Package ‘rawrr’

May 30, 2024

Type Package

Title Direct Access to Orbitrap Data and Beyond

Version 1.12.0

Depends R (>= 4.1)

Imports grDevices, graphics, stats, utils

Suggests BiocStyle (>= 2.5), ExperimentHub, knitr, protViz (>= 0.7), rmarkdown, tartare (>= 1.5), testthat

Description This package wraps the functionality of the RawFileReader .NET assembly. Within the R environment, spectra and chromatograms are represented by S3 objects.

The package provides basic functions to download and install the required third-party libraries.

The package is developed, tested, and used at the Functional Genomics Center Zurich, Switzerland.

License GPL-3

SystemRequirements mono-runtime 4.x or higher (including System.Data library) on Linux/macOS, .Net Framework (>= 4.5.1) on Microsoft Windows.

URL https://github.com/fgcz/rawrr/

BugReports https://github.com/fgcz/rawrr/issues

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.3.1

biocViews MassSpectrometry, Proteomics, Metabolomics, Infrastructure, Software

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/rawrr

git_branch RELEASE_3_19

git_last_commit e4fed44

git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Christian Panse [aut, cre] (<https://orcid.org/0000-0003-1975-3064>),
 Tobias Kockmann [aut] (<https://orcid.org/0000-0002-1847-885X>)
Maintainer Christian Panse <cp@fgcz.ethz.ch>

Contents

rawrr-package ... 3
.checkDllInMonoPath 3
.thermofisherLsmsUrl 4
auc.rawrrChromatogram 4
basePeak .. 5
buildRawrrExe .. 5
dependentScan ... 6
faimsVoltageOn .. 7
filter ... 7
installRawFileReaderDLLs 8
installRawrrExe ... 9
is.rawrrChromatogram 10
is.rawrrSpectrum 11
is.rawrrSpectrumSet 11
makeAccessor ... 12
massRange ... 12
masterScan .. 13
new_rawrrSpectrum 14
plot.rawrrChromatogram 15
plot.rawrrChromatogramSet 15
plot.rawrrSpectrum 16
print.rawrrSpectrum 17
rawrrAssemblyPath 18
rawrrSpectrum .. 18
readChromatogram 19
readFileHeader .. 21
readIndex .. 22
readSpectrum ... 22
readTrailer ... 25
sampleFilePath .. 26
scanNumber ... 27
summary.rawrrChromatogram 27
summary.rawrrSpectrum 28
tic ... 29
validate_rawrrIndex 29
validate_rawrrSpectrum 30

Index .. 31
Description

This package wraps the functionality of the RawFileReader .NET assembly. Within the R environment, spectra and chromatograms are represented by S3 objects. The package provides basic functions to download and install the required third-party libraries. The package is developed, tested, and used at the Functional Genomics Center Zurich, Switzerland.

Author(s)

Maintainer: Christian Panse <cp@fgcz.ethz.ch> (ORCID)
Authors:
 • Tobias Kockmann <tobias.kockmann@fgcz.ethz.ch> (ORCID)

See Also

Useful links:
 • https://github.com/fgcz/rawrr/
 • Report bugs at https://github.com/fgcz/rawrr/issues

.checkDllInMonoPath Check if a file is contained in the environment variable MONO_PATH.

Description

Check if a file is contained in the environment variable MONO_PATH.

Usage

.checkDllInMonoPath(dll = "ThermoFisher.CommonCore.Data.dll")

Arguments

dll a file name.

Value

a boolean
.thermofisherlsmsUrl
URL for Thermo Fisher .NET assemblies

Description

URL for Thermo Fisher .NET assemblies

Usage

```pseudo
dottedline
.thermofisherlsmsUrl()
dottedline
```

Value

an URL

auc.rawrrChromatogram
deriving area under the curve (AUC)

Description

deriving area under the curve (AUC)

Usage

```pseudo
dottedline
auc.rawrrChromatogram(x)
dottedline
```

Arguments

x
an rawrrChromatogram object contains x	imes and x\intensities. x	imes is assumed to be in minutes.

Value

A numeric value.
basePeak

Base peak of a spectrum

Description

Base peak of a spectrum

Usage

basePeak(x)

Arguments

x

A rawrrSpectrum object

Value

A double vector of length two. The first component is the base peak position (m/z). The second component is the base peak intensity.

Examples

S <- readSpectrum(rawfile = sampleFilePath(), 1)
basePeak(S[[1]])

buildRawrrExe

Build rawrr.exe console application.

Description

Builds rawrr.exe file from C# source code requiring xbuild or msbuild tools. The console application rawrr.exe is used by the package’s reader functions through a system2 call.

Usage

buildRawrrExe()

Details

The rawrr package implementation consists of two language layers, the top R layer and the hidden C# layer. Specifically, R functions requesting access to data stored in binary raw files invoke compiled C# wrapper methods using a system2 call. Calling a wrapper method typically results in the execution of methods defined in the RawFileReader dynamic link library provided by Thermo Fisher Scientific. Our precompiled wrapper methods are bundled in the rawrr.exe executable file (.NET assembly) and shipped with the released R package. Running rawrr.exe requires the https://www.mono-project.com/ environment on non-Microsoft operating systems. Mono is a
cross platform, open source .NET framework. On Microsoft Windows the Microsoft .NET framework is typically already installed and sufficient. Our package also contains the C# source code `rawrr.cs`. In order to return extracted data back to the R layer we use file I/O. More specifically, the extracted information is written to a temporary location on the harddrive, read back into memory and parsed into R objects.

Value

the return value of the `system2` command.

Author(s)

Tobias Kockmann, Christian Panse <cp@fgcz.ethz.ch>, 2021

References

- https://www.mono-project.com/docs/advanced/assemblies-and-the-gac/
- https://planetorbitrap.com/rawfilereader
- doi:10.1021/acs.jproteome.0c00866

See Also

`installRawrrExe` and `installRawFileReaderDLLs`

dependentScan

Retrieve dependent scan(s) of a scan listed in scan index

Description

Retrieve dependent scan(s) of a scan listed in scan index

Usage

`dependentScan(x, scanNumber)`

Arguments

- `x` A scan index returned by `readIndex`.
- `scanNumber` The scan number that should be inspected for dependent scans.

Value

The scan number of the dependent scan(s).
Examples

Idx <- readIndex(rawfile = sampleFilePath())
dependentScan(Idx, scanNumber = 1)

faimsVoltageOn

Is FAIMS Voltage on?

Description

Is FAIMS Voltage on?

Usage

faimsVoltageOn(x)

Arguments

x A rawrSpectrum object

Value

A boolean

Examples

S <- readSpectrum(rawfile = sampleFilePath(), 1:10)
try(faimsVoltageOn(S[[1]]))

filter
determine scan numbers which match a specified filter

Description
determine scan numbers which match a specified filter

Usage

filter(rawfile, filter = "ms", precision = 10, tmpdir = tempdir())

Arguments

rawfile the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.
filter scan filter string, e.g., ms or ms2
precision mass precision, default is 10.
tmpdir defines the directory used to store temporary data generated by the .NET assembly rawr.exe. The default uses the output of tempdir().
installRawFileReaderDLLs

Description

Download and install the New RawFileReader from Thermo Fisher Scientific .Net assemblies in the directory provided by `rawrrAssemblyPath()`.

Usage

```r
installRawFileReaderDLLs(sourceUrl = .thermofisherlsmsUrl(), ...)
```

Arguments

- `...`: other parameter for `download.file`

Details

The console application assembly `rawrr.exe` requires three assemblies:

- ThermoFisher.CommonCore.Data.dll,
- ThermoFisher.CommonCore.MassPrecisionEstimator.dll, and

The `rawrr.exe` assembly can be built from C# source code by using the `msbuild` tool shipped by the https://www.mono-project.com or by Microsoft’s .NET SDK https://dotnet.microsoft.com on Linux, Microsoft, and macOS.

If no build tool and C# compiler (`csc` or `msc`) are available or the build process fails, you can download `rawrr.exe` assembly from the authors’ site.

Value

An (invisible) vector of integer code, 0 for success and non-zero for failure. For the "wget" and "curl" methods this is the status code returned by the external program.

Author(s)

Christian Panse <cp@fgcz.ethz.ch>, 2021
installRawrrExe

References

- https://www.mono-project.com/docs/advanced/assemblies-and-the-gac/
- https://planetorbitrap.com/rawfilereader
- doi:10.1021/acs.jproteome.0c00866

See Also

buildRawrrExe and installRawrrExe

Examples

to install all assemblies

rawrr::installRawFileReaderDLLs()
rawrr::buildRawrrExe() || rawrr::installRawrrExe()

installRawrrExe **Download and install the rawrr.exe console application**

Description

downloads and installs the rawrr.exe .Net assembly in the directory provided by rawrrAssemblyPath().

Usage

installRawrrExe(
 sourceUrl = "https://github.com/fgcz/rawrr/releases/download/1.9.2/rawrr.1.9.2.exe",
 ...
)

Arguments

 sourceUrl url of rawrr.exe assembly.
 ... other parameter for download.file.

Details

The console application rawrr.exe is used by the package’s reader functions through a system2 call.

Value

An integer code, 0 for success and non-zero for failure. For the "wget" and "curl" methods this is the status code returned by the external program.
is.rawrrChromatogram Function to check if an object is an instance of class rawrrChromatogram

Description
Function to check if an object is an instance of class rawrrChromatogram

Usage
is.rawrrChromatogram(x)

Arguments
x x any R object to be tested.

Value
TRUE or FALSE

Author(s)

Examples
rawfile <- sampleFilePath()
C <- readChromatogram(rawfile, mass = 445.1181, tol = 10)
is.rawrrChromatogram(C[[1]])
is.rawrrSpectrum

Function to check if an object is an instance of class rawrrSpectrum

Description

Function to check if an object is an instance of class rawrrSpectrum

Usage

```r
is.rawrrSpectrum(x)
```

Arguments

- `x` any R object to be tested.

Value

TRUE or FALSE

Examples

```r
S <- rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:10)
rawrr::is.rawrrSpectrum(S[[1]])
```

is.rawrrSpectrumSet

Function to check if an object is an instance of class rawrrSpectrumSet

Description

Function to check if an object is an instance of class rawrrSpectrumSet

Usage

```r
is.rawrrSpectrumSet(x)
```

Arguments

- `x` any R object to be tested.

Value

TRUE or FALSE

Examples

```r
rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:10) |> rawrr::is.rawrrSpectrumSet()
```
Description

Make accessor function for key value pair returned by RawFileReader

Usage

```r
makeAccessor(key, returnType = "integer")
```

Arguments

- **key**: An object name found in instance of class rawrrSpectrum
- **returnType**: The type used for casting of values

Details

This function factory creates accessor functions for class rawrrSpectrum.

Value

An accessor function

Author(s)

Tobias Kockmann, 2020

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1:10)
maxIonTime <- makeAccessor(key = "Max. Ion Time (ms)", returnType = "double")
maxIonTime(S[[1]])
```

massRange

Acquisition/scan range of spectrum

Description

Acquisition/scan range of spectrum

Usage

```r
massRange(x)
```
masterScan

Arguments

- `x` A rawrrSpectrum object

Value

A double vector of length two. The first component is the start m/z, the second is the stop m/z value used by the detector during data acquisition. Also referred to as scan range.

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1)
massRange(S[[1]])
```

Description

Retrieve master scan of scan listed in scan index

Usage

```r
masterScan(x, scanNumber)
```

Arguments

- `x` A scan index returned by `readIndex`.
- `scanNumber` The scan number that should be inspected for the presence of a master scan.

Value

Returns the scan number of the master scan or NA if no master scan exists.

Examples

```r
rawrr::sampleFilePath() |> rawrr::readIndex() |> rawrr::masterScan(scanNumber = 1)
```
new_rawrSpectrum

Create instances of class rawrSpectrum

Description

Developer function.

Usage

```r
new_rawrSpectrum(
  scan = numeric(),
  massRange = numeric(),
  scanType = character(),
  StartTime = numeric(),
  centroidStream = logical(),
  mZ = numeric(),
  intensity = numeric()
)
```

Arguments

- `scan`: scan number
- `massRange`: Mass range covered by spectrum
- `scanType`: Character string describing the scan type.
- `StartTime`: Retention time in minutes
- `centroidStream`: Logical indicating if centroided data is available
- `mZ`: m/z values
- `intensity`: Intensity values

Value

Object of class `rawrSpectrum`

Author(s)

plot.rawrrChromatogram

Plot rawrrChromatogram objects

Description
Plot rawrrChromatogram objects

Usage

S3 method for class 'rawrrChromatogram'
plot(x, legend = TRUE, ...)

Arguments

x A rawrrChromatogram object to be plotted.
legend Should legend be printed?
... Passes additional arguments.

Value
This function creates a plot.

Author(s)

Examples

rawfile <- sampleFilePath()
C <- readChromatogram(rawfile, mass = 445.1181, tol = 10)
plot(C[[1]])

plot.rawrrChromatogramSet

Plot rawrrChromatogramSet objects

Description
Plot rawrrChromatogramSet objects

Usage

S3 method for class 'rawrrChromatogramSet'
plot(x, diagnostic = FALSE, ...)

Examples

rawfile <- sampleFilePath()
C <- readChromatogram(rawfile, mass = 445.1181, tol = 10)
plot(C[[1]])
Arguments

x A rawrrChromatogramSet object to be plotted.
diagnostic Show diagnostic legend?
... Passes additional arguments.

Value

This function creates a plot.

Author(s)

plot.rawrrSpectrum

Basic plotting function for instances of rawrrSpectrum

Description

Plot method for objects of class rawrrSpectrum.

Usage

```r
## S3 method for class 'rawrrSpectrum'
plot(
x,  
relative = TRUE,
centroid = FALSE,
SN = FALSE,
legend = TRUE,
diagnostic = FALSE,
...
)
```

Arguments

x an object of class rawrrSpectrum.
relative If set to TRUE enforces plotting of relative intensities rather than absolute.
centroid Should centroided data be used for plotting?
SN Should Signal/Noise be used for plotting?
legend Should legend be printed?
diagnostic Should this option be applied? The default is FALSE.
... function passes arbitrary additional arguments.
print.rawrrSpectrum

Details

plot.rawrrSpectrum is a low level function that calls base::plot for plotting rawrrSpectrum objects. It passes all additional arguments to plot()

Is usually called by method dispatch.

Value

This function creates a plot.

Author(s)

print.rawrrSpectrum

Print method imitate the look and feel of Thermo Fisher Scientific FreeStyle’s output

Description

Print method imitate the look and feel of Thermo Fisher Scientific FreeStyle’s output

Usage

S3 method for class 'rawrrSpectrum'
print(x, ...)

Arguments

x an rawrrSpectrum object.

... Arguments to be passed to methods.

Value

This function creates a print message.

Author(s)

rawrrAssemblyPath
Derives the path where all .NET assemblies are stored.

Description
Derives the path where all .NET assemblies are stored.

Usage
`rawrrAssemblyPath()`

Value
`path`

See Also
`installRawFileReaderDLLs` and `installRawrrExe`

Examples
`rawrrAssemblyPath()`

rawrrSpectrum
Create rawrrSpectrum objects

Description
High-level constructor for instances of class `rawrrSpectrum`, also named helper function. Currently, mainly to support testing and for demonstration.

Usage
`rawrrSpectrum(sim = "TESTPEPTIDE")`

Arguments
`sim`
Either `example_1` or `TESTPEPTIDE`

Value
Function returns a validated `rawrrSpectrum` object

Author(s)
Examples

```r
plot(rawrrSpectrum(sim = "TESTPEPTIDE"))
rawrrSpectrum(sim = "example_1")
```

Description

Extracts chromatographic data from a raw file.

Usage

```r
readChromatogram(
  rawfile,
  mass = NULL,
  tol = 10,
  filter = "ms",
  type = "xic",
  tmpdir = tempdir()
)
```

Arguments

- `rawfile`: the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.
- `mass`: a vector of mass values iff `type = 'xic'`.
- `tol`: mass tolerance in ppm iff `type = 'xic'`.
- `filter`: defines the scan filter, default is `filter="ms"` if a wrong filter is set the function will return `NULL` and draws a warning.
- `type`: `c(xic, bpc, tic)` for extracted ion, base peak or total ion chromatogram.
- `tmpdir`: defines the directory used to store temporary data generated by the .NET assembly `rawrr.exe`. The default uses the output of `tempdir()`.

Details

Chromatograms come in different flavors but are always signal intensity values as a function of time. Signal intensities can be point estimates from scanning detectors or plain intensities from non-scanning detectors, e.g., UV trace. Scanning detector (mass analyzers) point estimates can be defined in different ways by, for instance, summing all signals of a given spectrum (total ion chromatogram or TIC), or by extracting signal around an expected value (extracted ion chromatogram = XIC), or by using the maximum signal contained in a spectrum (base peak chromatogram = BPC). On top, chromatograms can be computed from pre-filtered lists of scans. A total ion chromatogram (TIC), for instance, is typically generated by iterating over all MS1-level scans.
Value

chromatogram object(s) containing of a vector of times and a corresponding vector of intensities.

Author(s)

References

Automated quality control sample 1 (autoQC01) analyzed across different Thermo Scientific mass spectrometers, MSV000086542.

See Also

- https://CRAN.R-project.org/package=protViz
- https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000086542

Examples

Example 1: not meaningful but proof-of-concept
(rawfile <- rawrr::sampleFilePath())
rawrr::readChromatogram(rawfile, mass=c(669.8381, 726.8357), tol=1000) |> plot()
rawrr::readChromatogram(rawfile, type='bpc') |> plot()
rawrr::readChromatogram(rawfile, type='tic') |> plot()

Example 2: extract iRT peptides
if (require(ExperimentHub) & require(protViz)){
iRTpeptide <- c("LGGNEQVTR", "YILAGVENS", "GTFIIPGGVIR", "GTFIIPAAVIR", "GAGSSEPVTGLDAK", "TPVISGPGYVR", "VEATFGVDESNAK", "TPVITGAPYEYR", "DGLDAASSYPVR", "ADVTPADFSEWSK", "LFLQFGAQGSPFLK")

fetch via ExperimentHub
library(ExperimentHub)
eh <- ExperimentHub::ExperimentHub()
EH4547 <- normalizePath(eh["EH4547"])

(rawfile <- paste0(EH4547, ".raw"))
if (!file.exists(rawfile)){
 file.link(EH4547, rawfile)
}
op <- par(mfrow=c(2,1))
readChromatogram(rawfile, type='bpc') |> plot()
readChromatogram(rawfile, type='tic') |> plot()
par(op)
derive [2H+] ions
((protViz::parentIonMass(iRTpeptide) + 1.008) / 2) |>
readChromatogram(rawfile=rawfile) |>
plot()

readFileHeader
read file header Information

Description

This function extracts the meta information from a given raw file.

Usage

```r
readFileHeader(rawfile)
```

Arguments

- `rawfile`
 the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.

Value

A list object containing the following entries: RAW file version, Creation date, Operator, Number of instruments, Description, Instrument model, Instrument name, Serial number, Software version, Firmware version, Units, Mass resolution, Number of scans, Number of ms2 scans, Scan range, Time range, Mass range, Scan filter (first scan), Scan filter (last scan), Total number of filters, Sample name, Sample id, Sample type, Sample comment, Sample vial, Sample volume, Sample injection volume, Sample row number, Sample dilution factor, or Sample barcode.

Author(s)

References

Examples

```r
rawrr::sampleFilePath() |> readFileHeader()
```
readIndex
Read scan index

Description
Read scan index

Usage
`readIndex(rawfile)`

Arguments
- `rawfile`: the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.

Value
returns a `data.frame` with the column names scan, scanType, StartTime, precursorMass, MSOrder, charge, masterScan, and dependencyType of all spectra.

Author(s)
Tobias Kockmann and Christian Panse <cp@fgz.ethz.ch>, 2020, 2021

Examples
```r
Idx <- rawrr::sampleFilePath() |> rawrr::readIndex()
table(Idx$scanType)
plot(Idx$StartTime, Idx$precursorMass, col=as.factor(Idx$charge), pch=16)
table(Idx$MSOrder)
```

readSpectrum
Reads spectral data from a raw file.

Description
The function derives spectra of a given raw file and a given vector of scan numbers.

Usage
```r
readSpectrum(
  rawfile,
  scan = NULL,
  tmpdir = tempdir(),
  validate = FALSE,
  mode = ""
)
```
readSpectrum

Arguments

 rawfile the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.

 scan a vector of requested scan numbers.

 tmpdir defines the directory used to store temporary data generated by the .NET assembly rawr.exe. The default uses the output of tempdir().

 validate boolean default is FALSE.

 mode if mode = "barebone" only mZ (centroidStream.Masses), intensity (centroidStream.Intensities), pepmass, StartTime and charge state is returned. As default mode is "".

Details

All mass spectra are recorded by scanning detectors (mass analyzers) that log signal intensities for ranges of mass to charge ratios (m/z), also referred to as position. These recordings can be of continuous nature, so-called profile data (p), or appear centroided (c) in case discrete information (tuples of position and intensity values) are sufficient. This heavily compacted data structure is often called a peak list. In addition to signal intensities, a peak list can also cover additional peak attributes like peak resolution (R), charge (z), or local noise estimates. In short, the additional attributes further described the nature of the original profile signal or help to group peak lists with respect to their molecular nature or processing history. A well-known example is the assignment of peaks to peak groups that constitute isotope patterns (M, M+1, M+2, ...). The names of objects encapsulated within rawrSpectrum instances are keys returned by the Thermo Fisher Scientific New RawFileReader API and the corresponding values become data parts of the objects, typically vectors.

Value

a nested list of rawrSpectrum objects containing more than 50 values of scan information, e.g., the charge state, two vectors containing the mZ and its corresponding intensity values or the AGC information, mass calibration, ion optics ...

Author(s)

Tobias Kockmann and Christian Panse <cp@fgz.ethz.ch> 2018, 2019, 2020, 2021

References

- C# code snippets of the NewRawfileReader library https://planetorbitrap.com/rawfilereader.
- rawrr: doi:10.1021/acs.jproteome.0c00866
- Universal Spectrum Explorer: https://www.proteomicsdb.org/use/ doi:10.1021/acs.jproteome.1c00096

See Also

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000086542
Examples

Example 1
S <- rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:9)

S[[1]]

names(S[[1]])

plot(S[[1]])

Example 2 - find best peptide spectrum match using the |> pipe operator
fetch via ExperimentHub

if (require(ExperimentHub) & require(protViz)) {
 eh <- ExperimentHub::ExperimentHub()
 EH4547 <- normalizePath(eh[["EH4547"]])

 (rawfile <- paste0(EH4547, ".raw"))
 if (!file.exists(rawfile)) {
 file.link(EH4547, rawfile)
 }

 GAG <- "GAGSSEPVTGLDAK"

 .bestPeptideSpectrumMatch <- function(rawfile, sequence="GAGSSEPVTGLDAK"){
 readIndex(rawfile) |>
 subset(abs((1.008 + (protViz::parentIonMass(sequence) - 1.008) / 2) - precursorMass) < 0.001, select = scan) |>
 unlist() |>
 readSpectrum(rawfile = rawfile) |>
 lapply(function(x) {
 y <- protViz::psm(sequence = GAG, spec=x, plot=FALSE);
 y$scan <- x$scan; y
 }) |>
 lapply(FUN= function(x){
 score <- sum(abs(x$mZ.Da.error) < 0.01);
 cbind(scan=x$scan, score=score)
 }) |>
 (function(x) as.data.frame(Reduce(rbind, x))()) |>
 subset(score > 0) |>
 (function(x) x[order(x$score, decreasing = TRUE), 'scan'])() |>
 head(1)
 }

 start_time <- Sys.time()
 bestMatch <- .bestPeptideSpectrumMatch(rawfile, GAG) |>
 rawrr::readSpectrum(rawfile=rawfile) |>
 lapply(function(x) protViz::peakplot(peptideSequence = GAG, x))
end_time <- Sys.time()
end_time - start_time

Example 3
using proteomicsdb doi(10.1101/2020.09.08.287557)
through https://www.proteomicsdb.org/use/

.UniversalSpectrumExplorer <- function(x, sequence){
 m <- protViz::psm(sequence, x)
 cat(paste(x$mZ[m$idx], "t", x$intensity[m$idx]), sep = "n")
}

rawrr::readSpectrum(rawfile=rawfile, 11091) |> lapply(function(x).UniversalSpectrumExplorer(x, sequence = GAG))

readTrailer
Read and extract scan trailer from TFS raw files.

Description

Read and extract scan trailer from TFS raw files.

Usage

readTrailer(rawfile, label = NULL)

Arguments

- **rawfile**: the name of the raw file containing the mass spectrometry data from the Thermo Fisher Scientific instrument.
- **label**: if NULL; the function scans for all available labels.

Value

a vector of trailers or values of a given trailer. Of note, the values are usually returned as a character.

Examples

rawrr::sampleFilePath() |> rawrr:::readTrailer()
rawrr::sampleFilePath() |> rawrr:::readTrailer("AGC:") |> head()
Description

The binary example file `sample.raw`, shipped with the package, contains 574 Fourier-transformed Orbitrap spectra (FTMS) recorded on a Thermo Fisher Scientific Q Exactive HF-X. The mass spectrometer was operated in line with a nano electrospray source (NSI) in positive mode (+). All spectra were written to disk after applying centroiding (c) and lock mass correction.

Usage

```r
sampleFilePath()
```

Details

Thermo Fisher Scientific Q Exactive HF-X raw file of size 1.5M bytes and checksum MD5 (`sample.raw`) = fe67058456c79af7442316c474d20e96. Additional raw data for demonstration and extended testing is available through MSV000086542 and the tartare package. **Lions love raw meat!**

Value

file path of the sample.raw location.

Author(s)

References

- Bioconductor tartare package.
- Automated quality control sample 1 (autoQC01) analyzed across different Thermo Fisher Scientific mass spectrometers, MSV000086542.

Examples

```r
sampleFilePath()
```
scanNumber

Accessor function for scan number of `rawrrSpectrum` objects

Description

Accessor function for scan number of `rawrrSpectrum` objects

Usage

```r
scanNumber(x)
```

Arguments

- `x` A rawrrSpectrum object

Details

This accessor function returns the scan number of a mass spectrum stored as `rawrrSpectrum` object. Scan numbers are equal to the scan index j running from 1 to n with n being the last scan of a raw file.

Value

The scan number of type integer

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1:10)
scanNumber(S[[1]])
```

summary.rawrrChromatogram

Text summary of chromatogram

Description

Text summary of chromatogram

Usage

```r
## S3 method for class 'rawrrChromatogram'
summary(object, ...)
```

Arguments

- `object` A rawrrChromatogram object
- `...` Function passes additional arguments.
Value

A rawrrChromatogram object

Examples

```r
C <- readChromatogram(rawfile = sampleFilePath(),
  mass = c(445.1181, 519.1367))
summary(C[[1]])
summary(C[[2]])
```

Description

Basic summary function

Usage

```r
## S3 method for class 'rawrrSpectrum'
summary(object, ...)
```

Arguments

- `object`: an rawrrSpectrum object.
- `...`: Arguments to be passed to methods.

Value

This function creates a print message.

Author(s)

Tic

Total ion current of a spectrum

Description

Total ion current of a spectrum

Usage

`tic(x)`

Arguments

- `x` A rawrSpectrum object

Value

A double vector of length one.

Examples

```r
S <- readSpectrum(rawfile = sampleFilePath(), 1)
tic(S[[1]])
```

validate_rawrrIndex

Validate output of the readIndex function

Description

Checks the validity of an readIndex returned object.

Usage

`validate_rawrrIndex(x)`

Arguments

- `x` object to be validated.

Value

Validated data.frame of readIndex object

Author(s)

Tobias Kockmann and Christian Panse, 2020-12-09.
Examples

`rawrr::sampleFilePath() |> rawrr::readIndex() |> rawrr::validate_rawrrIndex()`

validate_rawrrSpectrum

_VALIDATE INSTANCE OF CLASS RAWRRSPECTRUM

Description

Checks the validity of rawrrSpectrum object attributes.

Usage

`validate_rawrrSpectrum(x)`

Arguments

- `x` object to be validated.

Value

Validated rawrrSpectrum object

Author(s)

Examples

`S <- rawrr::sampleFilePath() |> rawrr::readSpectrum(scan = 1:9, validate=TRUE)`
Index

* internal
 rawrr-package, 3
 .checkDllInMonoPath, 3
 .thermofisherlsmsUrl, 4
 auc.rawrrChromatogram, 4
 basePeak, 5
 buildRawrrExe, 5, 9, 10
 dependentScan, 6
 faimsVoltageOn, 7
 filter, 7
 installRawFileReaderDLLs, 6, 8
 installRawrrExe, 6, 9, 9
 is.rawrrChromatogram, 10
 is.rawrrSpectrum, 11
 is.rawrrSpectrumSet, 11
 makeAccessor, 12
 massRange, 12
 masterScan, 13
 new_rawrrSpectrum, 14
 plot.rawrrChromatogram, 15
 plot.rawrrChromatogramSet, 15
 plot.rawrrSpectrum, 16
 print.rawrrSpectrum, 17
 rawrr (readSpectrum), 22
 rawrr-package, 3
 rawrr.exe (installRawrrExe), 9
 rawrrAssemblyPath, 18
 rawrrSpectrum, 18
 readChromatogram, 19
 readFileHeader, 21
 readIndex, 22
 readSpectrum, 22
 readTrailer, 25
 sample.raw (sampleFilePath), 26
 sampleFilePath, 26
 scanNumber, 27
 summary.rawrrChromatogram, 27
 summary.rawrrSpectrum, 28
 system2, 5, 9
 Thermo (installRawFileReaderDLLs), 8
 ThermoFisher
 (installRawFileReaderDLLs), 8
 ThermoFisherScientific
 (installRawFileReaderDLLs), 8
 tic, 29
 validate_rawrrIndex, 29
 validate_rawrrSpectrum, 30