Package ‘rawrr’

May 4, 2024

Type Package
Title Direct Access to Orbitrap Data and Beyond
Version 1.12.0
Depends R (>= 4.1)
Imports grDevices, graphics, stats, utils
Suggests BiocStyle (>= 2.5), ExperimentHub, knitr, protViz (>= 0.7),
 markdown, tartare (>= 1.5), testthat
Description This package wraps the functionality
 of the RawFileReader .NET assembly. Within the R environment,
 spectra and chromatograms are represented by S3 objects.
 The package provides basic functions to download and install
 the required third-party libraries.
 The package is developed, tested, and used at the Functional
 Genomics Center Zurich, Switzerland.
License GPL-3
SystemRequirements mono-runtime 4.x or higher (including System.Data
 library) on Linux/macOS, .Net Framework (>= 4.5.1) on Microsoft
 Windows.
URL https://github.com/fgcz/rawrr/
BugReports https://github.com/fgcz/rawrr/issues
Encoding UTF-8
NeedsCompilation no
RoxygenNote 7.3.1
biocViews MassSpectrometry, Proteomics, Metabolomics, Infrastructure,
 Software
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/rawrr
git_branch RELEASE_3_19
git_last_commit e4fed44
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-03
Author Christian Panse [aut, cre] (<https://orcid.org/0000-0003-1975-3064>),
 Tobias Kockmann [aut] (<https://orcid.org/0000-0002-1847-885X>)
Maintainer Christian Panse <cp@fgcz.ethz.ch>

Contents

rawrr-package .. 3
.checkDllInMonoPath .. 3
.thermofisherLsmsUrl ... 4
auc.rawrrChromatogram .. 4
basePeak ... 5
buildRawrrExe .. 5
dependentScan .. 6
faimsVoltageOn .. 7
filter ... 7
installRawFileReaderDLLs ... 8
installRawrrExe .. 9
is.rawrrChromatogram ... 10
is.rawrrSpectrum ... 11
is.rawrrSpectrumSet .. 11
makeAccessor .. 12
massRange .. 12
masterScan ... 13
new_rawrrSpectrum .. 14
plot.rawrrChromatogram .. 15
plot.rawrrChromatogramSet .. 15
plot.rawrrSpectrum ... 16
print.rawrrSpectrum .. 17
rawrrAssemblyPath ... 18
rawrrSpectrum .. 18
readChromatogram .. 19
readFileHeader ... 21
readIndex ... 22
readSpectrum ... 22
readTrailer .. 25
sampleFilePath .. 26
scanNumber ... 27
summary.rawrrChromatogram 27
summary.rawrrSpectrum ... 28
tic .. 29
validate_rawrrIndex .. 29
validate_rawrrSpectrum .. 30

Index 31
Description

This package wraps the functionality of the RawFileReader .NET assembly. Within the R environment, spectra and chromatograms are represented by S3 objects. The package provides basic functions to download and install the required third-party libraries. The package is developed, tested, and used at the Functional Genomics Center Zurich, Switzerland.

Author(s)

Maintainer: Christian Panse <cp@fgcz.ethz.ch> (ORCID)
Authors:
 • Tobias Kockmann <tobias.kockmann@fgcz.ethz.ch> (ORCID)

See Also

Useful links:
 • https://github.com/fgcz/rawrr/
 • Report bugs at https://github.com/fgcz/rawrr/issues

Description

Check if a file is contained in the environment variable MONO_PATH.

Usage

.checkDllInMonoPath(dll = "ThermoFisher.CommonCore.Data.dll")

Arguments

dll a file name.

Value

a boolean
auc.rawrrChromatogram

.thermofisherlsmsUrl *URL for Thermo Fisher .NET assemblies*

Description

URL for Thermo Fisher .NET assemblies

Usage

.thermofisherlsmsUrl()

Value

an URL

auc.rawrrChromatogram *deriving area under the curve (AUC)*

Description

deriving area under the curve (AUC)

Usage

auc.rawrrChromatogram(x)

Arguments

x
an rawrrChromatogram object contains x$times and x$intensities. x$times is assumed to be in minutes.

Value

A numeric value.
basePeak

Base peak of a spectrum

Description

Base peak of a spectrum

Usage

\[\text{basePeak}(x) \]

Arguments

- \(x \) A rawrrSpectrum object

Value

A double vector of length two. The first component is the base peak position (m/z). The second component is the base peak intensity.

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1)
basedPeak(S[[1]])
```

buildRawrrExe

Build rawrr.exe console application.

Description

Builds rawrr.exe file from C# source code requiring xbuild or msbuild tools. The console application rawrr.exe is used by the package’s reader functions through a system2 call.

Usage

\[\text{buildRawrrExe}() \]

Details

The rawrr package implementation consists of two language layers, the top R layer and the hidden C# layer. Specifically, R functions requesting access to data stored in binary raw files invoke compiled C# wrapper methods using a system2 call. Calling a wrapper method typically results in the execution of methods defined in the RawFileReader dynamic link library provided by Thermo Fisher Scientific. Our precompiled wrapper methods are bundled in the rawrr.exe executable file (.NET assembly) and shipped with the released R package. Running rawrr.exe requires the https://www.mono-project.com/ environment on non-Microsoft operating systems. Mono is a
cross platform, open source .NET framework. On Microsoft Windows the Microsoft .NET framework is typically already installed and sufficient. Our package also contains the C# source code `rawrr.cs`. In order to return extracted data back to the R layer we use file I/O. More specifically, the extracted information is written to a temporary location on the harddrive, read back into memory and parsed into R objects.

Value

the return value of the `system2` command.

Author(s)

Tobias Kockmann, Christian Panse <cp@fgcz.ethz.ch>, 2021

References

- https://www.mono-project.com/docs/advanced/assemblies-and-the-gac/
- https://planetorbitrap.com/rawfilereader
- doi:10.1021/acs.jproteome.0c00866

See Also

`installRawrrExe` and `installRawFileReaderDLLs`

dependentScan

Retrieve dependent scan(s) of a scan listed in scan index

Description

Retrieve dependent scan(s) of a scan listed in scan index

Usage

```r
dependentScan(x, scanNumber)
```

Arguments

- `x` A scan index returned by `readIndex`.
- `scanNumber` The scan number that should be inspected for dependent scans.

Value

The scan number of the dependent scan(s).
faimsVoltageOn

Examples

```r
Idx <- readIndex(rawfile = sampleFilePath())
dependentScan(Idx, scanNumber = 1)
```

Description

Is FAIMS Voltage on?

Usage

```r
faimsVoltageOn(x)
```

Arguments

- `x` A rawrrSpectrum object

Value

A boolean

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1:10)
try(faimsVoltageOn(S[[1]]))
```

filter

determine scan numbers which match a specified filter

Description

determine scan numbers which match a specified filter

Usage

```r
filter(rawfile, filter = "ms", precision = 10, tmpdir = tempdir())
```

Arguments

- `rawfile` the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.
- `filter` scan filter string, e.g., `ms` or `ms2`
- `precision` mass precision, default is 10.
- `tmpdir` defines the directory used to store temporary data generated by the .NET assembly `rawrr.exe`. The default uses the output of `tempdir()`.
Value

a vector of integer values.

installRawFileReaderDLLs

Download and install the New RawFileReader from Thermo Fisher Scientific .Net assemblies in the directory provided by `rawrrAssemblyPath()`.

Usage

`installRawFileReaderDLLs(sourceUrl = .thermofisher1smsUrl(), ...)`

Arguments

- **sourceUrl** url of New RawFileReader from Thermo Fisher Scientific assemblies.
- **...** other parameter for `download.file`

Details

The console application assembly `rawrr.exe` requires three assemblies:

- `ThermoFisher.CommonCore.Data.dll`,
- `ThermoFisher.CommonCore.MassPrecisionEstimator.dll`, and

The `rawrr.exe` assembly can be built from C# source code by using the `msbuild` tool shipped by the https://www.mono-project.com or by Microsoft’s .NET SDK https://dotnet.microsoft.com on Linux, Microsoft, and macOS.

If no build tool and C# compiler (`csc` or `msc`) are available or the build process fails, you can download `rawrr.exe` assembly from the authors’ site.

Value

An (invisible) vector of integer code, 0 for success and non-zero for failure. For the "wget" and "curl" methods this is the status code returned by the external program.

Author(s)

Christian Panse <cp@fgcz.ethz.ch>, 2021
installRawrrExe

References

- https://www.mono-project.com/docs/advanced/assemblies-and-the-gac/
- https://planetorbitrap.com/rawfilereader
- doi:10.1021/acs.jproteome.0c00866

See Also

buildRawrrExe and installRawrrExe

Examples

to install all assemblies

rawrr::installRawFileReaderDLLs()
rawrr::buildRawrrExe() || rawrr::installRawrrExe()

installRawrrExe Download and install the rawrr.exe console application

Description

downloads and installs the rawrr.exe .Net assembly in the directory provided by rawrrAssemblyPath().

Usage

installRawrrExe(
 sourceUrl = "https://github.com/fgcz/rawrr/releases/download/1.9.2/rawrr.1.9.2.exe",
 ...
)

Arguments

 sourceUrl url of rawrr.exe assembly.
 ... other parameter for download.file.

Details

The console application rawrr.exe is used by the package’s reader functions through a system2 call.

Value

An integer code, 0 for success and non-zero for failure. For the "wget" and "curl" methods this is
the status code returned by the external program.
is.rawrrChromatogram

Function to check if an object is an instance of class rawrrChromatogram

Description

Function to check if an object is an instance of class rawrrChromatogram

Usage

is.rawrrChromatogram(x)

Arguments

x x any R object to be tested.

Value

TRUE or FALSE

Author(s)

Examples

rawfile <- sampleFilePath()
C <- readChromatogram(rawfile, mass = 445.1181, tol = 10)
is.rawrrChromatogram(C[[1]])
is.rawrrSpectrum

Function to check if an object is an instance of class rawrrSpectrum

Description
Function to check if an object is an instance of class rawrrSpectrum

Usage

is.rawrrSpectrum(x)

Arguments

x any R object to be tested.

Value

TRUE or FALSE

Examples

S <- rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:10)
rawrr::is.rawrrSpectrum(S[[1]])

is.rawrrSpectrumSet

Function to check if an object is an instance of class rawrrSpectrumSet

Description
Function to check if an object is an instance of class rawrrSpectrumSet

Usage

is.rawrrSpectrumSet(x)

Arguments

x any R object to be tested.

Value

TRUE or FALSE

Examples

rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:10) |>
rawrr::is.rawrrSpectrumSet()
Description

Make accessor function for key value pair returned by RawFileReader

Usage

makeAccessor(key, returnType = "integer")

Arguments

key
An object name found in instance of class rawrrSpectrum

returnType
The type used for casting of values

Details

This function factory creates accessor functions for class rawrrSpectrum.

Value

An accessor function

Author(s)

Tobias Kockmann, 2020

Examples

S <- readSpectrum(rawfile = sampleFilePath(), 1:10)
maxIonTime <- makeAccessor(key = "Max. Ion Time (ms):", returnType = "double")
maxIonTime(S[[1]])

Description

Acquisition/spectrum range of spectrum

Usage

massRange(x)
Arguments

- `x` A `rawrrSpectrum` object

Value

A double vector of length two. The first component is the start m/z, the second is the stop m/z value used by the detector during data acquisition. Also referred to as scan range.

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1)
massRange(S[[1]])
```

masterScan

Retrieve master scan of scan listed in scan index

Description

Retrieve master scan of scan listed in scan index

Usage

```r
masterScan(x, scanNumber)
```

Arguments

- `x` A scan index returned by `readIndex`.
- `scanNumber` The scan number that should be inspected for the presence of a master scan.

Value

Returns the scan number of the master scan or NA if no master scan exists.

Examples

```r
rawrr::sampleFilePath() |> rawrr::readIndex() |> rawrr::masterScan(scanNumber = 1)
```
new_rawrSpectrum

Create instances of class `rawrSpectrum`

Description

Developer function.

Usage

```r
new_rawrSpectrum(
  scan = numeric(),
  massRange = numeric(),
  scanType = character(),
  StartTime = numeric(),
  centroidStream = logical(),
  mZ = numeric(),
  intensity = numeric()
)
```

Arguments

- `scan` scan number
- `massRange` Mass range covered by spectrum
- `scanType` Character string describing the scan type.
- `StartTime` Retention time in minutes
- `centroidStream` Logical indicating if centroided data is available
- `mZ` m/z values
- `intensity` Intensity values

Value

Object of class `rawrSpectrum`

Author(s)

plot.rawrrChromatogram

Description

Plot rawrrChromatogram objects

Usage

S3 method for class 'rawrrChromatogram'
plot(x, legend = TRUE, ...)

Arguments

x A rawrrChromatogram object to be plotted.
legend Should legend be printed?
... Passes additional arguments.

Value

This function creates a plot.

Author(s)

Examples

rawfile <- sampleFilePath()
C <- readChromatogram(rawfile, mass = 445.1181, tol = 10)
plot(C[[1]])

plot.rawrrChromatogramSet

Description

Plot rawrrChromatogramSet objects

Usage

S3 method for class 'rawrrChromatogramSet'
plot(x, diagnostic = FALSE, ...)

S3 method for class 'rawrrChromatogram'
plot(x, legend = TRUE, ...)

S3 method for class 'rawrrChromatogramSet'
plot(x, diagnostic = FALSE, ...)

S3 method for class 'rawrrChromatogram'
plot(x, legend = TRUE, ...)

S3 method for class 'rawrrChromatogramSet'
plot(x, diagnostic = FALSE, ...)

S3 method for class 'rawrrChromatogram'
plot(x, legend = TRUE, ...)

S3 method for class 'rawrrChromatogramSet'
plot(x, diagnostic = FALSE, ...)
Arguments

- **x**: A `rawrrChromatogramSet` object to be plotted.
- **diagnostic**: Should diagnostic legend be shown?
- ...: Passes additional arguments.

Value

This function creates a plot.

Author(s)

print.rawrrSpectrum

Details

plot.rawrrSpectrum is a low level function that calls base::plot for plotting rawrrSpectrum objects. It passes all additional arguments to plot().

Is usually called by method dispatch.

Value

This function creates a plot.

Author(s)

print.rawrrSpectrum

Print method imitate the look and feel of Thermo Fisher Scientific FreeStyle’s output

Description

Print method imitate the look and feel of Thermo Fisher Scientific FreeStyle’s output

Usage

S3 method for class 'rawrrSpectrum'
print(x, ...)

Arguments

x an rawrrSpectrum object.

... Arguments to be passed to methods.

Value

This function creates a print message.

Author(s)

rawrrAssemblyPath
Derives the path where all .NET assemblies are stored.

Description
Derives the path where all .NET assemblies are stored.

Usage
`rawrrAssemblyPath()`

Value
`path`

See Also
`installRawFileReaderDLLs` and `installRawrrExe`

Examples
`rawrrAssemblyPath()`

rawrrSpectrum
Create rawrrSpectrum objects

Description
High-level constructor for instances of class `rawrrSpectrum`, also named helper function. Currently, mainly to support testing and for demonstration.

Usage
`rawrrSpectrum(sim = "TESTPEPTIDE")`

Arguments
- `sim`
 Either `example_1` or `TESTPEPTIDE`

Value
Function returns a validated `rawrrSpectrum` object

Author(s)
Examples

plot(rawrSpectrum(sim = "TESTPEPTIDE"))
rawrSpectrum(sim = "example_1")

Description

Extracts chromatographic data from a raw file.

Usage

readChromatogram(
 rawfile,
 mass = NULL,
 tol = 10,
 filter = "ms",
 type = "xic",
 tmpdir = tempdir()
)

Arguments

 rawfile the name of the raw file containing the mass spectrometry data from the Thermo
 Fisher Scientific instrument.
 mass a vector of mass values iff type = 'xic'.
 tol mass tolerance in ppm iff type = 'xic'.
 filter defines the scan filter, default is filter="ms" if a wrong filter is set the function
 will return NULL and draws a warning.
 type c(xic, bpc, tic) for extracted ion, base peak or total ion chromatogram.
 tmpdir defines the directory used to store temporary data generated by the .NET assembly
 rawrr.exe. The default uses the output of tempdir().

Details

Chromatograms come in different flavors but are always signal intensity values as a function of

time. Signal intensities can be point estimates from scanning detectors or plain intensities from

non-scanning detectors, e.g., UV trace. Scanning detector (mass analyzers) point estimates can be
defined in different ways by, for instance, summing all signals of a given spectrum (total ion chro-

matogram or TIC), or by extracting signal around an expected value (extracted ion chromatogram =

XIC), or by using the maximum signal contained in a spectrum (base peak chromatogram = BPC).

On top, chromatograms can be computed from pre-filtered lists of scans. A total ion chromatogram

(TIC), for instance, is typically generated by iterating over all MS1-level scans.
Value
chromatogram object(s) containing of a vector of times and a corresponding vector of intensities.

Author(s)

References
Automated quality control sample 1 (autoQC01) analyzed across different Thermo Scientific mass spectrometers, MSV000086542.

See Also
- https://CRAN.R-project.org/package=protViz
- https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000086542

Examples

Example 1: not meaningful but proof-of-concept
(rawfile <- rawrr::sampleFilePath())

rawrr::readChromatogram(rawfile, mass=c(669.8381, 726.8357), tol=1000) |> plot()
rawrr::readChromatogram(rawfile, type='bpc') |> plot()
rawrr::readChromatogram(rawfile, type='tic') |> plot()

Example 2: extract iRT peptides
if (require(ExperimentHub) & require(protViz)){
iRTpeptide <- c("LGGNEQVTR", "YILAGVENSK", "GTFIIDPGGVR", "GTFIIDPAAVIR", "GAGSSEPVTGLDAK", "TPVISGFPYEYR", "VEATFGVDESNAK", "TPYITGAPYEYR", "DGLDAASYYAPVR", "ADVTPADFSEWSK", "LFLQFGAQGSPFLK")

fetch via ExperimentHub
library(ExperimentHub)
eh <- ExperimentHub::ExperimentHub()
EH4547 <- normalizePath(eh[['EH4547']])

(rawfile <- paste0(EH4547, ".raw"))
if (!file.exists(rawfile)){
 file.link(EH4547, rawfile)
}
op <- par(mfrow=c(2,1))
readChromatogram(rawfile, type='bpc') |> plot()
readChromatogram(rawfile, type='tic') |> plot()
par(op)
derive [2H+] ions
((protViz::parentIonMass(iRTpeptide) + 1.008) / 2) |> readChromatogram(rawfile=rawfile) |> plot()
}

Description

This function extracts the meta information from a given raw file.

Usage

```r
readFileHeader(rawfile)
```

Arguments

- **rawfile**

 the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.

Value

A list object containing the following entries: RAW file version, Creation date, Operator, Number of instruments, Description, Instrument model, Instrument name, Serial number, Software version, Firmware version, Units, Mass resolution, Number of scans, Number of ms2 scans, Scan range, Time range, Mass range, Scan filter (first scan), Scan filter (last scan), Total number of filters, Sample name, Sample id, Sample type, Sample comment, Sample vial, Sample volume, Sample injection volume, Sample row number, Sample dilution factor, or Sample barcode.

Author(s)

References

Examples

```r
rawrr::sampleFilePath() |> readFileHeader()
```
readIndex

Read scan index

Usage

readIndex(rawfile)

Arguments

rawfile the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.

Value

returns a data.frame with the column names scan, scanType, StartTime, precursorMass, MSOrder, charge, masterScan, and dependencyType of all spectra.

Author(s)

Tobias Kockmann and Christian Panse <cp@fgz.ethz.ch>, 2020, 2021

Examples

Idx <- rawrr::sampleFilePath() |> rawrr::readIndex()
table(Idx$scanType)
plot(Idx$StartTime, Idx$precursorMass, col=as.factor(Idx$charge), pch=16)
table(Idx$MSOrder)

readSpectrum

Reads spectral data from a raw file.

Description

The function derives spectra of a given raw file and a given vector of scan numbers.

Usage

readSpectrum(
 rawfile,
 scan = NULL,
 tmpdir = tempdir(),
 validate = FALSE,
 mode = ""
)
Arguments

- **rawfile**
 - the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.
- **scan**
 - a vector of requested scan numbers.
- **tmpdir**
 - defines the directory used to store temporary data generated by the .NET assembly rawrr.exe. The default uses the output of `tempdir()`.
- **validate**
 - boolean default is `FALSE`.
- **mode**
 - if mode = "barebone" only mZ (centroidStream.Masses), intensity (centroidStream.Intensities), pepmass, StartTime and charge state is returned. As default mode is ".".

Details

All mass spectra are recorded by scanning detectors (mass analyzers) that log signal intensities for ranges of mass to charge ratios (m/z), also referred to as position. These recordings can be of continuous nature, so-called profile data (p), or appear centroided (c) in case discrete information (tuples of position and intensity values) are sufficient. This heavily compacted data structure is often called a peak list. In addition to signal intensities, a peak list can also cover additional peak attributes like peak resolution (R), charge (z), or local noise estimates. In short, the additional attributes further described the nature of the original profile signal or help to group peak lists with respect to their molecular nature or processing history. A well-known example is the assignment of peaks to peak groups that constitute isotope patterns (M, M+1, M+2, ...). The names of objects encapsulated within `rawrrSpectrum` instances are keys returned by the Thermo Fisher Scientific New RawFileReader API and the corresponding values become data parts of the objects, typically vectors.

Value

- a nested list of `rawrrSpectrum` objects containing more than 50 values of scan information, e.g., the charge state, two vectors containing the mZ and its corresponding intensity values or the AGC information, mass calibration, ion optics ...

Author(s)

- Tobias Kockmann and Christian Panse <cp@fgz.ethz.ch> 2018, 2019, 2020, 2021

References

- C# code snippets of the NewRawfileReader library https://planetorbitrap.com/rawfilereader.
- rawrr: doi:10.1021/acs.jproteome.0c00866
- Universal Spectrum Explorer: https://www.proteomicsdb.org/use/ doi:10.1021/acs.jproteome.1c00096

See Also

- https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000086542
Examples

Example 1
S <- rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:9)
S[[1]]
names(S[[1]])
plot(S[[1]])

Example 2 - find best peptide spectrum match using the |> pipe operator
fetch via ExperimentHub
if (require(ExperimentHub) & require(protViz)){
eh <- ExperimentHub::ExperimentHub()
EH4547 <- normalizePath(eh[["EH4547"]])

(rawfile <- paste0(EH4547, ".raw"))
if (!file.exists(rawfile)){
 file.link(EH4547, rawfile)
}
}

GAG <- "GAGSSEPVTGLDAK"

.bestPeptideSpectrumMatch <- function(rawfile, sequence="GAGSSEPVTGLDAK"){
 readIndex(rawfile) |>
 subset(abs((1.008 + (protViz::parentIonMass(sequence) - 1.008) / 2) -
 precursorMass) < 0.001, select = scan) |>
 unlist() |>
 readSpectrum(rawfile = rawfile) |>
 lapply(function(x) {
 y <- protViz::psm(sequence = GAG, spec=x, plot=FALSE);
 y$scan <- x$scan; y
 }) |>
 lapply(FUN= function(x){
 score <- sum(abs(x$mZ.Da.error) < 0.01);
 cbind(scan=x$scan, score=score)
 }) |>
 (function(x) as.data.frame(Reduce(rbind, x))()) |>
 subset(score > 0) |>
 (function(x) x[order(x$score, decreasing = TRUE), 'scan'])() |>
 head(1)
}

start_time <- Sys.time()
bestMatch <- .bestPeptideSpectrumMatch(rawfile, GAG) |>
 rawrr::readSpectrum(rawfile=rawfile) |>
 lapply(function(x) protViz::peakplot(peptideSequence = GAG, x))
end_time <- Sys.time()
end_time - start_time

Example 3
using proteomicsdb \doi{10.1101/2020.09.08.287557}
through https://www.proteomicsdb.org/use/

.UniversalSpectrumExplorer <- function(x, sequence){
 m <- protViz::psm(sequence, x)
 cat(paste(x$mZ[m$idx], "t", x$intensity[m$idx]), sep = "n")
}

rawrr::readSpectrum(rawfile=rawfile, 11091) |> lapply(function(x).UniversalSpectrumExplorer(x, sequence = GAG))

readTrailer

readTrailer

Read and extract scan trailer from TFS raw files.

Description

Read and extract scan trailer from TFS raw files.

Usage

readTrailer(rawfile, label = NULL)

Arguments

rawfile the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.

label if NULL; the function scans for all available labels.

Value

an vector of trailers or values of a given trailer. Of note, the values are usually returned as a character.

Examples

rawrr::sampleFilePath() |> rawrr:::readTrailer()
rawrr::sampleFilePath() |> rawrr:::readTrailer("AGC:" |> head()
Description

The binary example file `sample.raw`, shipped with the package, contains 574 Fourier-transformed Orbitrap spectra (FTMS) recorded on a Thermo Fisher Scientific Q Exactive HF-X. The mass spectrometer was operated in line with a nano electrospray source (NSI) in positive mode (+). All spectra were written to disk after applying centroiding (c) and lock mass correction.

Usage

```r
sampleFilePath()
```

Details

Thermo Fisher Scientific Q Exactive HF-X raw file of size 1.5M bytes and checksum MD5 (`sample.raw`) = fe67058456c79af7442316c474d20e96. Additional raw data for demonstration and extended testing is available through MSV000086542 and the `tartare` package. **Lions love raw meat!**

Value

`sampleFilePath()`

Author(s)

References

- Bioconductor `tartare` package.
- Automated quality control sample 1 (autoQC01) analyzed across different Thermo Fisher Scientific mass spectrometers, MSV000086542.

Examples

```r
sampleFilePath()
```
scanNumber

Accessor function for scan number of rawrrSpectrum objects

Description
Accessor function for scan number of rawrrSpectrum objects

Usage
scanNumber(x)

Arguments
x A rawrrSpectrum object

Details
This accessor function returns the scan number of a mass spectrum stored as rawrrSpectrum object. Scan numbers are equal to the scan index \(j \) running from 1 to \(n \) with \(n \) being the last scan of a raw file.

Value
The scan number of type integer

Examples
S <- readSpectrum(rawfile = sampleFilePath(), 1:10)
scanNumber(S[1])

summary.rawrrChromatogram

Text summary of chromatogram

Description
Text summary of chromatogram

Usage
S3 method for class 'rawrrChromatogram'
summary(object, ...)

Arguments
object A rawrrChromatogram object
... Function passes additional arguments.
Value

A rawrrChromatogram object

Examples

C <- readChromatogram(rawfile = sampleFilePath(),
 mass = c(445.1181, 519.1367))
summary(C[[1]])
summary(C[[2]])
tic

Total ion current of a spectrum

Description

Total ion current of a spectrum

Usage

tic(x)

Arguments

x
A rawrrSpectrum object

Value

A double vector of length one.

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1)  
tic(S[[1]])
```

validate_rawrrIndex

Validate output of the readIndex function

Description

Checks the validity of an readIndex returned object.

Usage

validate_rawrrIndex(x)

Arguments

x
object to be validated.

Value

Validated data.frame of readIndex object

Author(s)

Tobias Kockmann and Christian Panse, 2020-12-09.
validate_rawrrSpectrum

Validate instance of class rawrrSpectrum

Description
Checks the validity of rawrrSpectrum object attributes.

Usage
validate_rawrrSpectrum(x)

Arguments
x object to be validated.

Value
Validated rawrrSpectrum object

Author(s)

Examples
S <- rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:9, validate=TRUE)
Index

* internal
 rawrr-package, 3
 .checkDllInMonoPath, 3
 .thermofisherlsmsUrl, 4
 auc.rawrrChromatogram, 4
 basePeak, 5
 buildRawrrExe, 5, 9, 10
 dependentScan, 6
 faimsVoltageOn, 7
 filter, 7
 installRawFileReaderDLLs, 6, 8
 installRawrrExe, 6, 9, 9
 is.rawrrChromatogram, 10
 is.rawrrSpectrum, 11
 is.rawrrSpectrumSet, 11
 makeAccessor, 12
 massRange, 12
 masterScan, 13
 new_rawrrSpectrum, 14
 plot.rawrrChromatogram, 15
 plot.rawrrChromatogramSet, 15
 plot.rawrrSpectrum, 16
 print.rawrrSpectrum, 17
 rawrr (readSpectrum), 22
 rawrr-package, 3
 rawrr.exe (installRawrrExe), 9
 rawrrAssemblyPath, 18
 rawrrSpectrum, 18
 readChromatogram, 19
 readFileHeader, 21
 readIndex, 22
 readSpectrum, 22
 readTrailer, 25
 sample.raw (sampleFilePath), 26
 sampleFilePath, 26
 scanNumber, 27
 summary.rawrrChromatogram, 27
 summary.rawrrSpectrum, 28
 system2, 5, 9
 Thermo (installRawFileReaderDLLs), 8
 ThermoFisher
 (installRawFileReaderDLLs), 8
 ThermoFisherScientific
 (installRawFileReaderDLLs), 8
 tic, 29
 validate_rawrrIndex, 29
 validate_rawrrSpectrum, 30