
simPICcompare, 2, 8
simPICcount, 9, 14

simPICcount-class (simPICcount), 9

simPICestimate, 2, 9, 10

simPICestimateLibSize, 11

simPICestimatePeakMean, 12

simPICestimateSparsity, 12

simPICget, 13

simPICgetparameters, 13

simPICsimulate, 2, 9, 14

simPICsimulateLibSize, 15

simPICsimulatePeakMean, 16

simPICsimulateTrueCounts, 16

SingleCellExperiment, 15