Package ‘rTRM’

May 3, 2024

Type Package
Title Identification of Transcriptional Regulatory Modules from Protein-Protein Interaction Networks
Version 1.42.0
Date 2015-12-25
Author Diego Diez
Depends R (>= 2.10), igraph (>= 1.0)
Imports methods, AnnotationDbi, DBI, RSQLite
Suggests RUnit, BiocGenerics, MotifDb, graph, PWMEnrich, biomaRt, Biostrings, BSgenome.Mmusculus.UCSC.mm8.masked, org.Hs.eu.db, org.Mm.eu.db, ggplot2, BiocStyle, knitr, rmarkdown
Maintainer Diego Diez <diego10ruiz@gmail.com>
Description rTRM identifies transcriptional regulatory modules (TRMs) from protein-protein interaction networks.
License GPL-3
LazyLoad yes
ByteCompile yes
VignetteBuilder knitr
biocViews Transcription, Network, GeneRegulation, GraphAndNetwork
URL https://github.com/ddiez/rTRM
BugReports https://github.com/ddiez/rTRM/issues
git_url https://git.bioconductor.org/packages/rTRM
git_branch RELEASE_3_19
git_last_commit eb0091c
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-02
Contents

rTRM-package .. 2
annotateFreq ... 3
annotateModule ... 4
annotateTRM .. 4
biogrid_hs ... 5
biogrid_mm ... 5
findTRM ... 6
getAnnotations ... 7
getBiogridData ... 7
getConcentricList .. 8
getLargestComp ... 9
getMaps ... 9
getMatrices ... 10
getMotifsFromEntrezgene 10
getMotifsFromSymbol 11
getOrthologFromMatrix 11
getOrthologs .. 12
getOrthologsFromBiomart 12
getSequencesFromGenome 13
getSimilarityMatrix 14
getTFclass ... 14
getTFclassFromEntrezgene 15
getTFterms ... 15
initBiomart .. 16
layout.arc ... 16
layout.concentric ... 17
plotDegree ... 17
plotGraph ... 18
plotTRM ... 19
plotTRMlegend .. 20
processBiogrid .. 20
removeVertices .. 21
writeTRMreport ... 21

Index ... 23

rTRM-package

Identification transcription regulatory modules (TRMs)

Description

This package identifies transcriptional regulatory modules (TRMs) from PPI networks.

Details
annotateFreq

Annotate a graph with frequency of nodes/edges in other graphs.

Description
Returns an annotated graph with node size and edge width proportional at the number of occurrences of nodes/edges in a supplied list of graphs.

Usage
annotateFreq(g, graph_list)

Arguments
- g: target graph to annotate.
- graph_list: list of graph to extract information from.

Details
Commonly graph_list refers to a list of predicted TRMs (with findTRM) and g is the combined TRM. This function annotates the nodes/edges in g to known their frequency in the original list of graphs.

Author(s)
Diego Diez
annotateModule

Annotate a network module with information

Description
Uses information about expression, enrichment and parent PPI network to annotate a subgraph.

Usage
annotateModule(g, enrich, trm, targets, ppi, exprs, tfs)

Arguments
- g: graph to annotate in igraph format.
- enrich: list of enriched transcription factors (or motifs).
- trm: TRM to compare with (to identify bridges).
- targets: list of target transcription factors (typically those with ChIP-seq data).
- ppi: parent PPI network (to check membership of nodes).
- exprs: list of entrezgene ids representing expressed genes.
- tfs

Author(s)
Diego Diez

annotateTRM

Annotate a network object with information about clusters.

Description
This function takes a network object and includes cluster information as piecolor attribute, suitable to be plotted with plotTRM()

Usage
annotateTRM(g, target)

Arguments
- g: a network object.
- target: target node (from findTRM())

Author(s)
Diego Diez
biogrid_hs

Network dataset of class ‘igraph’

Description

Human protein-protein interaction (PPI) dataset from the BioGRID database release.

Usage

```r
data(biogrid_hs)
```

Format

An igraph object.

Author(s)

Diego Diez

biogrid_mm

Network dataset of class ‘igraph’

Description

Mouse protein-protein interaction (PPI) dataset from the BioGRID database.

Usage

```r
data(biogrid_mm)
```

Format

An igraph object.

Author(s)

Diego Diez
findTRM

Identifies a TRM associated with a target node and one or more query nodes.

Description

This the main function used to identify TRMs. It takes a graph object and use it to search in the neighborhood of a target node for query nodes that are separated a maximum distance (controlled by max.bridge parameter).

Usage

findTRM(g, target, query, method = "nsa", max.bridge = 1, extended = FALSE, strict = FALSE, type = "igraph")

Arguments

g the network used to identify TRMs (tipically a PPI network)
target character variable with the name of a target node.
query character vector with the list of query nodes.
method method to use.
max.bridge maximum number of nodes allowed between the target and query nodes.
extended whether to allow distance restrictions to include both target and query nodes.
strict whether to return a single component (using decompose.graph())
type type of graph object to return, either an "igraph" (the default) or a "graphNEL"

Details

Currently only "first" and "nsa" methods are available. First is used for tests and returns the first neighborhood of the target node. Method "nsa" implements the TRM finding algorithm.

Value

A network in igraph format or NULL.

Author(s)

Diego Diez

Examples

load example network.
load(system.file(package = "rTRM", "extra/example.rda"))

define target and query nodes.
target = "N6"
query = c("N7", "N12", "N28")
getAnnotations

find TRM:
s = findTRM(g, target = target, query = query, method = "nsa", max.bridge = 1)

getAnnotations

Obtain the 'pwm' table from the database, containing PWM's annotations.

Description

Obtain the 'pwm' table from the database, containing PWM's annotations.

Usage

getAnnotations(filter, dbname = NULL)

Arguments

filter one or more PWM ids.
dbmame the location of the database (to load custom databases).

Author(s)

Diego Diez

Examples

ann = getAnnotations()

getBiogridData

Downloads network data from BioGRID in TAB2 format.

Description

This function is used to generate igraph network objects from BioGRID data. It downloads the database into a data.frame object that can be used later with processBiogrid()

Usage

getBiogridData(release)

Arguments

release release of BioGRID to download.
getConcentricList

Details

The release to download must be specified as currently there is no way to download automatically the latests release.

Value

An data.frame object.

Author(s)

Diego Diez

getConcentricList Returns a list with nodes membership to be used in a graph with a concentric layout

Description

Specify target and enriched motifs and returns a list with circle membership. This information is used by layout.concentric to position the nodes in plots.

Usage

getConcentricList(g, t, e, max.size = 60, order.by = "label")

Arguments

g graph to layout (extract the nodes).
t list of target nodes (will go in the center).
e list of enriched nodes (will go in the periphery).
max.size maximum number of nodes per layer.
order.by ordering attribute for list before split.

Author(s)

Diego Diez
getLargestComp

getLargestComp
Gets the largest connected component

Description

Returns the largest connected component from a graph.

Usage

getLargestComp(g)

Arguments

- **g**
an igraph object.

Author(s)

Diego Diez

getMaps

getMaps
Obtain the mapping between PWM and Entrez Gene identifiers.

Description

Obtain the mapping between PWM and Entrez Gene identifiers.

Usage

getMaps(filter, dbname = NULL)

Arguments

- **filter**
 vector of PWMs to filter results.
- **dbname**

Author(s)

Diego Diez

Examples

getMaps()
getMatrices | *Obtain a list of PWMs.*

Description

Returns a list of PWMs, by default all the PWMs in the database. Alternatively, filtered by the ids provided by filter.

Usage

```r
getMatrices(filter, dbname = NULL)
```

Arguments

- `filter` |
 - list of PWMs to filter results.
- `dbname` |

Author(s)

Diego Diez

Examples

```r
pwms = getMatrices()
```

getMotifsFromEntrezgene

Description

Retrieves PWMs associated with genes provided as entrezgene identifiers.

Usage

```r
getMotifsFromEntrezgene(e, organism)
```

Arguments

- `e` |
 - vector of entrezgene identifiers to retrieve existing PWMs.
- `organism` |

Author(s)

Diego Diez
getMotifsFromSymbol

Retrieve PWMs associated with genes provided as symbol.

Description
Retrieve PWMs associated with genes provided as symbol.

Usage
getMotifsFromSymbol(s, organism)

Arguments
s vector of gene symbols.
organism target organism.

Author(s)
Diego Diez

getOrthologFromMatrix
Obtain gene identifiers for a target organism associated with a list of PWMs.

Description
Obtain gene identifiers for a target organism associated with a list of PWMs.

Usage
getOrthologFromMatrix(filter, organism = "human", dbname = NULL)

Arguments
filter vector of matrices to filter results.
organism target organism.
dbname database- usually not need to specify.

Author(s)
Diego Diez
getOrthologs

Obtain the mapping to Entrez Gene identifiers in the given organism.

Description
Obtain the mapping to Entrez Gene identifiers in the given organism.

Usage
getOrthologs(filter, organism, dbname = NULL)

Arguments
- filter: entrezgene identifiers for the original mapping (PWM to gene). These belong to diverse species and correspond to the "entrezgene" column obtained with getMaps() function.
- organism: target organisms, currently supported "human" and "mouse"
- dbname

Details
If organism is not specified the entire table of orthologs (with all supported species) is returned.

Value
A data.frame object with ortholog information.

Author(s)
Diego Diez

Examples
getOrthologs(organism = "human")

getOrthologsFromBiomart

Returns ortholog genes for a target organism

Description
Returns ortholog genes for a target organism

Usage
getOrthologsFromBiomart(eg, target_org, mart)
getSequencesFromGenome

Arguments

eg
list of entrezgene ids to obtain orthologs.

target_org
target organism.

mart
mart object.

Author(s)

Diego Diez

getSequencesFromGenome

Retrieves a set of sequences from a BSgenome object and optionally appends a label to each sequence id.

Description

This is just a wrapper to getSeq() in package Biostrings that facilitates adding a label to each sequence.

Usage

getSequencesFromGenome(BED, genome, append.id)

Arguments

BED
file with peak locations in BED format.

genome
a BSgenome object (e.g. Mmusculus)

append.id
optional label to append to each sequence id.

Author(s)

Diego Diez
getSimilarityMatrix
\textit{Compute similarity matrix of list of graphs.}

\textbf{Description}

This function computes pair-wise similarity based on common nodes (default) or edges between the graphs passed as a list.

\textbf{Usage}

\begin{verbatim}
gSimilarityMatrix(g_list, type = "edges")
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{g_list} : list of graph objects.
 \item \texttt{type} : type of similarity, either node or edge (default).
\end{itemize}

\textbf{Author(s)}

Diego Diez

getTFclass
\textit{Return the ontology in the TFclass database associated with an entrezgene identifier}

\textbf{Description}

Return the ontology in the TFclass database associated with an entrezgene identifier.

\textbf{Usage}

\begin{verbatim}
gTFclass(dbname = NULL)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{dbname} : SQLite file to use as database.
\end{itemize}

\textbf{Author(s)}

Diego Diez
getTFclassFromEntrezgene

Applies getTFclass sequentially to a vector of entrezgene identifiers.

Description

Applies getTFclass sequentially to a vector of entrezgene identifiers.

Usage

getTFclassFromEntrezgene(x, subset = "Class", tfclass, dbname = NULL)

Arguments

x vector of entrezgene identifiers.
subset level in the ontology (subset in TFclass terminology. By default "Class")
tfclass data.frame with tfclass data to pass to the recursive function.
dbname SQLite file to use as database.

Author(s)

Diego Diez

getTFterms

Get terms associated with a specified TFclass subset.

Description

Returns a vector of names (not ids) with the members of a particular subset in the TFclass database. By default it returns the Class subset.

Usage

getTFterms(subset = "Class", dbname = NULL)

Arguments

subset a subset in TFclass (default Class).
dbname SQLite file to use as database.

Author(s)

Diego Diez
initBiomart

Initializes mart objects to identify ortholog genes

Description

Initializes mart objects to identify ortholog genes

Usage

initBiomart(filter, biomart = "ensembl", host)

Arguments

- filter: list of supported organisms
- biomart
- host

Author(s)

Diego Diez

layout.arc

Layouts a graph using arcs.

Description

Generates a layout for graphs that places in the center the target transcription factors, in the sides the enriched transcription factors and in between of them the bridge proteins.

Usage

layout.arc(g, target, query)

Arguments

- g: the graph object to layout.
- target: list of target nodes (typically target transcription factors.)
- query: list of query nodes (typically enriched transcription factors.)

Value

A matrix with the x and y locations of each node in the target graph.

Author(s)

Diego Diez
layout.concentric

Generates a concentric layout for graphs

Description

Generates a matrix with x,y coordinates for each node in a target graph, which layouts the nodes using concentric circles.

Usage

layout.concentric(g, concentric = NULL, radius = NULL, order.by)

Arguments

- `g`: graph (igraph) to layout.
- `concentric`: list with the components of each layer.
- `radius`: radius of each layer.
- `order.by`: graph attributes to order nodes by.

Author(s)

Diego Diez

plotDegree

Plot degree distribution for network nodes

Description

Plots the degree distribution and fits a power law, returning in the legend the values of the fitted parameters.

Usage

plotDegree(g)

Arguments

- `g`: igraph object

Author(s)

Diego Diez
plotGraph

Plot an graph in igraph format.

Description

This function plots graphs of the class igraph.

Usage

plotGraph(g, layout = layout.fruchterman.reingold, mar = .5, vertex.pch = 21, vertex.cex, vertex.col, vertex.bg, ... = TRUE, label.col, label.cex, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments

- **g**: a network object.
- **layout**: graph layout, either a function or the output of a layout function.
- **mar**: plot margin.
- **vertex.pch**: node size.
- **vertex.cex**: node size.
- **vertex.col**: node line color.
- **vertex.bg**: node background color.
- **vertex.lwd**: node line width.
- **edge.col**: edge color.
- **edge.lwd**: edge line width.
- **edge.lty**: edge line type.
- **label**: logical; whether to plot labels.
- **label.col**: label color.
- **label.cex**: label expansion.
- **label.pos**: label position.
- **label.offset**: label offset.
- **adjust.label.col**: whether to automatically adjust label color depending on the luminance of the node’s color/s.
- **normalize.layout**: whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.

Author(s)

Diego Diez
plotTRM

Plot an annotated TRM.

Description

This function plots the output findTRM() after it has been annotated with cluster information with annotateTRM() function. Cluster membership is plotted using a pie plot.

Usage

plotTRM(g, layout = layout.fruchterman.reingold, mar = .5, vertex.col, vertex.cex, vertex.lwd, edge.col, edge.lwd, edge.lty, label = TRUE, label.cex, label.col, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments

g a network object with cluster information (attribute piecolor).
layout graph layout, either a function or the output of a layout function.
mar plot margin.
vertex.col node color.
vertex.cex node size.
vertex.lwd node border line width.
edge.col edge color.
edge.lwd edge line width.
edge.lty edge line type.
label logical; whether to plot labels.
label.cex label expansion.
label.col label color.
label.pos label position.
label.offset label offset.
adjust.label.col whether to automatically adjust label color depending on the luminance of the node’s color.
normalize.layout whether to apply layout.norm (with limits xmin=-1, xmax=1, ymin=-1, ymax=1) to the layout.

Author(s)

Diego Diez
plotTRMlegend

Plot the legend of a TRM with information about the cluster families.

Description

This function just plots a legend with the cluster membership of the provided list of genes. The legend includes de most prominent families of each cluster and there is some name polishing as well.

Usage

plotTRMlegend(x, title = NULL, cex = 1)

Arguments

x list of family names or igraph object.
title title for the legend.
cex numeric value controlling the size of the legend’s text.

Author(s)

Diego Diez

processBiogrid

Process a data.frame with BioGRID data into a network for a target organism.

Description

Process a data.frame with BioGRID data into a network for a target organism.

Usage

processBiogrid(dblist, org = "human", simplify = TRUE, type = "physical", mimic.old = FALSE)

Arguments

dblist data.frame containing the BioGRID data.
org target organism (default: "human")
simplify whether to eliminate redundant edges (default TRUE)
type type of interaction (physical or genetic) to include (default: "physical")
mimic.old mimic old behavior of processBiogrid() when interactions for multiple species could be retrieved. Used only for testing.
Value

An igraph object.

Author(s)

Diego Diez

removeVertices

Remove nodes from a graph and returns the largest component

Description

Remove nodes from a graph and returns the largest component

Usage

`removeVertices(g, filter, keep.hanging = FALSE)`

Arguments

- `g`: graph to remove nodes.
- `filter`:
- `keep.hanging`: (logical) whether to return the largest component or not.

Author(s)

Diego Diez

writeTRMreport

Export a table with TRM nodes and associated information.

Description

This function generates a data.frame with the nodes in the provided graph and associated annotations.

Usage

`writeTRMreport(graph, file, organism, target, query, sort.by = "symbol")`
Arguments

- **graph**: a graph object.
- **file**: file name.
- **organism**: organisms for the annotations.
- **target**: target transcription factor.
- **query**: query transcription factors.
- **sort.by**: order the columns of the data.frame by (default: "symbol").

Author(s)

Diego Diez
Index

* datasets
 biogrid_hs, 5
 biogrid_mm, 5

* package
 rTRM-package, 2

annotateFreq, 3
annotateModule, 4
annotateTRM, 4

biogrid_hs, 5
biogrid_mm, 5

findTRM, 6

getAnnotations, 7
getBiogridData, 7
getConcentricList, 8
getLargestComp, 9
getMaps, 9
getMatrices, 10
getMotifsFromEntrezgene, 10
getMotifsFromSymbol, 11
getOrthologFromMatrix, 11
getOrthologs, 12
getOrthologsFromBiomart, 12
getSequencesFromGenome, 13
getSimilarityMatrix, 14
getTFclass, 14
getTFclassFromEntrezgene, 15
getTFterms, 15

initBiomart, 16

layout.arc, 16
layout.concentric, 17

plotDegree, 17
plotGraph, 18
plotTRM, 19
plotTRMlegend, 20

processBiogrid, 20
removeVertices, 21
rTRM(rTRM-package), 2
rTRM-package, 2
writeTRMreport, 21

23