Package ‘sechm’

May 4, 2024

Type Package

Title sechm: Complex Heatmaps from a SummarizedExperiment

Version 1.12.0

Description sechm provides a simple interface between SummarizedExperiment objects and the ComplexHeatmap package. It enables plotting annotated heatmaps from SE objects, with easy access to rowData and colData columns, and implements a number of features to make the generation of heatmaps easier and more flexible. These functionalities used to be part of the SEtools package.

Depends R (>= 4.0), SummarizedExperiment, ComplexHeatmap

Imports S4Vectors, seriation, circlize, methods, randomcoloR, stats, grid, grDevices, matrixStats

Suggests BiocStyle, knitr, rmarkdown

biocViews GeneExpression, Visualization

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

BugReports https://github.com/plger/sechm

git_url https://git.bioconductor.org/packages/sechm

git_branch RELEASE_3_19

git_last_commit c95bd5f

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-03

Author Pierre-Luc Germain [cre, aut] (https://orcid.org/0000-0003-3418-4218)

Maintainer Pierre-Luc Germain <pierre-luc.germain@hest.ethz.ch>
Description

Plot a multi-panel heatmap from a list of `SummarizedExperiment-class`.

Usage

```r
crossHm(
  ses,
  features,
  do.scale = TRUE,
  uniqueScale = FALSE,
  assayName = .getDef("assayName"),
  sortBy = seq_along(ses),
  only.common = TRUE,
  cluster_cols = FALSE,
  cluster_rows = is.null(sortBy),
  topperder = NULL,
  hmcols = NULL,
  breaks = .getDef("breaks"),
  gaps_at = .getDef("gaps_at"),
  gaps_row = NULL,
  name = NULL,
  top_annotation = .getDef("anno_columns"),
  left_annotation = .getDef("anno_rows"),
  anno_colors = list(),
)
```
Arguments

ses A (named) list of `SummarizedExperiment-class` objects, with some matching row.names between them.

features A vector of features (i.e. row.names) to plot.

do.scale Logical; whether to scale rows in each SE (default TRUE).

uniqueScale Logical; whether to force the same colorscale for each heatmap.

assayName The name of the assay to use; if multiple names are given, the first available will be used. Defaults to "logcpm", "lognorm".

sortBy Names or indexes of `ses` to use for sorting rows (default all)

only.common Logical; whether to plot only rows common to all SEs (default TRUE).

cluster_cols Logical; whether to cluster columns (default FALSE).

cluster_rows Logical; whether to cluster rows (default TRUE if `do.sortRows=FALSE`, FALSE otherwise).

toporder Optional vector of categories on which to supra-order when sorting rows, or name of a `rowData` column to use for this purpose.

hmcols Colors for the heatmap.

breaks Breaks for the heatmap colors. Alternatively, symmetrical breaks can be generated automatically by setting ‘breaks’ to a numerical value between 0 and 1. The value is passed as the ‘split.prop’ argument to the `getBreaks` function, and indicates the proportion of the points to map to a linear scale, while the more extreme values will be plotted on a quantile scale. ‘breaks=FALSE’ will disable symmetrical scale and quantile capping, while retaining automatic breaks. ‘breaks=1’ will produce a symmetrical scale without quantile capping.

gaps_at Columns of `colData` to use to establish gaps between columns.

gaps_row A named vector according to which rows will be split.

name The title of the heatmap key.

top_annotation Columns of `colData` to use for top annotation.

left_annotation Columns of `rowData` to use for left annotation.

anno_colors List of colors to use for annotation.

show_rownames Whether to show row names (default TRUE if 50 rows or less).

merge_legends Logical; passed to `draw-HeatmapList-method`

show_colnames Whether to show column names (default FALSE).

rel.width Relative width of the heatmaps

... Any other parameter passed to each call of `Heatmap`.
Value

A Heatmap list.

Examples

data("Chen2017", package="sechm")
se1 <- Chen2017[,1:6]
se2 <- Chen2017[,7:15]
se3 <- crossHm(list(se1=se1, se2=se2), row.names(se1)[1:10])

data

Example dataset

Description

A `SummarizedExperiment-class` containing (a subset of) hippocampus RNAseq of mice treated with Forskolin.

Value

a `SummarizedExperiment-class`.

References

getBreaks

Description

Produces symmetrical breaks for a color scale, with the scale steps increasing for large values, which is useful to avoid outliers influencing too much the color scale.

Usage

getBreaks(x, n, split.prop = 0.98, symmetric = TRUE)

Arguments

x

A matrix of log2FC (or any numerical values centered around 0)

n

The desired number of breaks.

split.prop

The proportion of the data points to plot on a linear scale; the remaining will be plotted on a scale with regular frequency per step (quantile).

symmetric

Logical; whether breaks should be symmetric around 0 (default TRUE)
getDEA

Value

A vector of breaks of length = ‘n’

Examples

dat <- rnorm(100, sd = 10)
getBreaks(dat, 10)

getDEA

Description

Extracts (standardized) DEA results from the rowData of an SE object.

Usage

g DEA(se, dea = NULL, homogenize = FALSE)

Arguments

se A SummarizedExperiment-class, with DEAs each saved as a rowData column of ‘se’, with the column name prefixed with "DEA."

dea The optional name of the DEA to extract

homogenize Logical; whether to homogenize the DEA

Value

The DEA data.frame if `dea` is given, otherwise a named list of data.frames.

Examples

loading example SE
data("Chen2017", package="sechm")
this ones doesn't have saved DEAs in the standard format:
getDEA(Chen2017)
getDEGs

Get DEGs from a SE or list of DEA results

Description

Get DEGs from a SE or list of DEA results

Usage

getDEGs(
 x,
 dea = NULL,
 lfc.th = log2(1.3),
 fdr.th = 0.05,
 direction = 0,
 merge = TRUE
)

Arguments

x A ‘SummarizedExperiment’ object with DEA results in rowData, or a list of DEA result data.frames.
dea Which DEA(s) to use (default all). Used only if ‘x’ is a ‘SummarizedExperiment’.
lfc.th Absolute log-foldchange threshold.
fdr.th FDR threshold.
direction If !=0, specifies whether to fetch only upregulated or downregulated features
merge Logical; whether to take the union of DEGs from the different DEAs (when more than one).

Value

A character vector with the significant features, or a list of such vectors.

Examples

loading example SE
data("Chen2017", package="sechm")
this ones doesn't have saved DEAs in the standard format:
getDEGs(Chen2017)
homogenizeDEA

| homogenizeDEA | homogenizeDEA |

Description

Standardizes the outputs of differential expression methods (to an edgeR-like style)

Usage

```r
homogenizeDEA(x)
```

Arguments

- `x` A data.frame containing the results of a differential expression analysis

Value

A standardized data.frame.

log2FC

| log2FC |

Description

Generates log2(foldchange) matrix/assay, eventually on a per-batch fashion.

Usage

```r
log2FC(
  x,
  fromAssay = NULL,
  controls,
  by = NULL,
  isLog = NULL,
  agFun = rowMeans,
  toAssay = "log2FC",
  pseudocount = 1L,
  ndigits = 2
)
```
meltSE

Arguments

x A numeric matrix, or a ‘SummarizedExperiment’ object
fromAssay The assay to use if ‘x’ is a ‘SummarizedExperiment’
controls A vector of which samples should be used as controls for foldchange calculations.
by An optional vector indicating groups/batches by which the controls will be averaged to calculate per-group foldchanges.
isLog Logical; whether the data is log-transformed. If NULL, will attempt to figure it out from the data and/or assay name
agFun Aggregation function for the baseline (default rowMeans)
toAssay The name of the assay in which to save the output. If left to the default value, both a log2FC assay as well as a scaled log2FC assay (scaled by unit-variance, but not centered) will be saved in the object.
pseudocount If the origin assay is not log-transformed, ‘pseudocount’ will be added to the values before calculating a log-transformation. This prevents infinite fold-changes and moderates them.
ndigits Number of digits after the decimal of the log2FC (and scaledLFC).

Value

An object of same class as ‘x’; if a ‘SummarizedExperiment’, will have the additional assay named from ‘toAssay’.

Examples

log2FC(matrix(rnorm(40), ncol=4), controls=1:2)

meltSE

Description

Melts a SE object into a ggplot-ready long data.frame.

Usage

meltSE(
 x,
 features,
 assayName = NULL,
 colDat.columns = NULL,
 rowDat.columns = NULL,
 flatten = TRUE,
 baseDF = TRUE
)
Arguments

- **x**: An object of class `SummarizedExperiment-class`
- **features**: A vector of features (i.e. row.names) to include. Use `features=NULL` to include all.
- **assayName**: The name(s) of the assay(s) to use. If NULL and the assays are named, all of them will be included.
- **colDat.columns**: The colData columns to include (defaults includes all). Use `colDat.columns=NA` in order not to include any.
- **rowDat.columns**: The rowData columns to include (default all). Use `rowData=NA` to not include any.
- **flatten**: Logical, whether to flatten nested data.frames.
- **baseDF**: Logical, whether to return a base data.frame (removing columns containing other objects such as atomic lists). Filtering is applied after flattening.

Value

A data.frame (or a DataFrame).

Examples

data("Chen2017", package="sechm")
head(meltSE(Chen2017,"Fos"))

qualitativeColors

Description

qualitativeColors

Usage

qualitativeColors(names, ...)

Arguments

- **names**: The names to which the colors are to be assigned, or an integer indicating the desired number of colors
- **...**: passed to `randomcoloR::distinctColorPalette`

Value

A vector (eventually named) of colors
resetAllSechmOptions

Description
Resets all package options.

Usage
resetAllSechmOptions()

Value
None

Examples
resetAllSechmOptions()

safescale

Description
Equivalent to 'base::scale', but handling missing values and null variance a bit more elegantly.

Usage
safescale(x, center = TRUE, byRow = FALSE)

Arguments
- x: A matrix.
- center: Logical, whether to center values.
- byRow: Logical, whether to scale by rows instead of columns.

Value
A scaled matrix.

Examples
m <- matrix(rnorm(100), nrow=10)
m.scaled <- safescale(m)
sechm

Description

ComplexHeatmap wrapper for SummarizedExperiment-class.

Usage

sechm(
 se,
 features,
 do.scale = FALSE,
 assayName = NULL,
 name = NULL,
 sortRowsOn = seq_len(ncol(se)),
 cluster_cols = FALSE,
 cluster_rows = is.null(sortRowsOn),
 toporder = NULL,
 hmcols = NULL,
 breaks = .getDef("breaks"),
 gaps_at = NULL,
 gaps_row = NULL,
 left_annotation = NULL,
 right_annotation = NULL,
 top_annotation = NULL,
 bottom_annotation = NULL,
 anno_colors = list(),
 show_rownames = NULL,
 show_colnames = FALSE,
 isMult = FALSE,
 show_heatmap_legend = !isMult,
 show_annotation_legend = TRUE,
 mark = NULL,
 na.col = "white",
 annorow_title_side = ifelse(show_colnames, "bottom", "top"),
 annocol_title_side = "right",
 includeMissing = FALSE,
 sort.method = "MDS_angle",
 ...
)

Arguments

se
 A SummarizedExperiment-class.

features
 A vector of features (i.e. row names of ‘se’). Alternatively, can be a list of
 feature sets, in which case these will be plotted as different row chunks.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>do.scale</td>
<td>Logical; whether to scale rows (default FALSE).</td>
</tr>
<tr>
<td>assayName</td>
<td>An optional vector of assayNames to use. The first available will be used, or the first assay if NULL.</td>
</tr>
<tr>
<td>name</td>
<td>The name of the heatmap, eventually appearing as title of the color scale.</td>
</tr>
<tr>
<td>sortRowsOn</td>
<td>Sort rows by MDS polar order using the specified columns (default all)</td>
</tr>
<tr>
<td>cluster_cols</td>
<td>Whether to cluster columns (default F)</td>
</tr>
<tr>
<td>cluster_rows</td>
<td>Whether to cluster rows; default FALSE if ‘do.sortRows=TRUE’.</td>
</tr>
<tr>
<td>toporder</td>
<td>Optional vector of categories on which to supra-order when sorting rows, or name of a ‘rowData’ column to use for this purpose.</td>
</tr>
<tr>
<td>hmcols</td>
<td>Colors for the heatmap.</td>
</tr>
<tr>
<td>breaks</td>
<td>Breaks for the heatmap colors. Alternatively, symmetrical breaks can be generated automatically by setting ‘breaks’ to a numerical value between 0 and 1. The value is passed as the ‘split.prop’ argument to the <code>getBreaks</code> function, and indicates the proportion of the points to map to a linear scale, while the more extreme values will be plotted on a quantile scale. ‘breaks=FALSE’ will disable symmetrical scale and quantile capping, while retaining automatic breaks. ‘breaks=1’ will produce a symmetrical scale without quantile capping.</td>
</tr>
<tr>
<td>gaps_at</td>
<td>Columns of ‘colData’ to use to establish gaps between columns.</td>
</tr>
<tr>
<td>gaps_row</td>
<td>Passed to the heatmap function; if missing, will be set automatically according to toporder.</td>
</tr>
<tr>
<td>left_annotation</td>
<td>Columns of ‘rowData’ to use for left annotation. Alternatively, an ‘HeatmapAnnotation’ object.</td>
</tr>
<tr>
<td>right_annotation</td>
<td>Columns of ‘rowData’ to use for left annotation. Alternatively, an ‘HeatmapAnnotation’ object.</td>
</tr>
<tr>
<td>top_annotation</td>
<td>Columns of ‘colData’ to use for top annotation. Alternatively, an ‘HeatmapAnnotation’ object. To disable (overriding defaults), use ‘top_annotation=character()’.</td>
</tr>
<tr>
<td>bottom_annotation</td>
<td>Columns of ‘colData’ to use for bottom annotation. Alternatively, an ‘HeatmapAnnotation’ object.</td>
</tr>
<tr>
<td>anno_colors</td>
<td>List of colors to use for annotation.</td>
</tr>
<tr>
<td>show_rownames</td>
<td>Whether to show row names (default TRUE if less than 50 rows to plot).</td>
</tr>
<tr>
<td>show_colnames</td>
<td>Whether to show column names (default FALSE).</td>
</tr>
<tr>
<td>isMult</td>
<td>Logical; used to silence labels when plotting multiple heatmaps</td>
</tr>
<tr>
<td>show_heatmap_legend</td>
<td>Logical; whether to show heatmap legend</td>
</tr>
<tr>
<td>show_annotation_legend</td>
<td>Logical; whether to show the annotation legend.</td>
</tr>
<tr>
<td>mark</td>
<td>An optional vector of gene names to highlight.</td>
</tr>
<tr>
<td>na_col</td>
<td>Color of NA values</td>
</tr>
<tr>
<td>annorow_title_side</td>
<td>Side (top or bottom) of row annotation names</td>
</tr>
</tbody>
</table>
setRowAttr

```r
annocol_title_side
Side (left or right) of column annotation names
includeMissing Logical; whether to include missing features (default FALSE)
sort.method Row sorting method (see `sortRows`)
... Further arguments passed to `Heatmap`
```

Value
A `Heatmap-class`.

Examples
```r
data("Chen2017", package="sechm")
sechm(Chen2017, row.names(Chen2017)[1:10], do.scale=TRUE)
```

setRowAttr

Set rowData attribute of given rows

Description
Set rowData attribute of given rows

Usage
```r
setRowAttr(se, values, name = "cluster", clear = TRUE, other = NA)
```

Arguments
- `se` A `SummarizedExperiment` object
- `values` A named vector of values, where the names correspond to rows of `se`
- `name` The name of the rowData column in which to store the attribute.
- `clear` Logical; whether to clear out any pre-existing such column.
- `other` The value for unspecified rows (default NA)

Value
The modified `se` object.

Examples
```r
data("Chen2017", package="sechm")
Chen2017 <- setRowAttr(Chen2017, c("Arc"=1,"Junb"=1,"Npas4"=2))
```
setSechmOption

Description

Sets a package-wide option for 'sechm'

Usage

setSechmOption(variable, value)

Arguments

variable The name of the variable to set
value The parameter value to save

Value

None

Examples

setSechmOption("hmcols", value=c("blue","black","yellow"))

sortRows

Description

sortRows

Usage

sortRows(
 x,
 z = FALSE,
 toorder = NULL,
 na.rm = FALSE,
 method = "MDS_angle",
 toorder.meth = "before"
)
Arguments

- **x**: A numeric matrix or data.frame.
- **z**: Whether to scale rows for the purpose of calculating order.
- **toporder**: Optional vector of categories (length=nrow(x)) on which to supra-order when sorting rows.
- **na.rm**: Whether to remove missing values and invariant rows.
- **method**: Seriation method; 'MDS_angle' (default) or 'R2E' recommended.
- **toporder.meth**: Whether to perform higher-order sorting 'before' (default) or 'after' the lower-order sorting.

Value

A reordered matrix or data.frame.

Examples

```r
# random data
m <- matrix( round(rnorm(100,mean=10, sd=2)), nrow=10,
              dimnames=list(LETTERS[1:10], letters[11:20]) )

m

sortRows(m)
```

Index

Chen2017 (data), 4
crossHm, 2
data, 4
getBreaks, 3, 4, 12
getDEA, 5
getDEGs, 6
ggplot, 8
Heatmap, 3
homogenizeDEA, 7
log2FC, 7
meltSE, 8
qualitativeColors, 9
resetAllSechmOptions, 10
safescale, 10
sechm, 11
setRowAttr, 13
setSechmOption, 14
sortRows, 13, 14