Package ‘signatureSearch’

March 28, 2024

Title Environment for Gene Expression Searching Combined with Functional Enrichment Analysis

Version 1.16.0

Description This package implements algorithms and data structures for performing gene expression signature (GES) searches, and subsequently interpreting the results functionally with specialized enrichment methods.

Depends R(>= 4.2.0), Rcpp, SummarizedExperiment, org.Hs.eg.db

Imports AnnotationDbi, ggplot2, data.table, ExperimentHub, HDF5Array, magrittr, RSQLite, dplyr, fgsea, scales, methods, qvalue, stats, utils, reshape2, visNetwork, BiocParallel, fastmatch, reactome.db, Matrix, clusterProfiler, readr, DOSE, rhdf5, GSEABase, DelayedArray, BiocGenerics, data.table, BiocStyle, signatureSearchData, tibble

Suggests knitr, testthat, rmarkdown, BiocStyle, signatureSearchData, DT

License Artistic-2.0

SystemRequirements C++11

LinkingTo Rcpp

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.2.3

biocViews Software, GeneExpression, GO, KEGG, NetworkEnrichment, Sequencing, Coverage, DifferentialExpression

URL https://github.com/yduan004/signatureSearch/

BugReports https://github.com/yduan004/signatureSearch/issues

LazyData false

git_url https://git.bioconductor.org/packages/signatureSearch

git_branch RELEASE_3_18

git_last_commit 4230980

git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-27
Author Yuzhu Duan [aut],
 Brendan Gongol [cre, aut],
 Thomas Girke [aut]
Maintainer Brendan Gongol <bgong001@ucr.edu>

R topics documented:
 signatureSearch-package ... 3
 addGESSannot ... 6
 addMOA ... 7
 add_pcid .. 8
 append2H5 ... 8
 build_custom_db .. 9
 calcGseaStatBatchCpp ... 10
 cellNtestPlot ... 10
 cell_info .. 11
 cell_info2 .. 12
 chembl_moa_list .. 12
 clue_moa_list ... 13
 comp_fea_res ... 13
 create_empty_h5 .. 15
 dim ... 15
 drugs ... 16
 drugs10 ... 17
 drug_cell_ranks ... 17
 dsea_GSEA .. 18
 dtnetplot .. 24
 enrichGO2 .. 25
 enrichKEGG2 .. 26
 enrichMOA .. 28
 enrichReactome .. 28
 feaResult .. 30
 feaResult-class .. 31
 GCT object .. 31
 gctx2h5 ... 32
 gessResult .. 32
 gessResult-class .. 33
 gess_cmap .. 34
 gess_res_vis ... 40
 getALLEG .. 42
 getDb ... 42
 getSig ... 43
 getTreats ... 44
 get_targets .. 45
 gmt2h5 .. 46
Welcome to the signatureSearch package! This package implements algorithms and data structures for performing gene expression signature (GES) searches, and subsequently interpreting the results functionally with specialized enrichment methods. These utilities are useful for studying the effects of genetic, chemical and environmental perturbations on biological systems. Specifically, in drug discovery they can be used for identifying novel modes of action (MOA) of bioactive compounds from reference databases such as LINCS containing the genome-wide GESs from tens of thousands of drug and genetic perturbations (Subramanian et al. 2017)
A typical GES search (GESS) workflow can be divided into two major steps. First, GESS methods are used to identify perturbagens such as drugs that induce GESs similar to a query GES of interest. The queries can be drug-, disease- or phenotype-related GESs. Since the MOAs of most drugs in the corresponding reference databases are known, the resulting associations are useful to gain insights into pharmacological and/or disease mechanisms, and to develop novel drug repurposing approaches.

Second, specialized functional enrichment analysis (FEA) methods using annotations systems, such as Gene Ontologies (GO), KEGG and Reactome pathways have been developed and implemented in this package to efficiently interpret GESS results. The latter are usually composed of lists of perturbagens (e.g. drugs) ranked by the similarity metric of the corresponding GESS method.

Finally, network reconstruction functionalities are integrated for visualizing the final results, e.g. in form of drug-target networks.

Details

The GESS methods include CMAP, LINCS, gCMAP, Fisher and Cor. For detailed description, please see help files of each method. Most methods can be easily paralleled for multiple query signatures.

GESS results are lists of perturbagens (here drugs) ranked by their signature similarity to a query signature of interest. Interpreting these search results with respect to the cellular networks and pathways affected by the top ranking drugs is difficult. To overcome this challenge, the knowledge of the target proteins of the top ranking drugs can be used to perform functional enrichment analysis (FEA) based on community annotation systems, such as Gene Ontologies (GO), pathways (e.g. KEGG, Reactome), drug MOAs or Pfam domains. For this, the ranked drug sets are converted into target gene/protein sets to perform Target Set Enrichment Analysis (TSEA) based on a chosen annotation system. Alternatively, the functional annotation categories of the targets can be assigned to the drugs directly to perform Drug Set Enrichment Analysis (DSEA). Although TSEA and DSEA are related, their enrichment results can be distinct. This is mainly due to duplicated targets present in the test sets of the TSEA methods, whereas the drugs in the test sets of DSEA are usually unique. Additional reasons include differences in the universe sizes used for TSEA and DSEA.

Importantly, the duplications in the test sets of the TSEA are due to the fact that many drugs share the same target proteins. Standard enrichment methods would eliminate these duplications since they assume uniqueness in the test sets. Removing duplications in TSEA would be inappropriate since it would erase one of the most important pieces of information of this approach. To solve this problem, we have developed and implemented in this package weighting methods (dup_hyperG, mGSEA and meanAbs) for duplicated targets, where the weighting is proportional to the frequency of the targets in the test set.

Instead of translating ranked lists of drugs into target sets, as for TSEA, the functional annotation categories of the targets can be assigned to the drugs directly to perform DSEA instead. Since the drug lists from GESS results are usually unique, this strategy overcomes the duplication problem of the TSEA approach. This way classical enrichment methods, such as GSEA or tests based on the hypergeometric distribution, can be readily applied without major modifications to the underlying statistical methods. As explained above, TSEA and DSEA performed with the same enrichment statistics are not expected to generate identical results. Rather they often complement each other’s strengths and weaknesses.

To perform TSEA and DSEA, drug-target annotations are essential. They can be obtained from several sources, including DrugBank, ChEMBL, STITCH, and the Touchstone dataset from the LINCS project (https://clue.io/). Most drug-target annotations provide UniProt identifiers for the
target proteins. They can be mapped, if necessary via their encoding genes, to the chosen functional annotation categories, such as GO or KEGG. To minimize bias in TSEA or DSEA, often caused by promiscuous binders, it can be beneficial to remove drugs or targets that bind to large numbers of distinct proteins or drugs, respectively.

Note, most FEA tests involving proteins in their test sets are performed on the gene level in signatureSearch. This way one can avoid additional duplications due to many-to-one relationships among proteins and their encoding genes. For this, the corresponding functions in signatureSearch will usually translate target protein sets into their encoding gene sets using identifier mapping resources from R/Bioconductor such as the org.Hs.eg.db annotation package. Because of this as well as simplicity, the text in the vignette and help files of this package will refer to the targets of drugs almost interchangeably as proteins or genes, even though the former are the direct targets and the latter only the indirect targets of drugs.

Terminology

The term Gene Expression Signatures (GESs) can refer to at least four different situations of pre-processed gene expression data: (1) normalized gene expression intensity values (or counts for RNA-Seq); (2) log2 fold changes (LFC), z-scores or p-values obtained from analysis routines of differentially expressed genes (DEGs); (3) rank transformed versions of the expression values obtained under (1) and (2); and (4) gene identifier sets extracted from the top and lowest ranks under (3), such as n top up/down regulated DEGs.

Author(s)

- Yuzhu Duan (yduan004@ucr.edu)
- Brendan Gongol (bgong001@ucr.edu)
- Thomas Girke (thomas.girke@ucr.edu)

References

See Also

Methods for GESS:

- gess_cmap, gess_lincs, gess_gcmap gess_fisher, gess_cor
Methods for FEA:

- **TSEA methods**: tsea_dup_hyperG, tsea_mGSEA, tsea_mabs
- **DSEA methods**: dsea_hyperG, dsea_GSEA

addGESSannot
Add Compound Annotation Info to GESS Result Table

Description

This function supports adding customized compound annotation table to the GESS result table if provided. It then automatically adds the target gene symbols, MOAs and PubChem CID columns (t_gn_sym, MOAss, PCIDss) if the table contains a column that stores compound names.

Usage

```r
addGESSannot(
  gess_tb,  
  refdb,  
  cmp_annot_tb = NULL,  
  by = "pert",  
  cmp_name_col = "pert"
)
```

Arguments

- `gess_tb`
tibble or data.frame object of GESS result, can be accessed by the `result` method on the `gessResult` object from `gess_*` functions. Or a customized data frame that contains a `pert` column that stores compound id or name.

- `refdb`
character(1), reference database that can be accessed by the `refdb` method on the `gessResult` object. If `gess_tb` is a customized table, `refdb` can be just set as 'custom'.

- `cmp_annot_tb`
data.frame or tibble of compound annotation table. This table contains annotation information for compounds stored under `pert` column of `gess_tb`. Set to NULL if not available. This table should not contain columns with names of "t_gn_sym", "MOAss" or "PCIDss", these three columns will be added internally and thus conserved by the function. If they are contained in `cmp_annot_tb`, they will be overwritten. If users want to maintain these three columns in the provided annotation table, give them different names.

- `by`
character(1), column name in `cmp_annot_tb` that can be merged with `pert` column in `gess_tb`. If `refdb` is set as 'lincs2', it will be merged with `pert_id` column in the GESS result table. If `cmp_annot_tb` is NULL, by is ignored.

- `cmp_name_col`
character(1), column name in `gess_tb` or `cmp_annot_tb` that store compound names. If there is no compound name column, set to NULL. If `cmp_name_col` is available, three additional columns (t_gn_sym, MOAss, PCIDss) are automatically added by using `get_targets`, CLUE touchstone compound MOA annotation, and 2017 lincs_pert_info annotation table, respectively as annotation...
addMOA

The MOA annotation is a list of MOA name to drug name mappings. This function adds the MOA column to data frame when data frame have a column with compound names.

Usage

addMOA(df, drug_col, moa_list)

Arguments

df
 data frame that must contains a column with compound names

drug_col
 character (1), name of the column that stores compound names

moa_list
 a list object of MOA name (e.g. HDAC inhibitor) to compound name mappings

Value

data frame with an added MOAss column

Examples

data("clue_moa_list")
df <- data.frame(pert=c("vorinostat", "sirolimus"), annot1=c("a", "b"), annot2=1:2)
addMOA(df, "pert", clue_moa_list)
add_pcid
Add PCID to drug data frame

Description

This function can be used to add the PCIDss (PubChem CID column added from signatureSearch package) column to a data frame that have a column store compound names. The compound name to PubChem CID annotation is obtained from lincs_pert_info in 2017.

Usage

```
add_pcid(df, drug_col = "pert")
```

Arguments

- **df**
data frame or tibble object
- **drug_col**
name of the column that store compound names in df

Value

tibble object with an added PCIDss column

Examples

```
data("lincs_pert_info")
# gess_tb2 <- add_pcid(gess_tb)
```

append2H5
Append Matrix to HDF5 File

Description

Function to write matrix data to an existing HDF5 file. If the file contains already matrix data then both need to have the same number of rows. The append will be column-wise.

Usage

```
append2H5(x, h5file, name = "assay", printstatus = TRUE)
```

Arguments

- **x**
matrix object to write to an HDF5 file. If the HDF5 file is not empty, the exported matrix data needs to have the same number rows as the matrix stored in the HDF5 file, and will be appended column-wise to the existing one.
- **h5file**
character(1), path to existing HDF5 file that can be empty or contain matrix data
- **name**
The name of the dataset in the HDF5 file.
- **printstatus**
logical, whether to print status
Value

HDF5 file storing exported matrix

Examples

```r
mat <- matrix(1:12, nrow=3)
rownames(mat) <- paste0("r", 1:3); colnames(mat) <- paste0("c", 1:4)
tmp_file <- tempfile(fileext=".h5")
create_empty_h5(tmp_file)
append2H5(mat, tmp_file)
rhdf5::h5ls(tmp_file)
```

Description

Build custom reference signature database for GESS methods

Usage

```r
build_custom_db(df, h5file)
```

Arguments

- **df**: data.frame or matrix containing genome-wide or close to genome-wide GESs of perturbation experiments.

The row name slots are expected to contain gene or transcript IDs (e.g. Entrez ids), while the column names are expected to have this structure: `'(drug)__(cell)__(factor)'`, e.g. `'sirolimus__MCF7__trt_cp'`. This format is flexible enough to encode most perturbation types of biological samples. For example, gene knockdown or over expression treatments can be specified by assigning the ID of the affected gene to `'drug'`, and `'ko'` or `'ov'` to `'factor'`, respectively. An example for a knockdown treatment would look like this: `'P53__MCF7__ko'`.

- **h5file**: character vector of length 1 containing the path to the destination hdf5 file

Details

The perturbation-based gene expression data, here provided as data.frame or matrix, will be stored in an HDF5 file. The latter can be used as reference database by compatible GESS methods of signatureSearch. Various types of pre-processed gene expression data can be used here, such as normalized gene expression intensities (or counts for RNA-Seq); log2 fold changes (LFC), Z-scores or p-values obtained from analysis routines of differentially expressed genes (DEGs).

Value

HDF5 file
Examples

```r
# Generate a data.frame
df <- data.frame(sirolimus__MCF7__trt_cp=rnorm(1000),
                 vorinostat__SKB__trt_cp=rnorm(1000))
data(targetList)
rownames(df) = names(targetList)
h5file = tempfile(fileext=".h5")
build_custom_db(df, h5file)
library(SummarizedExperiment)
tmp <- SummarizedExperiment(HDF5Array::HDF5Array(h5file, name="assay"))
rownames(tmp) <- HDF5Array::HDF5Array(h5file, name="rownames")
colnames(tmp) <- HDF5Array::HDF5Array(h5file, name="colnames")
```

calcGseaStatBatchCpp
Calculates GSEA statistic values for all gene sets in `selectedStats` list.

Description

Takes $O(n + mK\log K)$ time, where n is the number of genes, m is the number of gene sets, and k is the mean gene set size.

Usage

```r
calcGseaStatBatchCpp(stats, selectedGenes, geneRanks)
```

Arguments

- `stats` : Numeric vector of gene-level statistics sorted in decreasing order
- `selectedGenes` : List of integer vector with integer gene IDs (from 1 to n)
- `geneRanks` : Integer vector of gene ranks

Value

Numeric vector of GSEA statistics of the same length as `selectedGenes` list

cellNtestPlot
Number of Tests in Cell Types

Description

Bar plot of number of perturbations/compounds tested in cell types where cell types are grouped by `primary site`.

Usage

```r
cellNtestPlot(refdb)
```
Arguments

refdb character(1), one of "lincs", "lincs_expr", "cmap" or "cmap_expr" when using the pre-generated CMAP/LINCS databases or path to the HDF5 file generated with the build_custom_db function. The details is shown in the 'refdb' argument of the qSig function.

Value

Faceted bar plot

Examples

refdb <- system.file("extdata", "sample_db.h5", package="signatureSearch")
cellNtestPlot(refdb)

cell_info

LINCS 2017 Cell Type Information

Description

It contains cell type (tumor or normal), primary site and subtype annotations of cells in LINCS 2017 database.

Usage

cell_info

Format

A tibble object with 30 rows and 4 columns.

Examples

Load object
data(cell_info)
head(cell_info)
cell_info2
LINCS 2020 Cell Type Information

Description

It contains cell type (tumor or normal), primary site, subtype etc. annotations of cells in LINCS 2020 database.

Usage

cell_info2

Format

A tibble object with 240 rows and 21 columns.

Examples

```
# Load object
data(cell_info2)
head(cell_info2)
```

chembl_moa_list
MOA to Gene Mappings

Description

It is a list containing MOA terms to gene Entrez id mappings from ChEMBL database.

Usage

chembl_moa_list

Format

An object of class list of length 1099.

Examples

```
# Load object
data(chembl_moa_list)
head(chembl_moa_list)
```
clue_moa_list

MOA to Drug Name Mappings

Description

It is a list containing MOA terms to drug name mappings obtained from Touchstone database at CLUE website (https://clue.io/)

Usage

clue_moa_list

Format

An object of class list of length 701.

Examples

```r
# Load object
data(clue_moa_list)
head(clue_moa_list)
```

comp_fea_res

Plot for Comparing Ranking Results of FEA Methods

Description

Dot plot for comparing the top ranking functional categories from different functional enrichment analysis (FEA) results. The functional categories are plotted in the order defined by their mean rank across the corresponding FEA results.

Usage

```r
comp_fea_res(
    table_list,
    rank_stat = "pvalue",
    Nshow = 20,
    Nchar = 50,
    scien = FALSE,
    ...
)
```
Arguments

- **table_list**: a named list of tibbles extracted from feaResult objects, e.g. generated with different FEA methods.
- **rank_stat**: character(1), column name of the enrichment statistic used for ranking the functional categories, e.g. `pvalue` or `p.adjust`. Note, the chosen column name needs to be present in each tibble of `table_list`.
- **Nshow**: integer defining the number of the top functional categories to display in the plot after re-ranking them across FEA methods.
- **Nchar**: integer defining number of characters displayed (exceeded characters were replaced by `...`) in the description of each item.
- **scien**: TRUE or FALSE, indicating whether the rank_stat is rounded to the scientific format with 3 digits.
- **...**: Other arguments passed on to `geom_point`.

Details

The `comp_fea_res` function computes the mean rank for each functional category across different FEA result instances and then re-ranks them based on that. Since the functional categories are not always present in all enrichment results, the mean rank of a functional category is corrected by an adjustment factor that is the number of enrichment result methods used divided by the number of occurrences of a functional category. For instance, if a functional category is only present in the result of one method, its mean rank will be increased accordingly. Subsequently, the re-ranked functional categories are compared in a dot plot where the colors represent the values of the enrichment statistic chosen under the `rank_stat` argument.

Value

- ggplot2 graphics object

Examples

```r
method1 <- data.frame("ID"=paste0("GO: ", 1:5),
                      "Description"=paste0("desc ", 1:5),
                      "pvalue"=c(0.0001, 0.002, 0.004, 0.01, 0.05))
method2 <- data.frame("ID"=paste0("GO: ", c(1,3,5,4,6)),
                      "Description"=paste0("desc ", c(1,3,5,4,6)),
                      "pvalue"=c(0.0003, 0.0007, 0.004, 0.006, 0.04))
table_list <- list("method1" = method1, "method2"=method2)
comp_fea_res(table_list, rank_stat="pvalue", Nshow=20)
```
create_empty_h5

Create Empty HDF5 File

Description

This function can be used to create an empty HDF5 file where the user defines the file path and compression level. The empty HDF5 file has under its root group three data slots named 'assay', 'col-names' and 'rownames' for storing a numeric matrix along with its column names (character) and row names (character), respectively.

Usage

```r
create_empty_h5(h5file, delete_existing = FALSE, level = 6)
```

Arguments

- `h5file` : character(1), path to the HDF5 file to be created
- `delete_existing` : logical, whether to delete an existing HDF5 file with identical path
- `level` : The compression level used, here given as integer value between 0 (no compression) and 9 (highest and slowest compression).

Value

empty HDF5 file

Examples

```r
tmp_file <- tempfile(fileext=".h5")
create_empty_h5(tmp_file, level=6)
```

dim

Dimensions of an Object

Description

Retrieve dimension of the result table in the `gessResult` and `feaResult` objects

Usage

```r
## S4 method for signature 'gessResult'
dim(x)
```

```r
## S4 method for signature 'feaResult'
dim(x)
```
drugs

Arguments

x an R object

Value
dim attribute of the result table

Examples

gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),
query=list(up=c("g1","g2"), down=c("g3","g4")),
gess_method="LINCS", refdb="path/to/lincs/db")
dim(gr)
fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human", ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))
dim(fr)

drugs Extract/Assign Drug Names for feaResult

Description

The drugs generic extracts or assign the drug names/ids stored in the drugs slot of an feaResult object.

Usage

drugs(x)
drugs(x) <- value

S4 method for signature 'feaResult'
drugs(x)

S4 replacement method for signature 'feaResult'
drugs(x) <- value

Arguments

x feaResult object
value A character vector of drug names

Value

character vector
An feaResult object with new assigned drugs slot
Examples

```r
fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human", ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))

drugs(fr)
drugs(fr) <- c("d3", "d4")
```

drugs10

Drug Names Used in Examples

A character vector containing the names of the top 10 drugs in the GESS result from the `gess_lincs` method used in the vignette of signatureSearch.

Usage

```
# Load drugs object
data(drugs10)
drugs10
```

Format

An object of class character of length 10.

Examples

```
# Load drugs object
data(drugs10)
drugs10
```

drug_cell_ranks

Summary ranking statistics across cell types

The `drug_cell_ranks` function returns from a `gessResult` object the ranks of the perturbagens (e.g. drugs) for each cell type. The results are arranged in separate columns of a `data.frame`. Additionally, it includes in the last columns summary ranking statistics across all cell types, such as min, mean and max values.

Usage

```
drug_cell_ranks(gessResult)
```

Arguments

- `gessResult` : 'gessResult' object
Value

data.frame

Examples

gr <- gessResult(result=dplyr::tibble(pert=c("p1", "p1", "p2", "p3"),
cell=c("MCF7", "SKB", "MCF7", "SKB"),
type=rep("trt_cp", 4),
NCS=c(1.2, 1, 0.9, 0.6)),
query=list(up="a", down="b"),
gess_method="LINCS", refdb="path/to/refdb")

df <- drug_cell_ranks(gr)

dsea_GSEA FEA Methods

Description

The Drug Set Enrichment Analysis (DSEA) with GSEA algorithm (dsea_GSEA function) performs DSEA with the GSEA algorithm from Subramanian et al. (2005). In case of DSEA, drug identifiers combined with their ranking scores of an upstream GESS method are used, such as the NCS values from the LINCS method. To use drug instead of gene labels for GSEA, the former are mapped to functional categories, including GO or KEGG, based on drug-target interaction annotations provided by databases such as DrugBank, ChEMBL, CLUE or STITCH.

The DSEA with Hypergeometric Test (dsea_hyperG) performs DSEA based on the hypergeometric distribution. In case of DSEA, the identifiers of the top ranking drugs from a GESS result table are used. To use drug instead of gene labels for this test, the former are mapped to functional categories, including GO, KEGG or Mode of Action (MOA) categories, based on drug-target interaction annotations provided by databases such as DrugBank, ChEMBL, CLUE or STITCH. Currently, the MOA annotation used by this function are from the CLUE website (https://clue.io).

Compared to the related Target Set Enrichment Analysis (TSEA), the DSEA approach has the advantage that the drugs in the query test sets are usually unique allowing to use them without major modifications to the underlying statistical method(s).

The Target Set Enrichment Analysis (TSEA) with hypergeometric test (tsea_dup_hyperG function) performs TSEA based on a modified hypergeometric test that supports test sets with duplications. This is achieved by maintaining the frequency information of duplicated items in form of weighting values.

The TSEA with mGSEA algorithm (tsea_mGSEA function) performs a Modified Gene Set Enrichment Analysis (mGSEA) that supports test sets (e.g. genes or protein IDs) with duplications. The duplication support is achieved by a weighting method for duplicated items, where the weighting is proportional to the frequency of the items in the test set.

The TSEA with meanAbs (tsea_mabs) method is a simple but effective functional enrichment statistic (Fang et al., 2012). As required for TSEA, it supports query label sets (here for target proteins/genes) with duplications by transforming them to score ranked label lists and then calculating mean absolute scores of labels in label set S.

dsea_GSEA

Usage

dsea_GSEA(
 drugList,
 type = "GO",
 ont = "BP",
 exponent = 1,
 nPerm = 1000,
 minGSSize = 10,
 maxGSSize = 500,
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH"
)

dsea_hyperG(
 drugs,
 type = "GO",
 ont = "BP",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 qvalueCutoff = 0.2,
 minGSSize = 10,
 maxGSSize = 500
)

tsea_dup_hyperG(
 drugs,
 universe = "Default",
 type = "GO",
 ont = "MF",
 pAdjustMethod = "BH",
 pvalueCutoff = 0.05,
 qvalueCutoff = 0.05,
 minGSSize = 5,
 maxGSSize = 500,
 dt_anno = "all",
 readable = FALSE
)

tsea_mGSEA(
 drugs,
 type = "GO",
 ont = "MF",
 nPerm = 1000,
 exponent = 1,
 pAdjustMethod = "BH",
 pvalueCutoff = 0.05,
 minGSSize = 5,
 maxGSSize = 500,
verbose = FALSE,
dt_anno = "all",
readable = FALSE
)

tsea_mabs(
 drugs,
 type = "GO",
 ont = "MF",
 nPerm = 1000,
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
 minGSSize = 5,
 maxGSSize = 500,
 dt_anno = "all",
 readable = FALSE
)

Arguments

drugList
name numeric vector, where the names represent drug labels and the numeric component scores. This can be all drugs of a GESS result that are ranked by GESS scores, such as NCS scores from the LINCS method. Note, drugs with scores of zero are ignored by this method.

type
one of 'GO', 'KEGG' or 'Reactome' if TSEA methods. type can also be set as 'MOA' is DSEA methods are used.

ont
character(1). If type is 'GO', assign ont (ontology) one of 'BP', 'MF', 'CC' or 'ALL'. If type is 'KEGG' or 'Reactome', ont is ignored.

exponent
integer value used as exponent in GSEA algorithm. It defines the weight of the items in the item set S.

nPerm
integer defining the number of permutation iterations for calculating p-values

minGSSize
integer, minimum size of each gene set in annotation system. Annotation categories with less than minGSSize genes/drugs will be ignored by enrichment test. If type is 'MOA', it may be beneficial to set minGSSize to lower values (e.g., 2) than for other functional annotation systems. This is because certain MOA categories contain only 2 drugs.

maxGSSize
integer, maximum size of each gene set in annotation system. Annotation categories with more genes/drugs annotated than maxGSSize will be ignored by enrichment test.

pvalueCutoff
double, p-value cutoff to return only enrichment results for functional categories meeting a user definable confidence threshold

pAdjustMethod
p-value adjustment method, one of 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr'

drugs
character vector containing drug identifiers used for functional enrichment testing. This can be the top ranking drugs from a GESS result. Internally, drug test sets are translated to the corresponding target protein test sets based on the drug-target annotations provided under the dt_anno argument.
qvalueCutoff double, qvalue cutoff, similar to pvalueCutoff

universe character vector defining the universe of genes/proteins. If set as 'Default', it uses all genes/proteins present in the corresponding annotation system (e.g. GO, KEGG or Reactome). If 'type' is 'GO', it can be assigned a custom vector of gene SYMBOL IDs. If 'type' is 'KEGG' or 'Reactome', the vector needs to contain Entrez gene IDs.

dt_anno drug-target annotation source. It is the same argument as the database argument of the get_targets function. Usually, it is recommended to set the 'dt_anno' to 'all' since it provides the most complete drug-target annotations. Choosing a single annotation source results in sparser drug-target annotations (particularly CLUE), and thus less complete enrichment results.

readable TRUE or FALSE, it applies when type is 'KEGG' or 'Reactome' indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the result table.

verbose TRUE or FALSE, print message or not

Details

The classical hypergeometric test assumes uniqueness in its test sets. To maintain the duplication information in the test sets used for TSEA, the values of the total number of genes/proteins in the test set and the number of genes/proteins in the test set annotated at a functional category are adjusted by maintaining their frequency information in the test set rather than counting each entry only once. Removing duplications in TSEA would be inappropriate since it would erase one of the most important pieces of information of this approach.

The original GSEA method proposed by Subramanian et al., 2005 uses predefined gene sets \(S \) defined by functional annotation systems such as GO and KEGG. The goal is to determine whether the genes in \(S \) are randomly distributed throughout a ranked test gene list \(L \) (e.g. all genes ranked by log2 fold changes) or enriched at the top or bottom of the test list. This is expressed by an Enrichment Score \((ES) \) reflecting the degree to which a set \(S \) is overrepresented at the extremes of \(L \).

For TSEA, the query is a target protein set where duplicated entries need to be maintained. To perform GSEA with duplication support, here referred to as mGSEA, the target set is transformed to a score ranked target list \(L_{tar} \) of all targets provided by the corresponding annotation system. For each target in the query target set, its frequency is divided by the number of targets in the target set, which is the weight of that target. For targets present in the annotation system but absent in the target set, their scores are set to 0. Thus, every target in the annotation system will be assigned a score and then sorted decreasingly to obtain \(L_{tar} \).

In case of TSEA, the original GSEA method cannot be used directly since a large portion of zeros exists in \(L_{tar} \). If the scores of the genes in set \(S \) are all zeros, \(N_R \) (sum of scores of genes in set \(S \)) will be zero, which cannot be used as the denominator. In this case, \(ES \) is set to -1. If only some genes in set \(S \) have scores of zeros then \(N_R \) is set to a larger number to decrease the weight of the genes in \(S \) that have non-zero scores.

The reason for this modification is that if only one gene in gene set \(S \) has a non-zero score and this gene ranks high in \(L_{tar} \), the weight of this gene will be 1 resulting in an \(ES(S) \) close to 1. Thus, the original GSEA method will score the gene set \(S \) as significantly enriched. However, this is undesirable because in this example only one gene is shared among the target set and the gene
set S. Therefore, giving small weights (lowest non-zero score in L_{tar}) to genes in S that have zero scores could decrease the weight of the genes in S that have non-zero scores, thereby decreasing the false positive rate. To favor truly enriched functional categories (gene set S) at the top of L_{tar}, only gene sets with positive ES are selected.

The input for the mabs method is L_{tar}, the same as for mGSEA. In this enrichment statistic, $mabs(S)$, of a label (e.g. gene/protein) set S is calculated as mean absolute scores of the labels in S. In order to adjust for size variations in label set S, 1000 random permutations of L_{tar} are performed to determine $mabs(S, pi)$. Subsequently, $mabs(S)$ is normalized by subtracting the median of the $mabs(S, pi)$ and then dividing by the standard deviation of $mabs(S, pi)$ yielding the normalized scores $Nmabs(S)$. Finally, the portion of $mabs(S, pi)$ that is greater than $mabs(S)$ is used as nominal p-value (Fang et al., 2012). The resulting nominal p-values are adjusted for multiple hypothesis testing using the Benjamini-Hochberg method.

Value

`fearResult` object, the result table contains the enriched functional categories (e.g. GO terms or KEGG pathways) ranked by the corresponding enrichment statistic.

Column description

Descriptions of the columns in FEA result tables stored in the `fearResult` object that can be accessed with the `result` method in tabular format, here `tibble`.

- ont: in case of GO, one of BP, MF, CC, or ALL
- ID: GO or KEGG IDs
- Description: description of functional category
- GeneRatio: ratio of genes in the test set that are annotated at a specific GO node or KEGG pathway
- BgRatio: ratio of background genes that are annotated at a specific GO node or KEGG pathway
- itemID: IDs of items (genes for TSEA, drugs for DSEA) overlapping among test and annotation sets.
- setSize: size of the functional category
- pvalue from `tsea_dup_hyperG`: raw p-value of enrichment test
- p.adjust: p-value adjusted for multiple hypothesis testing based on method specified under `pAdjustMethod` argument
- qvalue: q value calculated with R’s `qvalue` function to control FDR
- enrichmentScore: ES from the GSEA algorithm (Subramanian et al., 2005). The score is calculated by walking down the gene list L, increasing a running-sum statistic when we encounter a gene in S and decreasing when it is not. The magnitude of the increment depends on the gene scores. The ES is the maximum deviation from zero encountered in the random walk. It corresponds to a weighted Kolmogorov-Smirnov-like statistic.
- NES: Normalized enrichment score. The positive and negative enrichment scores are normalized separately by permuting the composition of the gene list L_{nPerm} times, and dividing the enrichment score by the mean of the permutation ES with the same sign.
• pvalue from \texttt{tsea.mGSEA}: The nominal p-value of the ES is calculated using a permutation test. Specifically, the composition of the gene list L is permuted and the ES of the gene set is recomputed for the permuted data generating a null distribution for the ES. The p-value of the observed ES is then calculated relative to this null distribution.

• \texttt{leadingEdge}: Genes in the gene set \(S \) (functional category) that appear in the ranked list \(L \) at, or before, the point where the running sum reaches its maximum deviation from zero. It can be interpreted as the core of a gene set that accounts for the enrichment signal.

• \texttt{ledge_rank}: Ranks of genes in 'leadingEdge' in gene list \(L \).

• \texttt{mabs}: given a scored ranked gene list \(L \), \(mabs(S) \) represents the mean absolute scores of the genes in set \(S \).

• \texttt{Nmabs}: normalized \(mabs(S) \)

References

See Also

\texttt{feaResult, GO_DATA_drug}

Examples

data(drugs10)

\begin{verbatim}
DSEA GSEA method
dl <- c(rev(seq(0.1, 0.5, by=0.05)), 0)
names(dl)=drugs10
KEGG annotation system
gsea_k_res <- dsea_GSEA(drugList=dl, type="KEGG", exponent=1, nPerm=100,
pvalueCutoff=0.5, minGSSize=2)
result(gsea_k_res)

DSEA Hypergeometric Test
GO annotation system
hyperG_res <- dsea_hyperG(drugs=drugs10, type="GO", ont="MF")
result(hyperG_res)

KEGG annotation system
hyperG_k_res <- dsea_hyperG(drugs=drugs10, type="KEGG",
pvalueCutoff=1, qvalueCutoff=1,
minGSSize=10, maxGSSize=500)
result(hyperG_k_res)

TSEA dup_hyperG method
GO annotation system
\end{verbatim}
Functional modules of GESS and FEA results can be rendered as interactive drug-target networks using the `dtnetplot` function from `signatureSearch`. For this, a character vector of drug names along with an identifier of a chosen functional category are passed on to the drugs and set arguments, respectively. The resulting plot depicts the corresponding drug-target interaction network. Its interactive features allow the user to zoom in and out of the network, and to select network components in the drop-down menu located in the upper left corner of the plot.
Usage

dtnetplot(drugs, set, ont = NULL, desc = NULL, verbose = FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drugs</td>
<td>A character vector of drug names</td>
</tr>
<tr>
<td>set</td>
<td>character(1) GO term ID, KEGG or Reactome pathway ID. Alternatively, a character vector of gene SYMBOLs can be assigned.</td>
</tr>
<tr>
<td>ont</td>
<td>if ‘set’ is a GO term ID, ‘ont’ is the corresponding ontology that GO term belongs to. One of ‘BP’, ‘MF’ or ‘CC’. If ‘set’ is anything else, ‘ont’ is ignored.</td>
</tr>
<tr>
<td>desc</td>
<td>character(1), description of the chosen functional category or target set</td>
</tr>
<tr>
<td>verbose</td>
<td>TRUE or FALSE, whether to print messages</td>
</tr>
<tr>
<td>...</td>
<td>Other arguments passed on to visNetwork function.</td>
</tr>
</tbody>
</table>

Value

visNetwork plot and a list of drugs and targets that have interactions

Examples

data(drugs10)
dtnetplot(drugs=drugs10,
 set=c("HDAC1", "HDAC2", "HDAC3", "HDAC11", "FOX2"),
 desc="NAD-dependent histone deacetylase activity (H3-K14 specific)")
Arguments

gene a vector of gene SYMBOL ids (here the test set)
OrgDb OrgDb
keytype Gene ID type of test set
ont One of "MF", "BP", "CC" or "ALL"
pvalueCutoff p-value cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes
qvalueCutoff q-value cutoff
minGSSize minimum size of each gene set in annotation system
maxGSSize maximum size of each gene set in annotation system
pool If ont='ALL', whether 3 GO ontology should be combined

Value

A feaResult instance.

See Also

feaResult-class

Examples

The method supports duplicated elements in 'gene',
which should be gene SYMBOL ids for GO term enrichment.
gene <- c(rep("HDAC1",4), rep("HDAC3",2), "SOX8", "KLK14")
data(targetList)
ego <- enrichGO2(gene = gene, OrgDb="org.Hs.eg.db", ont="MF",
universe=names(targetList))

enrichKEGG2 KEGG Pathway Enrichment with Hypergeometric Test

Description

Given a vector of gene identifiers, this function returns KEGG pathway enrichment results based on a hypergeometric test with duplication support in the test set.
Usage

enrichKEGG2(
 gene,
 organism = "hsa",
 keyType = "kegg",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe,
 minGSSize = 5,
 maxGSSize = 500,
 qvalueCutoff = 0.2,
 readable = FALSE
)

Arguments

gene a vector of entrez gene ids (here the test set)
organism supported organism are listed in http://www.genome.jp/kegg/catalog/org_list.html
keyType one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' or 'uniprot'
pvalueCutoff pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes
minGSSize minimal size of genes annotated by ontology term for testing.
maxGSSize maximal size of genes annotated for testing
qvalueCutoff qvalue cutoff
readable TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.

Value

A feaResult instance.

Examples

Method supports duplicated elements in "gene", which should be entrez ids
gene <- c(rep("4312",4), rep("8318",2), "991", "10874")
data(geneList, package="DOSE")
#kk <- enrichKEGG2(gene = gene, universe=names(geneList))
#head(kk)
enrichMOA MOA Category Enrichment with Hypergeometric Test

Description

Given a vector of gene identifiers, this function returns MOA category enrichment results based on a hypergeometric test with duplication support in the test set. The universe for the test is set to the unique genes encoding the target proteins present in the MOA annotation system from the ChEMBL database.

Usage

enrichMOA(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", qvalueCutoff = 0.2)

Arguments

gene a vector of entrez gene ids (here the test set)
pvalueCutoff pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
qvalueCutoff qvalue cutoff

Value

A feaResult instance.

See Also

feaResult-class

Examples

data(geneList, package="DOSE")
emoa <- enrichMOA(gene = names(geneList)[seq(3)])
head(emoa)

enrichReactome Reactome Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enriched Reactome pathways with FDR control from hypergeometric test.

Description

Reactome Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enriched Reactome pathways with FDR control from hypergeometric test.
Usage

enrichReactome(
 gene,
 organism = "human",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 qvalueCutoff = 0.2,
 universe,
 minGSSize = 5,
 maxGSSize = 500,
 readable = FALSE
)

Arguments

gene a vector of entrez gene id.
organism one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
pvalueCutoff Cutoff value of pvalue.
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
qvalueCutoff Cutoff value of qvalue
universe background genes
minGSSize minimal size of genes annotated by functional term for testing.
maxGSSize maximal size of each gene set for analyzing
readable TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.

Value

A feaResult instance.

See Also

feaResult-class

Examples

This method supports duplicated elements in "gene"
gene <- c(rep("4312",4), rep("8318",2), "991", "10874")
data(geneList, package="DOSE")
#rc <- enrichReactome(gene=gene, universe=names(geneList))
#result(rc)
Description

This is a helper function to construct a feaResult object. For detail description, please consult the help file of the feaResult-class.

Usage

feaResult(
 result,
 organism = "UNKNOWN",
 ontology = "UNKNOWN",
 drugs = "UNKNOWN",
 targets = "UNKNOWN"
)

Arguments

 result tibble object containing the FEA results
 organism character(1), organism information of the annotation system
 ontology character(1), ontology type of the GO annotation system. If the annotation system is KEGG, it will be 'KEGG'
 drugs character vector, input drug names used for the enrichment test
 targets character vector, gene labels of the gene/protein targets for the drugs

Value

feaResult object

Examples

fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
 val=seq_len(10)),
 organism="human", ontology="MF", drugs=c("d1", "d2"),
 targets=c("t1","t2"))
Description

The feaResult object stores Functional Enrichment Analysis (FEA) results generated by the corresponding Target and Drug Set Enrichment methods (here TSEA and DSEA) defined by signatureSearch. This includes slots for the FEA results in tabular format, the organism information, and the type of functional annotation used (e.g. GO or KEGG). It also includes the drug information used for the FEA, as well as the corresponding target protein information.

Slots

- result: tibble object, this tabular result contains the enriched functional categories (e.g. GO terms or KEGG pathways) ranked by the corresponding enrichment statistic. The result table can be extracted via the result accessor function.
- organism: organism information of the annotation system. Currently, limited to 'human', since drug-target annotations are too sparse for other organisms.
- ontology: ontology type of the GO annotation system. If the annotation system is KEGG, it will be 'KEGG'
- drugs: input drug names used for the enrichment test
- targets: target information for the query drugs obtained from the chosen drug-target annotation source.

GCT object

An S4 Class to Represent a GCT Object

Description

The GCT class serves to represent annotated matrices. The mat slot contains the numeric matrix data and the rdesc and cdesc slots contain data frames with annotations about the rows and columns, respectively.

Slots

- mat: a numeric matrix
- rid: a character vector of row ids
- cid: a character vector of column ids
- rdesc: a data.frame of row descriptors
- rdesc: a data.frame of column descriptors
- src: a character indicating the source (usually file path) of the data

See Also

parse_gctx
gctx2h5

Convert GCTX to HDF5 File

Description
Read matrix-like data from large gctx file in chunks and write result back to an HDF5 file.

Usage
```
gctx2h5(gctx, cid, new_cid = cid, h5file, by_ncol = 5000, overwrite = TRUE)
```

Arguments
- `gctx`: character(1), path to gctx file from LINCS
- `cid`: character or integer vector referencing the columns of the matrix to include
- `new_cid`: character vector of the same length as cid, assigning new column names to matrix
- `h5file`: character(1), path of the hdf5 destination file
- `by_ncol`: number of columns to import in each iteration to limit memory usage
- `overwrite`: TRUE or FALSE, whether to overwrite or to append to existing 'h5file'

Value
HDF5 file

Examples
```
gctx <- system.file("extdata", "test_sample_n2x12328.gctx", package="signatureSearch")
h5file <- tempfile(fileext=".h5")
gctx2h5(gctx, cid=1:2,
    new_cid=c('sirolimus__MCF7__trt_cp', 'vorinostat__SKB__trt_cp'),
    h5file=h5file, overwrite=TRUE)
```

gessResult Constructor for gessResult-class

Description
This is a helper function to construct a gessResult object. For detail description, please consult the help file of the gessResult-class.

Usage
```
gessResult(result, query, gess_method, refdb)
```
The `gessResult` object organizes Gene Expression Signature Search (GESS) results. This includes the main tabular result of a GESS, its query signature, the name of the chosen GESS method and the path to the reference database.

Slots

- `result` tibble object containing the search results for each perturbagen (e.g. drugs) in the reference database ranked by their signature similarity to the query. The result table can be extracted via the `result` accessor function.

- `query` query signature

- `gess_method` name of the GESS method

- `refdb` path to the reference database

Examples

```r
gr <- gessResult(result = dplyr::tibble(pert = letters[seq_len(10)], val = seq_len(10)),
query = list(up = c("g1", "g2"), down = c("g3", "g4")),
gess_method = "LINCS", refdb = "path/to/lincs/db")
```
Description

The CMAP search method implements the original Gene Expression Signature Search (GESS) from Lamb et al (2006) known as Connectivity Map (CMap). The method uses as query the two label sets of the most up- and down-regulated genes from a genome-wide expression experiment, while the reference database is composed of rank transformed expression profiles (e.g. ranks of LFC or z-scores).

Correlation-based similarity metrics, such as Spearman or Pearson coefficients, can be used as Gene Expression Signature Search (GESS) methods. As non-set-based methods, they require quantitative gene expression values for both the query and the database entries, such as normalized intensities or read counts from microarrays or RNA-Seq experiments, respectively.

In its iterative form, Fisher's exact test (Upton, 1992) can be used as Gene Expression Signature Search (GES) Search to scan GES databases for entries that are similar to a query GES.

The gCMAP search method adapts the Gene Expression Signature Search (GESS) method from the gCMap package (Sandmann et al. 2014) to make it compatible with the database containers and methods defined by signatureSearch. The specific GESS method, called gCMAP, uses as query a rank transformed GES and the reference database is composed of the labels of up and down regulated DEG sets.

LINCS search method implements the Gene Expression Signature Search (GESS) from Subramanian et al, 2017, here referred to as LINCS. The method uses as query the two label sets of the most up- and down-regulated genes from a genome-wide expression experiment, while the reference database is composed of differential gene expression values (e.g. LFC or z-scores). Note, the related CMAP method uses here ranks instead.

Usage

gess_cmap(
 qSig,
 chunk_size = 5000,
 ref_trts = NULL,
 workers = 1,
 cmp_annot_tb = NULL,
 by = "pert",
 cmp_name_col = "pert",
 addAnnotations = TRUE
)

gess_cor(
 qSig,
 method = "spearman",
 chunk_size = 5000,
 ref_trts = NULL,
gess_cmap

 workers = 1,
 cmp_annot_tb = NULL,
 by = "pert",
 cmp_name_col = "pert",
 addAnnotations = TRUE

)
gess_fisher(
qSig,
 higher = NULL,
 lower = NULL,
 padj = NULL,
 chunk_size = 5000,
 ref_trts = NULL,
 workers = 1,
 cmp_annot_tb = NULL,
 by = "pert",
 cmp_name_col = "pert",
 addAnnotations = TRUE

)

gess_gcmmap(
qSig,
 higher = NULL,
 lower = NULL,
 padj = NULL,
 chunk_size = 5000,
 ref_trts = NULL,
 workers = 1,
 cmp_annot_tb = NULL,
 by = "pert",
 cmp_name_col = "pert",
 addAnnotations = TRUE

)

gess_lincs(
 qSig,
 tau = FALSE,
 sortby = "NCS",
 chunk_size = 5000,
 ref_trts = NULL,
 workers = 1,
 cmp_annot_tb = NULL,
 by = "pert",
 cmp_name_col = "pert",
 GeneType = "reference",
 addAnnotations = TRUE

)
Arguments

qSig
- qSig object defining the query signature including the GESS method (should be 'LINCS') and the path to the reference database. For details see help of qSig and qSig-class.

chunk_size
- number of database entries to process per iteration to limit memory usage of search.

ref_trts
- character vector. If users want to search against a subset of the reference database, they could set ref_trts as a character vector representing column names (treatments) of the subsetted refdb.

workers
- integer(1) number of workers for searching the reference database parallelly, default is 1.

cmp_annot_tb
- data.frame or tibble of compound annotation table. This table contains annotation information for compounds stored under pert column of gess_tb. Set to NULL if not available. This table should not contain columns with names of "t_gn_sym", "MOAss" or "PCIDss"; these three columns will be added internally and thus conserved by the function. If they are contained in cmp_annot_tb, they will be overwritten. If users want to maintain these three columns in the provided annotation table, give them different names.

by
- character(1), column name in cmp_annot_tb that can be merged with pert column in gess_tb. If refdb is set as 'lincs2', it will be merged with pert_id column in the GESS result table. If cmp_annot_tb is NULL, by is ignored.

cmp_name_col
- character(1), column name in gess_tb or cmp_annot_tb that store compound names. If there is no compound name column, set to NULL. If cmp_name_col is available, three additional columns (t_gn_sym, MOAss, PCIDss) are automatically added by using get_targets, CLUE touchstone compound MOA annotation, and 2017 lincs_pert_info annotation table, respectively as annotation sources. t_gn_sym: target gene symbol, MOAss: MOA annotated from signatureSearch, PCIDss: PubChem CID annotated from signatureSearch.

addAnnotations
- Logical value. If TRUE adds drug annotations to results.

method
- One of 'spearman' (default), 'kendall', or 'pearson', indicating which correlation coefficient to use.

higher
- The 'upper' threshold. If not 'NULL', genes with a score larger than or equal to 'higher' will be included in the gene set with sign +1. At least one of 'lower' and 'higher' must be specified.

lower
- The lower threshold. If not 'NULL', genes with a score smaller than or equal to 'lower' will be included in the gene set with sign -1. At least one of 'lower' and 'higher' must be specified.

padj
- numeric(1), cutoff of adjusted p-value or false discovery rate (FDR) of defining DEGs that is less than or equal to 'padj'. The 'padj' argument is valid only if the reference HDF5 file contains the p-value matrix stored in the dataset named as 'padj'.
tau TRUE or FALSE, whether to compute the tau score. Note, TRUE is only meaningful when the full LINCS database is searched, since accurate Tau score calculation depends on the usage of the exact same database their background values are based on.

sortby sort the GESS result table based on one of the following statistics: 'WTCS', 'NCS', 'Tau', 'NCSct' or 'NA'

GeneType A character value of either "reference" or a combination of "best inferred", "landmark" or "inferred" indicating which reference gene set query genes should be filtered against. While "reference" filters query genes against the reference database, "best inferred", "landmark" or "inferred" filter genes against LINCS gene spaces.

Details

Lamb et al. (2006) introduced the gene expression-based search method known as Connectivity Map (CMap) where a GES database is searched with a query GES for similar entries. Specifically, this GESS method uses as query the two label sets of the most up- and down-regulated genes from a genome-wide expression experiment, while the reference database is composed of rank transformed expression profiles (e.g. ranks of LFC or z-scores). The actual GESS algorithm is based on a vectorized rank difference calculation. The resulting Connectivity Score expresses to what degree the query up/down gene sets are enriched on the top and bottom of the database entries, respectively. The search results are a list of perturbagens such as drugs that induce similar or opposing GESs as the query. Similar GESs suggest similar physiological effects of the corresponding perturbagens. Although several variants of the CMAP algorithm are available in other software packages including Bioconductor, the implementation provided by signatureSearch follows the original description of the authors as closely as possible.

For correlation searches to work, it is important that both the query and reference database contain the same type of gene identifiers. The expected data structure of the query is a matrix with a single numeric column and the gene labels (e.g. Entrez Gene IDs) in the row name slot. For convenience, the correlation-based searches can either be performed with the full set of genes represented in the database or a subset of them. The latter can be useful to focus the computation for the correlation values on certain genes of interest such as a DEG set or the genes in a pathway of interest. For comparing the performance of different GESS methods, it can also be advantageous to subset the genes used for a correlation-based search to same set used in a set-based search, such as the up/down DEGs used in a LINCS GESS. This way the search results of correlation- and set-based methods can be more comparable because both are provided with equivalent information content.

When using the Fisher’s exact test (Upton, 1992) as GES Search (GESS) method, both the query and the database are composed of gene label sets, such as DEG sets.

The Bioconductor gCMAP (Sandmann et al. 2014) package provides access to a related but not identical implementation of the original CMAP algorithm proposed by Lamb et al. (2006). It uses as query a rank transformed GES and the reference database is composed of the labels of up and down regulated DEG sets. This is the opposite situation of the original CMAP method from Lamb et al (2006), where the query is composed of the labels of up and down regulated DEGs and the database contains rank transformed GESs.

Subramanian et al. (2017) introduced a more complex GESS algorithm, here referred to as LINCS. While related to CMAP, there are several important differences among the two approaches. First, LINCS weights the query genes based on the corresponding differential expression scores of the
GESs in the reference database (e.g. LFC or z-scores). Thus, the reference database used by LINCS needs to store the actual score values rather than their ranks. Another relevant difference is that the LINCS algorithm uses a bi-directional weighted Kolmogorov-Smirnov enrichment statistic (ES) as similarity metric.

Value

`gessResult` object, the result table contains the search results for each perturbagen in the reference database ranked by their signature similarity to the query.

Column description

Descriptions of the columns in GESS result tables.

- **pert**: character, perturbagen (e.g. drugs) in the reference database. The treatment/column names of the reference database are organized as `pert__cell__trt_cp` format. The `pert` column in GESS result table contains what stored under the `pert` slot of the column names.
- **cell**: character, acronym of cell type
- **type**: character, perturbation type. In the CMAP/LINCS databases provided by `signatureSearchData`, the perturbation types are currently treatments with drug-like compounds (trt_cp). If required, users can build custom signature database with other types of perturbagens (e.g., gene knock-down or over-expression events) with the provided `build_custom_db` function.
- **trend**: character, up or down when the reference signature is positively or negatively connected with the query signature, respectively.
- **N_upset**: integer, number of genes in the query up set
- **N_downset**: integer, number of genes in the query down set
- **WTCS**: Weighted Connectivity Score, a bi-directional Enrichment Score for an up/down query set. If the ES values of an up set and a down set are of different signs, then WTCS is `(ESup-ESdown)/2`, otherwise, it is 0. WTCS values range from -1 to 1. They are positive or negative for signatures that are positively or inversely related, respectively, and close to zero for signatures that are unrelated.
- **WTCS_Pval**: Nominal p-value of WTCS computed by comparing WTCS against a null distribution of WTCS values obtained from a large number of random queries (e.g. 1000).
- **WTCS_FDR**: False discovery rate of WTCS_Pval.
- **NCS**: Normalized Connectivity Score. To make connectivity scores comparable across cell types and perturbation types, the scores are normalized. Given a vector of WTCS values resulting from a query, the values are normalized within each cell line c and perturbagen type t to obtain NCS by dividing the WTCS value with the signed mean of the WTCS values within the subset of the signatures in the reference database corresponding to c and t.
- **Tau**: Enrichment score standardized for a given database. The Tau score compares an observed NCS to a large set of NCS values that have been pre-computed for a specific reference database. The query results are scored with Tau as a standardized measure ranging from 100 to -100. A Tau of 90 indicates that only 10 stronger connectivity to the query. This way one can make more meaningful comparisons across query results.

Note, there are NAs in the Tau score column, the reason is that the number of signatures in `Qref` that match the cell line of signature `r` (the `TauRefSize` column in the GESS result) is
less than 500, Tau will be set as NA since it is redeemed as there are not large enough samples for computing meaningful Tau scores.

- TauRefSize: Size of reference perturbations for computing Tau.
- NCScst: NCS summarized across cell types. Given a vector of NCS values for perturbagen p, relative to query q, across all cell lines c in which p was profiled, a cell-summarized connectivity score is obtained using a maximum quantile statistic. It compares the 67 and 33 quantiles of NCSp,c and retains whichever is of higher absolute magnitude.
- cor_score: Correlation coefficient based on the method defined in the gess_cor function.
- raw_score: bi-directional enrichment score (Kolmogorov-Smirnov statistic) of up and down set in the query signature
- scaled_score: raw_score scaled to values from 1 to -1 by dividing the positive and negative scores with the maximum positive score and the absolute value of the minimum negative score, respectively.
- effect: Scaled bi-directional enrichment score corresponding to the scaled_score under the CMAP result.
- nSet: number of genes in the GES in the reference database (gene sets) after setting the higher and lower cutoff.
- nFound: number of genes in the GESs of the reference database (gene sets) that are also present in the query GES.
- signed: whether gene sets in the reference database have signs, representing up and down regulated genes when computing scores.
- pval: p-value of the Fisher’s exact test.
- padj: p-value adjusted for multiple hypothesis testing using R’s p.adjust function with the Benjamini & Hochberg (BH) method.
- effect: z-score based on the standard normal distribution.
- LOR: Log Odds Ratio.
- t_gn_sym: character, symbol of the gene encoding the corresponding drug target protein
- MOAss: character, compound MOA annotation from signatureSearch package
- PCIDss: character, compound PubChem CID annotation from signatureSearch package

References

See Also

qSig, gessResult, addGESSannot

Examples

db_path <- system.file("extdata", "sample_db.h5",
 package = "signatureSearch")
library(SummarizedExperiment); library(HDF5Array)
sample_db <- SummarizedExperiment(HDF5Array(db_path, name="assay"))
rownames(sample_db) <- HDF5Array(db_path, name="rownames")
colnames(sample_db) <- HDF5Array(db_path, name="colnames")
get "vorinostat__SKB__trt_cp" signature drawn from sample database
query_mat <- as.matrix(assay(sample_db[,"vorinostat__SKB__trt_cp"]))

################################ CMAP method ##############################
qsig_cmap <- qSig(query=list(
upset=c("230", "5357", "2015", "2542", "1759"),
downset=c("22864", "9338", "54793", "10384", "27000")),
gess_method="CMAP", refdb=db_path)
cmap <- gess_cmap(qSig=qsig_cmap, chunk_size=5000)
result(cmap)

######## Correlation-based GESS method #########
qsig_sp <- qSig(query=query_mat, gess_method="Cor", refdb=db_path)
sp <- gess_cor(qSig=qsig_sp, method="spearman")
result(sp)

################# Fisher's Exact Test #################
qsig_fisher <- qSig(query=query_mat, gess_method="Fisher", refdb=db_path)
fisher <- gess_fisher(qSig=qsig_fisher, higher=1, lower=-1)
result(fisher)

################# gCMAP method ##############################
qsig_gcmap <- qSig(query=query_mat, gess_method="gCMAP", refdb=db_path)
gcmap <- gess_gcmap(qsig_gcmap, higher=1, lower=-1)
result(gcmap)

############### LINCS method #############
qsig_lincs <- qSig(query=list(
upset=c("230", "5357", "2015", "2542", "1759"),
downset=c("22864", "9338", "54793", "10384", "27000")),
gess_method="LINCS", refdb=db_path)
lincs <- gess_lincs(qsig_lincs, sortby="NCS", tau=FALSE)
result(lincs)
Description

The function allows to summarize the ranking scores of selected perturbagens for GESS results across cell types along with cell type classifications, such as normal and tumor cells. In the resulting plot the perturbagens are drugs (along x-axis) and the ranking scores are LINCS’ NCS values (y-axis). For each drug the NCS values are plotted for each cell type as differently colored dots, while their shape indicates the cell type class.

Usage

gess_res_vis(gess_tb, drugs, col, cell_group = "all", ...)

Arguments

gess_tb: tibble in the 'result' slot of the gessResult object, can be extracted via result accessor function

Drugs: character vector of selected drugs

Col: character(1), name of the score column in 'gess_tb', e.g., "NCS" if the result table is from LINCS method. Can also be set as "rank", this way it will show the ranks of each drug in different cell types.

Cell_group: character(1), one of "all", "normal", or "tumor". If "all", it will show scores of each drug in both tumor and normal cell types. If "normal" or "tumor", it will only show normal or tumor cell types.

... Other arguments passed on to geom_point

Value

plot visualizing GESS results

References

Examples

gr <- gessResult(result=dplyr::tibble(pert=c("p1", "p1", "p2", "p3"),
 cell=c("MCF7", "SKB", "MCF7", "SKB"),
 type=rep("trt_cp", 4),
 NCS=c(1.2, 1, 0.9, 0.6)),
 query=list(up="a", down="b"),
 gess_method="LINCS", refdb="path/to/refdb")
gess_res_vis(result(gr), drugs=c("p1", "p2"), col="NCS")
getALLEG

Description
get all entrez gene ID of a specific organism

Usage
getALLEG(organism)

Arguments
organism one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".

Value
entrez gene ID vector

Author(s)
Yu Guangchuang

ggetDb

Description
mapping organism name to annotationDb package name

Usage
ggetDb(organism)

Arguments
organism one of supported organism

Value
annotationDb name

Author(s)
Yu Guangchuang
getSig

Draw GESs from Reference Database

Description
Functionalities used to draw from reference database (e.g. lincs, lincs_expr) GESs of compound treatment(s) in cell types.

Usage

\[
\text{getSig}(\text{cmp}, \text{cell}, \text{refdb})
\]

\[
\text{getDEGSig}(
\text{cmp},
\text{cell},
\text{Nup} = \text{NULL},
\text{Ndown} = \text{NULL},
\text{higher} = \text{NULL},
\text{lower} = \text{NULL},
\text{padj} = \text{NULL},
\text{refdb} = "\text{lincs}"
)
\]

\[
\text{getSPsubSig}(\text{cmp}, \text{cell}, \text{Nup} = 150, \text{Ndown} = 150)
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmp</td>
<td>character vector representing a list of compound name available in refdb for getSig function, or character(1) indicating a compound name (e.g. vorinostat) for other functions</td>
</tr>
<tr>
<td>cell</td>
<td>character(1) or character vector of the same length as cmp argument. It indicates cell type that the compound treated in</td>
</tr>
<tr>
<td>refdb</td>
<td>character(1), one of "lincs", "lincs_expr", "cmap", "cmap_expr", or path to the HDF5 file built from build_custom_db function</td>
</tr>
<tr>
<td>Nup</td>
<td>integer(1). Number of most up-regulated genes to be subsetted</td>
</tr>
<tr>
<td>Ndown</td>
<td>integer(1). Number of most down-regulated genes to be subsetted</td>
</tr>
<tr>
<td>higher</td>
<td>numeric(1), the upper threshold of defining DEGs. At least one of 'lower' and 'higher' must be specified. If Nup or Ndown arguments are defined, it will be ignored.</td>
</tr>
<tr>
<td>lower</td>
<td>numeric(1), the lower threshold of defining DEGs. At least one of 'lower' and 'higher' must be specified. If Nup or Ndown arguments are defined, it will be ignored.</td>
</tr>
<tr>
<td>padj</td>
<td>numeric(1), cutoff of adjusted p-value or false discovery rate (FDR) of defining DEGs if the reference HDF5 database contains the p-value matrix stored in the dataset named as 'padj'. If Nup or Ndown arguments are defined, it will be ignored.</td>
</tr>
</tbody>
</table>
getTreats

Details

The GES could be genome-wide differential expression profiles (e.g. log2 fold changes or z-scores) or normalized gene expression intensity values depending on the data type of refdb or n top up/down regulated DEGs.

Value

- matrix representing genome-wide GES of the query compound(s) in cell
- a list of up- and down-regulated gene label sets
- a numeric matrix with one column representing gene expression values drawn from lincs_expr db of the most up- and down-regulated genes. The genes were subsetted according to z-scores drawn from lincs db.

Examples

```r
refdb <- system.file("extdata", "sample_db.h5", package = "signatureSearch")
vor_sig <- getSig("vorinostat", "SKB", refdb=refdb)
vor_degsig <- getDEGSig(cmp="vorinostat", cell="SKB", Nup=150, Ndown=150, refdb=refdb)
all_expr <- as.matrix(runif(1000, 0, 10), ncol=1)
rownames(all_expr) <- paste0('g', sprintf("%04d", 1:1000))
colnames(all_expr) <- "drug__cell__trt_cp"
de_prof <- as.matrix(rnorm(1000, 0, 3), ncol=1)
rownames(de_prof) <- paste0('g', sprintf("%04d", 1:1000))
colnames(de_prof) <- "drug__cell__trt_cp"
## getSPsubSig internally uses deprof2subexpr function
## sub_expr <- deprof2subexpr(all_expr, de_prof, Nup=150, Ndown=150)
```

getTreats

Get Treatment Information

Description

Get treatment information including perturbation name, cell type and perturbation type from the reference database.

Usage

```r
getTreats(refdb, sep = TRUE)
```

Arguments

- **refdb**: character(1), one of "lincs", "lincs_expr", "cmap" or "cmap_expr" when using the pre-generated CMAP/LINCS databases or path to the HDF5 file generated with the `build_custom_db` function. The details is shown in the 'refdb' argument of the `qSig` function.

- **sep**: TRUE or FALSE, whether to separate the treatments or column names of the reference database into 'pert', 'cell' and 'pert_type'.

Description

Get treatment information including perturbation name, cell type and perturbation type from the reference database.

Usage

```r
getTreats(refdb, sep = TRUE)
```

Arguments

- **refdb**: character(1), one of "lincs", "lincs_expr", "cmap" or "cmap_expr" when using the pre-generated CMAP/LINCS databases or path to the HDF5 file generated with the `build_custom_db` function. The details is shown in the 'refdb' argument of the `qSig` function.

- **sep**: TRUE or FALSE, whether to separate the treatments or column names of the reference database into 'pert', 'cell' and 'pert_type'.

Value

character vector if sep argument is set as FALSE. Tibble object with 'pert', 'cell', 'pert_type' columns if sep is TRUE

Examples

```r
refdb <- system.file("extdata", "sample_db.h5", package="signatureSearch")
treat_info <- getTreats(refdb, sep=TRUE)
```

get_targets

Target Gene/Protein IDs for Query Drugs

Description

This function returns for a set of query drug names/ids the corresponding target gene/protein ids. The required drug-target annotations are from DrugBank, CLUE and STITCH. An SQLite database storing these drug-target interactions based on the above three annotation resources is available in the `signatureSearchData` package.

Usage

```r
get_targets(drugs, database = "all", verbose = TRUE, output = "df")
```

Arguments

- **drugs**: character vector of drug names
- **database**: drug-target annotation resource; A character vector of any combination of 'DrugBank', 'CLUE', STITCH' or 'all'. The target set from the selected resources will be combined. If 'all' is contained in the character vector, target sets from all of the annotation databases (DrugBank, CLUE and STITCH) will be combined.
- **verbose**: TRUE or FALSE, whether to print messages
- **output**: one of "df", "list" or "vector". If setting as "df", the result is in a data.frame format containing target gene symbols separated by semicolon for each drug. If setting as "list", the result is a list of targets for each query drug. If setting as "vector", the result is a character vector of the target set that are collapsed with duplications if different drugs have the same targets.

Value

drug-target annotation in a format defined by the output argument.

See Also

dtlink_db_clue_sti
Examples

data(drugs10)
dt <- get_targets(drugs10)

gmt2h5
Convert GMT to HDF5 File

Description

Read gene sets from large gmt file in batches, convert the gene sets to 01 matrix and write the result to an HDF5 file.

Usage

gmt2h5(gmtfile, dest_h5, by_nset = 5000, overwrite = FALSE)

Arguments

gmtfile character(1), path to gmt file containing gene sets
dest_h5 character(1), path of the hdf5 destination file
by_nset number of gene sets to import in each iteration to limit memory usage
overwrite TRUE or FALSE, whether to overwrite or to append to existing 'h5file'

Value

HDF5 file

Examples

gmt <- system.file("extdata", "test_gene_sets_n4.gmt",
 package="signatureSearch")
h5file <- tempfile(fileext=".h5")
gmt2h5(gmtfile=gmt, dest_h5=h5file, overwrite=TRUE)
Modified GSEA with GO Terms

Description

This modified Gene Set Enrichment Analysis (GSEA) of GO terms supports gene test sets with large numbers of zeros.

Usage

gseGO2(
geneList,
ont = "BP",
OrgDb,
keyType = "SYMBOL",
exponent = 1,
nproc = 1,
nPerm = 1000,
minGSSize = 2,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
verbose = TRUE
)

Arguments

geneList named numeric vector with gene SYMBOLs in the name slot decreasingly ranked by scores in the data slot.
ont one of "BP", "MF", "CC" or "ALL"
OrgDb OrgDb, e.g., "org.Hs.eg.db".
keyType keytype of gene
exponent weight of each step
nproc if not equal to zero, sets BPPARAM to use nproc workers (default = 1)
nPerm permutation numbers
minGSSize integer, minimum size of each gene set in annotation system
maxGSSize integer, maximum size of each gene set in annotation system
pvalueCutoff pvalue cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not

Value

feaResult object
Examples

```r
data(targetList)
# gsego <- gseGO2(geneList=targetList, ont="MF", OrgDb="org.Hs.eg.db",
# pvalueCutoff=1)
# head(gsego)
```

gseKEGG2

Modified GSEA with KEGG

Description

This modified Gene Set Enrichment Analysis (GSEA) of KEGG pathways supports gene test sets with large numbers of zeros.

Usage

```r
gseKEGG2(
geneList, 
organism = "hsa", 
keyType = "kegg", 
exponent = 1,
nproc = 1, 
nPerm = 1000, 
minGSSize = 10, 
maxGSSize = 500, 
pvalueCutoff = 0.05, 
pAdjustMethod = "BH", 
verbose = TRUE, 
readable = FALSE
)
```

Arguments

geneList named numeric vector with gene ids in the name slot decreasingly ranked by scores in the data slot.
organism supported organism listed in URL: http://www.genome.jp/kegg/catalog/org_list.html
keyType one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent weight of each step
nproc if not equal to zero, sets BPPARAM to use nproc workers (default = 1)
nPerm permutation numbers
minGSSize integer, minimum size of each gene set in annotation system
maxGSSize integer, maximum size of each gene set in annotation system
pvalueCutoff pvalue cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
readable TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.

Value

feaResult object

Examples

Gene Entrez id should be used for KEGG enrichment
data(geneList, package="DOSE")
#geneList[100:length(geneList)]=0
#gsekk <- gseKEGG2(geneList=geneList, pvalueCutoff = 1)
#head(gsekk)

Description

This modified Gene Set Enrichment Analysis (GSEA) of Reactome pathways supports gene test sets with large numbers of zeros.

Usage

gseReactome(
geneList,
organism = "human",
exponent = 1,
nPerm = 1000,
minGSSize = 10,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
verbose = TRUE,
readable = FALSE
)

Arguments

geneList order ranked geneList
organism one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
exponent integer value used as exponent in GSEA algorithm.
nPerm integer defining the number of permutation iterations for calculating p-values
minGSSize minimal size of each geneSet for analyzing
maxGSSize: maximal size of each geneSet for analyzing
pvalueCutoff: pvalue Cutoff
pAdjustMethod: pvalue adjustment method
verbose: print message or not TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.
readable: TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.

Value

feaResult object

Examples

Gene Entrez id should be used for Reactome enrichment
data(geneList, package="DOSE")
#geneList[100:length(geneList)]=0
#rc < gseReactome(geneList=geneList, pvalueCutoff=1)

head(x, n = 6L, ...) # S4 method for signature 'gessResult'
head(x, n = 6L, ...) # S4 method for signature 'feaResult'

Arguments

x: an object
n: a single integer. If positive or zero, size for the resulting object is the number of rows for a data frame. If negative, all but the n last number of rows of x.
...: arguments to be passed to or from other methods

Value

data.frame
Examples

gr <- gessResult(result = dplyr::tibble(pert = letters[seq_len(10)],
val = seq_len(10)),
query = list(up = c("g1", "g2"), down = c("g3", "g4")),
gess_method = "LINCS", refdb = "path/to/lincs/db")
head(gr)
fr <- feaResult(result = dplyr::tibble(id = letters[seq_len(10)],
val = seq_len(10)),
organism = "human", ontology = "MF", drugs = c("d1", "d2"),
targets = c("t1", "t2"))
head(fr)
Usage

lincs_pert_info

Format

A tibble object with 8,140 rows and 40 columns.

Examples

Load object
data(lincs_pert_info)
lincs_pert_info

lincs_pert_info2 LINCS 2020 Perturbation Information

Description

It is a tibble containing annotation information of compounds in LINCS 2020 beta database including perturbation id, perturbation name, canonical smiles, Inchi key, compound aliases, target and MOA. The PubChem CID and many other annotations from ChEMBL database were obtained from 2017 LINCS pert info by by left joining with pert_iname.

Usage

lincs_pert_info2

Format

A tibble object with 34419 rows and 48 columns.

Examples

Load object
data(lincs_pert_info2)
lincs_pert_info2
lincs_sig_info LINCS Signature Information

Description

It is a tibble of 3 columns containing treatment information of GESs in the LINCS database. The columns contain the perturbation name, cell type and perturbation type (all of them are compound treatment, trt_cp).

Usage

```
lincs_sig_info
```

Format

A tibble object with 45,956 rows and 3 columns.

Examples

```r
# Load object
data(lincs_sig_info)
head(lincs_sig_info)
```

list2df Named list to data frame

Description

Convert a list with names that have one to many mapping relationships to a data.frame of two columns, one column is names, the other column is the unlist elements

Usage

```
list2df(list, colnames)
```

Arguments

- `list` input list with names slot
- `colnames` character vector of length 2, indicating the column names of the returned data.frame

Value

data.frame

Examples

```r
list <- list("n1"=c("e1", "e2", "e4"), "n2"=c("e3", "e5"))
list2df(list, colnames=c("name", "element"))
```
list_rev

Reverse list

Description
Reverse list from list names to elements mapping to elements to names mapping.

Usage
list_rev(list)

Arguments
list input list with names slot

Value
list

Examples
list <- list("n1"=c("e1", "e2", "e4"), "n2"=c("e1", "e5"))
list_rev(list)

mabsGO
MeanAbs Enrichment Analysis for GO

Description
MeanAbs enrichment analysis with GO terms.

Usage
mabsGO(
geneList,
ont = "BP",
OrgDb,
keyType = "SYMBOL",
nPerm = 1000,
minGSSize = 5,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH"
)
mabsKEGG

MeanAbs Enrichment Analysis for KEGG

Description

MeanAbs enrichment analysis with KEGG pathways.

Usage

```r
mabsKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  nPerm = 1000,
  minGSSize = 5,
  maxGSSize = 500,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  readable = FALSE
)
```
Arguments

geneList named numeric vector with gene/target ids in the name slot decreasingly ranked by scores in the data slot.
organism supported organism listed in URL: http://www.genome.jp/kegg/catalog/org_list.html
keyType one of 'kegg', 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
nPerm permutation numbers
minGSSize integer, minimum size of each gene set in annotation system
maxGSSize integer, maximum size of each gene set in annotation system
pvalueCutoff pvalue cutoff
pAdjustMethod pvalue adjustment method
readable TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.

Value

feaResult object

Examples

Gene Entrez id should be used for KEGG enrichment
data(geneList, package="DOSE")
#geneList[100:length(geneList)]=0
#mk <- mabsKEGG(geneList=geneList, pvalueCutoff = 1)
#head(mk)

mabsReactome

MeanAbs Enrichment Analysis for Reactome

Description

MeanAbs enrichment analysis with Reactome pathways.

Usage

mabsReactome(
geneList,
organism = "human",
nPerm = 1000,
minGSSize = 5,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
readable = FALSE
)
Arguments

- **geneList**: named numeric vector with gene/target ids in the name slot decreasingly ranked by scores in the data slot.
- **organism**: one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
- **nPerm**: permutation numbers
- **minGSSize**: integer, minimum size of each gene set in annotation system.
- **maxGSSize**: integer, maximum size of each gene set in annotation system.
- **pvalueCutoff**: pvalue cutoff
- **pAdjustMethod**: pvalue adjustment method
- **readable**: TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID' column in the FEA result table.

Value

- **feaResult** object

Examples

```r
# Gene Entrez id should be used for Reactome enrichment
data(geneList, package="DOSE")
#geneList[100:length(geneList)]=0
#rc <- mabsReactome(geneList=geneList, pvalueCutoff = 1)
```

matrix2h5

Write Matrix to HDF5 file

Description

Function writes matrix object to an HDF5 file.

Usage

```r
matrix2h5(matrix, h5file, name = "assay", overwrite = TRUE)
```

Arguments

- **matrix**: matrix to be written to HDF5 file, row and column name slots need to be populated.
- **h5file**: character(1), path to the hdf5 destination file.
- **name**: The name of the dataset in the HDF5 file. The default is write the score matrix (e.g. z-score, logFC) to the 'assay' dataset, users could also write the adjusted p-value or FDR matrix to the 'padj' dataset by setting the name as 'padj'.
- **overwrite**: TRUE or FALSE, whether to overwrite or append matrix to an existing 'h5file'.
Value

HDF5 file containing exported matrix

Examples

```r
mat <- matrix(rnorm(12), nrow=3, dimnames=list(
    paste0("r",1:3), paste0("c",1:4)))
h5file <- tempfile(fileext=".h5")
matrix2h5(matrix=mat, h5file=h5file, overwrite=TRUE)
```

meanExpr2h5

Calculate Mean Expression Values of LINCS Level 3 Data

Description

Function calculates mean expression values for replicated samples of LINCS Level 3 data that have been treated by the same compound in the same cell type at a chosen concentration and treatment time. Usually, the function is used after filtering the Level 3 data with `inst_filter`. The results (here matrix with mean expression values) are saved to an HDF5 file. The latter is referred to as the 'lincs_expr' database.

Usage

```r
meanExpr2h5(gctx, inst, h5file, chunksize = 2000, overwrite = TRUE)
```

Arguments

- `gctx` character(1), path to the LINCS Level 3 gctx file
- `inst` tibble, LINCS Level 3 instances after filtering for specific concentrations and times
- `h5file` character(1), path to the destination HDF5 file
- `chunksize` number of columns of the matrix to be processed at a time to limit memory usage
- `overwrite` TRUE or FALSE, whether to overwrite or append data to an existing 'h5file'

Value

HDF5 file, representing the lincs_expr database

Examples

```r
gctx <- system.file("extdata", "test_sample_n2x12328.gctx", package="signatureSearch")
h5file <- tempfile(fileext=".h5")
inst <- data.frame(inst_id=c("ASG001_MCF7_24H:BRD-A79768653-001-01-3:10",
    "CPC012_SKB_24H:BRD-K81418486:10"),
    pert_cell_factor=c('sirolimus__MCF7__trt_cp', 'vorinostat__SKB__trt_cp'))
meanExpr2h5(gctx, inst, h5file, overwrite=TRUE)
```
Description

Function summarizes GESS results on Mode of Action (MOA) level. It returns a tabular representation of MOA categories ranked by their average signature search similarity to a query signature.

Usage

```r
moa_conn(gess_tb, moa_cats = "default", cells = "normal")
```

Arguments

- `gess_tb`: tibble in `gessResult` object
- `moa_cats`: if set as "default", it uses MOA annotations from the CLUE website (https://clue.io). Users can customize it by providing a `list` of character vectors containing drug names and MOA categories as list component names.
- `cells`: one of "normal", "cancer" or "all", or a character vector containing cell types of interest.
 - "all": all cell types in LINCS database;
 - "normal": normal cell types in LINCS database as one group;
 - "tumor": tumor cell types in LINCS database as one group;

Details

Column description of the result table:

- `moa`: Mechanism of Action (MOA)
- `cells`: cell type information
- `mean_rank`: mean rank of drugs in corresponding GESS result for each MOA category
- `n_drug`: number of drugs in each MOA category

Value

data.frame

See Also

`gessResult`

Examples

```r
res_moa <- moa_conn(dplyr::tibble(
  pert=c("vorinostat", "trichostatin-a", "HC-toxin"),
  cell=rep("SKB",3),
  pval=c(0.001,0.02,0.05)))
```
Description

Parse a GCTX file into the R workspace as a GCT object.

Usage

```r
parse_gctx(
  fname,
  rid = NULL,
  cid = NULL,
  set_annot_rownames = FALSE,
  matrix_only = FALSE
)
```

Arguments

- **fname**: character(1), path to the GCTX file on disk
- **rid**: either a vector of character or integer row indices or a path to a grp file containing character row indices. Only these indices will be parsed from the file.
- **cid**: either a vector of character or integer column indices or a path to a grp file containing character column indices. Only these indices will be parsed from the file.
- **set_annot_rownames**: boolean indicating whether to set the rownames on the row/column metadata data.frames. Set this to false if the GCTX file has duplicate row/column ids.
- **matrix_only**: boolean indicating whether to parse only the matrix (ignoring row and column annotations)

Value

gct object

Examples

```r
gctx <- system.file("extdata", "test_sample_n2x12328.gctx",
                      package="signatureSearch")
gct <- parse_gctx(gctx)
```
qSig

Helper Function to Construct a qSig Object

Description

It builds a ‘qSig’ object to store the query signature, reference database and GESS method used for GESS methods.

Usage

qSig(query, gess_method, refdb)

Arguments

- **query**
 - If 'gess_method' is 'CMAP' or 'LINCS', it should be a list with two character vectors named `upset` and `downset` for up- and down-regulated gene labels, respectively. The labels should be gene Entrez IDs if the reference database is a pre-built CMAP or LINCS database. If a custom database is used, the labels need to be of the same type as those in the reference database.
 - If 'gess_method' is 'gCMAP', the query is a matrix with a single column representing gene ranks from a biological state of interest. The corresponding gene labels are stored in the row name slot of the matrix. Instead of ranks one can provide scores (e.g. z-scores). In such a case, the scores will be internally transformed to ranks.
 - If 'gess_method' is 'Fisher', the query is expected to be a list with two character vectors named `upset` and `downset` for up- and down-regulated gene labels, respectively (same as for 'CMAP' or 'LINCS' method). Internally, the up/down gene labels are combined into a single gene set when querying the reference database with the Fisher’s exact test. This means the query is performed with an unsigned set. The query can also be a matrix with a single numeric column and the gene labels (e.g. Entrez gene IDs) in the row name slot. The values in this matrix can be z-scores or LFCs. In this case, the actual query gene set is obtained according to upper and lower cutoffs in the gess_fisher function set by the user.
 - If 'gess_method' is 'Cor', the query is a matrix with a single numeric column and the gene labels in the row name slot. The numeric column can contain z-scores, LFCs, (normalized) gene expression intensity values or read counts.

- **gess_method**
 - one of 'CMAP', 'LINCS', 'gCMAP', 'Fisher' or 'Cor'

- **refdb**
 - character(1), can be one of 'cmap', 'cmap_expr', 'lincs', 'lincs_expr', 'lincs2' when using the CMAP/LINCS databases from the affiliated signatureSearchData package. With 'cmap' the database contains signatures of LFC scores obtained from DEG analysis routines; with 'cmap_expr' normalized gene expression values; with 'lincs' or 'lincs2' z-scores obtained from the DEG analysis methods of the LINCS project; and with 'lincs_expr' normalized expression values.
To use a custom database, it should be the file path to the HDF5 file generated with the `build_custom_db` function, the HDF5 file needs to have the `.h5` extension.

When the `gess_method` is set as `gCMAP` or `Fisher`, it could also be the file path to the HDF5 file converted from the gmt file containing gene sets by using `gmt2h5` function. For example, the gmt files could be from the MSigDB https://www.gsea-msigdb.org/gsea/msigdb/index.jsp or GSKB http://ge-lab.org/#/data.

Value

qSig object

See Also

`build_custom_db`, `signatureSearchData`, `gmt2h5`, `qSig-class`

Examples

```r
db_path <- system.file("extdata", "sample_db.h5", package = "signatureSearch")
qsig_lincs <- qSig(query=list(
  upset=c("230", "5357", "2015", "2542", "1759"),
  downset=c("22864", "9338", "54793", "10384", "27000"),
  gess_method="LINCS", refdb=db_path)
qmat <- matrix(runif(5), nrow=5)
rownames(qmat) <- c("230", "5357", "2015", "2542", "1759")
colnames(qmat) <- "treatment"
qsig_gcmap <- qSig(query=qmat, gess_method="gCMAP", refdb=db_path)
```

qSig-class

Class "qSig"

Description

S4 object named qSig containing query signature information for Gene Expression Signature (GES) searches. It contains slots for query signature, GESS method and path to the GES reference database.

Slots

query If `gess_method` is one of `CMAP` or `LINCS`, this should be a list with two character vectors named `upset` and `downset` for up- and down-regulated gene labels (here Entrez IDs), respectively.

If `gess_method` is `gCMAP`, `Fisher` or `Cor`, a single column matrix with gene expression values should be assigned. The corresponding gene labels are stored in the row name slot of the matrix. The expected type of gene expression values is explained in the help files of the corresponding GESS methods.
rand_query_ES

Generate WTCS Null Distribution with Random Queries

Description

Function computes null distribution of Weighted Connectivity Scores (WTCS) used by the LINCS GESS method for computing nominal P-values.

Usage

rand_query_ES(h5file, N_queries = 1000, dest, write = TRUE)

Arguments

- h5file: character(1), path to the HDF5 file representing the reference database
- N_queries: number of random queries
- dest: path to the output file (e.g. "ES_NULL.txt")
- write: Logical value indicating if results should be written to dest.

Value

File with path assigned to dest

References

See Also

gess_lincs

Examples

db_path = system.file("extdata", "sample_db.h5", package="signatureSearch")
rand <- rand_query_ES(h5file=db_path, N_queries=5, dest="ES_NULL.txt", write=FALSE)
unlink("ES_NULL.txt")
read_gmt

Read in gene set information from .gmt files

Description

This function reads in and parses information from the MSigDB’s .gmt files. Pathway information will be returned as a list of gene sets.

Usage

```r
read_gmt(file, start = 1, end = -1)
```

Arguments

- **file**
 - The .gmt file to be read
- **start**
 - integer(1), read the gmt file from start line
- **end**
 - integer(1), read the gmt file to the end line, the default -1 means read to the end

Details

The .gmt format is a tab-delimited list of gene sets, where each line is a separate gene set. The first column must specify the name of the gene set, and the second column is used for a short description (which this function discards). For complete details on the .gmt format, refer to the Broad Institute’s Data Format’s page http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats.

Value

A list, where each index represents a separate gene set.

Warning

The function does not check that the file is correctly formatted, and may return incorrect or partial gene sets, e.g. if the first two columns are omitted. Please make sure that files are correctly formatted before reading them in using this function.

Examples

```r
gmt_path <- system.file("extdata/test_gene_sets_n4.gmt", package="signatureSearch")
geneSets <- read_gmt(gmt_path)
```
Method to Extract Result Slots

Description

Method extracts tibbles from result slots of feaResult and gessResult objects. They are generated by the GESS and FEA functions defined by signatureSearch, respectively.

Usage

```r
result(x)
```

```r
## S4 method for signature 'feaResult'
result(x)
```

```r
## S4 method for signature 'gessResult'
result(x)
```

Arguments

- `x` gessResult or feaResult object

Value

tibble

Examples

```r
fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
                                        val=seq_len(10)),
                  organism="human", ontology="MF", drugs=c("d1", "d2"),
                  targets=c("t1","t2"))
result(fr)
```

```r
gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
                                        val=seq_len(10)),
                  query=list(up=c("g1","g2"), down=c("g3","g4")),
                  gess_method="LINCS", refdb="path/to/lincs/db")
result(gr)
```
runWF
Run the Entire GESS/FEA Workflow

Description
This function runs the entire GESS/FEA workflow when providing the query drug and cell type, as well as selecting the reference database (e.g. 'cmap' or 'lincs'), defining the specific GESS and FEA methods. In this case, the query GES is drawn from the reference database. The N (defined by the ‘N_gess_drugs’ argument) top ranking hits in the GESS tables were then used for FEA where three different annotation systems were used: GO Molecular Function (GO MF), GO Biological Process (GO BP) and KEGG pathways.

The GESS/FEA results will be stored in a list object in R session. A working environment named by the use case will be created under users current working directory or under other directory defined by users. This environment contains a results folder where the GESS/FEA result tables were written to. The working environment also contains a template Rmd vignette as well as a rendered HTML report, users could make modifications on the Rmd vignette as they need and re-render it to generate their HTML report.

Usage
```r
runWF(
  drug,  
cell,  
refdb,  
gess_method,  
fea_method,  
N_gess_drugs = 100,  
env_dir = ".".,  
tau = TRUE,  
Nup = 150,  
Ndown = 150,  
higher = 1,  
lower = -1,  
method = "spearman",  
pvalueCutoff = 1,  
qvalueCutoff = 1,  
minGSSize = 5,  
maxGSSize = 500,  
runFEA = TRUE,  
GenerateReport = TRUE
)
```

Arguments
- **drug**: character(1) representing query drug name (e.g. vorinostat). This query drug should be included in the refdb
runWF

cell character(1) indicating the cell type that the query drug treated in. Details about cell type options in LINCS database can be found in the cell_info table after load the 'signatureSearch' package and running 'data("cell_info")'.

refdb character(1), one of "lincs", "lincs_expr", "cmap", "cmap_expr", or path to the HDF5 file built from build_custom_db function

gess_method character(1), one of "LINCS", "CORsub", "CORall", "Fisher", "CMAP", "gCMAP". When gess_method is "CORsub" or "CORall", only "lincs_expr" or "cmap_expr" databases are supported.

fea_method character(1), one of "dup_hyperG", "mGSEA", "mabs", "hyperG", "GSEA"

N_gess_drugs number of unique drugs in GESS result used as input of FEA

env_dir character(1), directory under which the result environment located. The default is users current working directory in R session, can be checked via getwd() command in R

tau TRUE or FALSE indicating whether to compute Tau scores if gess_method is set as 'LINCS'

Nup integer(1). Number of most up-regulated genes to be subsetted for GESS query when gess_method is CMAP, LINCS or CORsub

Ndown integer(1). Number of most down-regulated genes to be subsetted for GESS query when gess_method is CMAP, LINCS or CORsub

higher numeric(1), it is defined when gess_method argument is 'gCMAP' or 'Fisher' representing the 'upper' threshold of subsetting genes with a score larger than 'higher'

lower numeric(1), it is defined when gess_method argument is 'gCMAP' or 'Fisher' representing the 'lower' threshold of subsetting genes

method One of 'spearman' (default), 'kendall', or 'pearson', indicating which correlation coefficient to use

pvalueCutoff double, p-value cutoff for FEA result

qvalueCutoff double, qvalue cutoff for FEA result

minGSSize integer, minimum size of each gene set in annotation system

maxGSSize integer, maximum size of each gene set in annotation system

runFEA Logical value indicating if FEA analysis is performed.

GenerateReport Logical value indicating if a report is generated.

Value list object containing GESS/FEA result tables

Examples
drug <- "vorinostat"; cell <- "SKB"
refdb <- system.file("extdata", "sample_db.h5", package="signatureSearch")
env_dir <- tempdir()
wf_list <- runWF(drug, cell, refdb, gess_method="LINCS",
 fea_method="dup_hyperG", N_gess_drugs=10, env_dir=env_dir, tau=FALSE,
 runFEA=FALSE, GenerateReport= FALSE)
set_readable

Set Readable

Description

Mapping `itemID` column in the FEA enrichment result table from Entrez ID to gene Symbol

Usage

```r
set_readable(
  tb,
  OrgDb = "org.Hs.eg.db",
  keyType = "ENTREZID",
  geneCol = "itemID"
)
```

Arguments

- `tb` tibble object, enrichment result table
- `OrgDb` character(1), 'org.Hs.eg.db' for human
- `keyType` character(1), keyType of gene
- `geneCol` character(1), name of the column in `tb` containing gene Entrez ids separated by '/' to be converted to gene Symbol

Value

tibble Object

Examples

```r
data(drugs10)
res <- tsea_dup_hyperG(drugs=drugs10, type="Reactome", pvalueCutoff=1,
qvalueCutoff=1)
res_tb <- set_readable(result(res))
```

show

show method

Description

show `qSig`, `gessResult`, `feaResult` objects
sim_score_grp

Summary Scores by Groups of Cell Types

Description

Function appends two columns (score_column_grp1, score_column_grp2) to GESS result tibble. The appended columns contain cell-summarized scores for groups of cell types, such as normal and tumor cells. The cell-summarized score is obtained the same way as the NCSct scores, that is using a maximum quantile statistic. It compares the 67 and 33 quantiles of scores and retains whichever is of higher absolute magnitude.

Usage

```r
sim_score_grp(tib, grp1, grp2, score_column)
```
Arguments

<table>
<thead>
<tr>
<th>tib</th>
<th>tibble in gessResult object</th>
</tr>
</thead>
<tbody>
<tr>
<td>grp1</td>
<td>character vector, group 1 of cell types, e.g., tumor cell types</td>
</tr>
<tr>
<td>grp2</td>
<td>character vector, group 2 of cell types, e.g., normal cell types</td>
</tr>
<tr>
<td>score_column</td>
<td>character, column name of similarity scores to be grouped</td>
</tr>
</tbody>
</table>

Value
tibble

Examples

```r
gr <- gessResult(result=dplyr::tibble(pert=c("p1", "p1", "p2", "p3"),
cell=c("MCF7", "SKB", "MCF7", "SKB"),
type=rep("trt_cp", 4),
NCS=c(1.2, 1, 0.9, 0.6)),
query=list(up="a", down="b"),
gess_method="LINCS", refdb="path/to/refdb"
)
df <- sim_score_grp(result(gr), grp1="SKB", grp2="MCF7", "NCS")
```

tail
Return the Last Part of an Object

Description

Return the last part of the result table in the `gessResult`, and `feaResult` objects

Usage

```r
## S4 method for signature 'gessResult'
tail(x, n = 6L, ...)
## S4 method for signature 'feaResult'
tail(x, n = 6L, ...)
```

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>an object</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>a single integer. If positive or zero, size for the resulting object is the number of rows for a data frame. If negative, all but the n first number of rows of x.</td>
</tr>
<tr>
<td>...</td>
<td>arguments to be passed to or from other methods</td>
</tr>
</tbody>
</table>

Value
data.frame
Examples

```r
gr <- gessResult(result = dplyr::tibble(pert = letters[seq_len(10)],
                                   val = seq_len(10)),
                  query = list(up = c("g1", "g2"), down = c("g3", "g4")),
                  gess_method = "LINCS", refdb = "path/to/lincs/db")
tail(gr)
fr <- feaResult(result = dplyr::tibble(id = letters[seq_len(10)],
                                        val = seq_len(10)),
                  organism = "human", ontology = "MF", drugs = c("d1", "d2"),
                  targets = c("t1", "t2"))
tail(fr)
```

targetList

Target Sample Data Set

Description

A named numeric vector with Gene Symbols as names. It is the first 1000 elements from the 'targets' slot of the 'mgsea_res' result object introduced in the vignette of this package. The scores represent the weights of the target genes/proteins in the target set of the selected top 10 drugs.

Usage

targetList

Format

An object of class `numeric` of length 1000.

Examples

```
# Load object
data(targetList)
head(targetList)
tail(targetList)
```

tarReduce

Show Reduced Targets

Description

Reduce number of targets for each element of a character vector by replacing the targets that beyond Ntar to '...'.

Usage

tarReduce(vec, Ntar = 5)
vec_char_redu

Arguments

- `vec` character vector, each element composed by a list of targets symbols separated by `';'`
- `Ntar` integer, for each element in the vec, number of targets to show

Value

character vector after reducing

Examples

```r
c(vec <- c("t1; t2; t3; t4; t5; t6", "t7; t8"))
c(vec2 <- tarReduce(vec, Ntar=5))
```

vec_char_redu

Reduce Number of Character

Description

Reduce number of characters for each element of a character vector by replacing the part that beyond Nchar (e.g. 50) character to `'...'`.

Usage

```r
c(vec_char_redu(vec, Nchar = 50))
```

Arguments

- `vec` character vector to be reduced
- `Nchar` integer, for each element in the vec, number of characters to remain

Value

character vector after reducing

Examples

```r
c(vec <- c(strrep('a', 60), strrep('b', 30)))
c(vec2 <- vec_char_redu(vec, Nchar=50))
```
Index

* GCTX parsing functions
 parse_gctx, 60

* classes
 feaResult-class, 31
gessResult-class, 33
qSig-class, 62

* datasets
 cell_info, 11
cell_info2, 12
chembl_moa_list, 12
clue_moa_list, 13
drugs10, 17
lincs_expr_inst_info, 51
lincs_pert_info, 51
lincs_pert_info2, 52
lincs_sig_info, 53
targetList, 71

add_pcid, 8
addGESSannot, 6, 40
addMOA, 7
append2H5, 8

build_custom_db, 9, 11, 38, 43, 44, 62, 63, 67

calcGseaStatBatchCpp, 10

cell_info, 11
cell_info2, 12
cellNtestPlot, 10
chembl_moa_list, 12
clue_moa_list, 13
comp_fea_res, 13
create_empty_h5, 15

dim, 15
dim, feaResult-method (dim), 15
dim, gessResult-method (dim), 15
drug_cell_ranks, 17
drugs, 16
drugs, feaResult, ANY-method (drugs), 16
drugs, feaResult-method (drugs), 16
drugs10, 17
drugs<-(drugs), 16
drugs<-, feaResult-method (drugs), 16
dsea_GSEA, 6, 18
dsea_hyperG, 6
dsea_hyperG (dsea_GSEA), 18
dtlink_db_clue_sti, 45
dtnetplot, 24

enrichGO2, 25
enrichKEGG2, 26
enrichMOA, 28
enrichReactome, 28

feaResult, 15, 22, 23, 30, 50, 55–57, 68, 70
feaResult-class, 30, 31

GCT object, 31
gctx2h5, 32
geom_point, 14, 41
gess_cmap, 5, 34
gess_cor, 5
gess_cor (gess_cmap), 34
gess_fisher, 5
gess_fisher (gess_cmap), 34
gess_gcmap, 5
gess_gcmap (gess_cmap), 34
gess_lincs, 5, 17, 63
gess_lincs (gess_cmap), 34
gess_res_vis, 40
gessResult, 15, 32, 38, 40, 41, 50, 59, 68, 70
gessResult-class, 32, 33
get_targets, 6, 21, 36, 45
getALLEG, 42
getDb, 42
getDEGSig (getSig), 43
getSig, 43
getSPsubSig (getSig), 43
getTreats, 44

73
gmt2h5, 46, 62
GO_DATA_drug, 23
gsG2, 47
gsKEGG2, 48
gsReactome, 49

head, 50
head, feaResult-method(head), 50
head, gessResult-method(head), 50

lincs_expr_inst_info, 51
lincs_pert_info, 51
lincs_pert_info2, 52
lincs_sig_info, 53
list2df, 53
list_rev, 54

mabsGO, 54
mabsKEGG, 55
mabsReactome, 56
matrix2h5, 57
meanExpr2h5, 58
moa_conn, 59

parse_gctx, 31, 60
qSig, 11, 36, 40, 44, 61, 61, 68
qSig-class, 62

rand_query_ES, 63
read_gmt, 64
result, 31, 33, 41, 65
result, feaResult-method(result), 65
result, gessResult-method(result), 65
runWF, 66

set_readable, 68
show, 68
show, feaResult-method(show), 68
show, gessResult-method(show), 68
show, qSig-method(show), 68
signatureSearch
 (signatureSearch-package), 3
signatureSearch-package, 3
signatureSearchData, 45, 62, 63
sim_score_grp, 69

tail, 70
tail, feaResult-method(tail), 70
tail, gessResult-method(tail), 70

targetList, 71
tarReduce, 71
tsea_dup_hyperG, 6
tsea_dup_hyperG (dsea_GSEA), 18
tsea_mabs, 6
tsea_mabs (dsea_GSEA), 18
tsea_mGSEA, 6
tsea_mGSEA (dsea_GSEA), 18

vec_char_redu, 72
visNetwork, 25