Package ‘regionalpcs’

March 5, 2024

Title Summarizing Regional Methylation with Regional Principal Components Analysis

Version 1.0.0

Description Functions to summarize DNA methylation data using regional principal components. Regional principal components are computed using principal components analysis within genomic regions to summarize the variability in methylation levels across CpGs. The number of principal components is chosen using either the Marcenko-Pastur or Gavish-Donoho method to identify relevant signal in the data.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://github.com/tyeulalio/regionalpcs

BugReports https://github.com/tyeulalio/regionalpcs/issues

biocViews DNAMethylation, DifferentialMethylation, StatisticalMethod, Software, MethylationArray

Imports dplyr, PCAtools, tibble, GenomicRanges

Suggests knitr, rmarkdown, RMTstat, testthat (>= 3.0.0), BiocStyle, tidyr, minfiData, TxDb.Hsapiens.UCSC.hg19.knownGene, IRanges

Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>= 4.3.0)

LazyData false

git_url https://git.bioconductor.org/packages/regionalpcs

git_branch RELEASE_3_18

git_last_commit 00bdaf5

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18
combine_results

Combine results dataframes across regions

Description

Combine results dataframes across regions

Usage

combine_results(res, df_name)

Arguments

res List of lists; contains summarized region results

df_name String; name of result being combined (sig_pcs or percent_var)

Value

Data Frame containing results

Examples

Create example data for 'sig_pcs' and 'percent_var'
sig_pcs_example <- data.frame(pcs = c("PC1", "PC2"),
 value = c(0.2, 0.4))
percent_var_example <- data.frame(pcs = c("PC1", "PC2"),
 value = c(0.7, 0.3))

Create 'res' list containing both 'sig_pcs' and 'percent_var'
res <- list(region = "Region1", sig_pcs = sig_pcs_example,
 percent_var = percent_var_example)

Example function use: Combine 'sig_pcs' across regions
compute_dimension <- function(x, var_explained, noise_select, pc_method = c("gd", "mp"), verbose = FALSE) {
 dim <- NULL
 for (i in 1:length(var_explained)) {
 if (var_explained[i] > noise_select) {
 dim <- i
 }
 }
 if (verbose) {
 print(paste("Optimal number of PCs: ", dim))
 }
 return(dim)
}

Description
Compute significant dimensions of a matrix using the Marchenko-Pastur or Gavish-Donoho methods

Usage
compute_dimension(
 x,
 var_explained,
 noise_select,
 pc_method = c("gd", "mp"),
 verbose = FALSE
)

Arguments
x A data frame or matrix of methylation values; rows = features, columns = samples
var_explained A numeric vector containing the variance explained by successive PCs, sorted in decreasing order. (Used for PCAtools)
noise_select Numeric scalar specifying the variance of the random noise (Used for PCAtools)
pc_method String indicating the method for estimating dimension; "gd" = Gavish-Donoho, "mp" = Marchenko-Pastur
verbose Boolean indicating whether to print statements while running, default = FALSE

Value
Numeric scalar representing the optimal number of PCs to retain using the specified method

Examples
x <- diag(4)
pca_res <- PCAtools::pca(x) # Run PCA
eig_sq <- pca_res$sdev^2 # Compute variance explained
compute_dimension(x, eig_sq, 1, "gd")
compute_regional_pcs
Compute regional principal components for methylation data

Description

Compute regional principal components for methylation data

Usage

compute_regional_pcs(
 meth,
 region_map,
 pc_method = c("gd", "mp"),
 verbose = FALSE
)

Arguments

meth Data frame of methylation beta values, with CpGs in rows and samples in columns
region_map Data frame mapping CpGs to gene regions
pc_method Method to use for PC computation, either 'gd' (Gavish-Donoho) or 'mp' (Marchenko-Pastur)
verbose Logical, should progress messages be displayed?

Value

A list containing several elements, including the regional PCs, percent variance, and other information

Examples

Create synthetic methylation data
meth_data <- matrix(rnorm(1000), nrow = 100, ncol = 10)
rownames(meth_data) <- paste0("CpG", 1:100)
colnames(meth_data) <- paste0("Sample", 1:10)

Create a synthetic region map
region_map_data <- data.frame(
 region_id = rep(c("Gene1", "Gene2"), each = 50),
 cpg_id = rownames(meth_data)
)

Run the function
compute_regional_pcs(meth_data, region_map_data, pc_method = 'gd')
create_region_map

Create a Region Map Between CpGs and Gene Regions

Description

This function generates a map that assigns CpG sites to gene regions, establishing a linkage based on their genomic coordinates and providing a foundation for subsequent region-specific analyses.

Usage

```r
create_region_map(cpg_gr, genes_gr, verbose = FALSE)
```

Arguments

- **cpg_gr**: A GRanges object containing the genomic positions of CpG sites.
- **genes_gr**: A GRanges object containing the genomic positions of gene regions (e.g., promoters) of interest.
- **verbose**: Boolean; print output statements

Value

A data.frame with mappings between gene IDs and CpG IDs, facilitating associating CpG sites with their corresponding gene regions for downstream analyses.

Examples

```r
library(GenomicRanges)

# Creating dummy GRanges objects for CpG sites and gene regions
cpg_gr <- GRanges(seqnames=c("chr1", "chr1", "chr2"),
                  ranges=IRanges(start=c(100, 200, 150),
                                  end=c(100, 200, 150)))
genes_gr <- GRanges(seqnames=c("chr1", "chr2", "chr2"),
                    ranges=IRanges(start=c(50, 100, 130),
                                   end=c(150, 180, 160)))

# Creating a region map using the function
region_map <- create_region_map(cpg_gr, genes_gr)
```
get_sig_pcs

Get significant principal components

Description

Get significant principal components

Usage

```r
get_sig_pcs(x, pc_method = c("mp", "gd"), verbose = FALSE)
```

Arguments

- **x**: A data frame or matrix of methylation values; rows = features, columns = samples
- **pc_method**: String indicating the method for estimating dimension; "gd" = Gavish-Donoho (default), "mp" = Marchenko-Pastur
- **verbose**: Boolean; print output statements

Value

List containing four elements; sig_pcs = significant PCs, percent_var = percent variance explained, loadings = PC loadings, est_dim = estimated dimension

Examples

```r
x <- diag(4)
get_sig_pcs(x, "gd")
```

summarize_region

Summarize a region using regional principal components

Description

Summarize a region using regional principal components

Usage

```r
summarize_region(region, region_map, meth, pc_method, verbose = FALSE)
```
Arguments

- **region**: String; name of region being processed
- **region_map**: Data frame; Mapping of CpGs to regions, column 1 should be regions, column 2 should be CpGs with the same names as the rows of `meth`
- **meth**: Data frame or matrix; Methylation values to summarize; rows=CpGs, columns=samples
- **pc_method**: String; indicating the method for estimating dimension; "gd"=Gavish-Donoho (default), "mp"=Marchenko-Pastur
- **verbose**: Boolean; print output statements

Value

- list containing PC results

Examples

```r
# Create the region map with just one region containing 10 CpGs
region_map <- data.frame(region_id = rep(1, 10), cpg_id = seq(1, 10))

# Create methylation data frame
set.seed(123)
meth <- as.data.frame(matrix(runif(10 * 20, min = 0, max = 1), nrow = 10))
rownames(meth) <- seq(1, 10)

# Call the function
summarize_region(1, region_map, meth, 'gd')
```
Index

combine_results, 2
compute_dimension, 3
compute_regional_pcs, 4
create_region_map, 5

get_sig_pcs, 6

summarize_region, 6