Package ‘rTRM’

March 6, 2024

Type Package

Title Identification of Transcriptional Regulatory Modules from Protein-Protein Interaction Networks

Version 1.40.0

Date 2015-12-25

Author Diego Diez

Depends R (>= 2.10), igraph (>= 1.0)

Imports methods, AnnotationDbi, DBI, RSQLite

Suggests RUnit, BiocGenerics, MotifDb, graph, PWMEnrich, biomaRt,
 Biostrings, BSgenome.Mmuskucle.UCSC.mm8.masked, org.Hs.eg.db,
 org.Mm.eg.db, ggplot2, BiocStyle, knitr, rmarkdown

Maintainer Diego Diez <diego10ruiz@gmail.com>

Description rTRM identifies transcriptional regulatory modules (TRMs) from protein-protein interaction networks.

License GPL-3

LazyLoad yes

ByteCompile yes

VignetteBuilder knitr

biocViews Transcription, Network, GeneRegulation, GraphAndNetwork

URL https://github.com/ddiez/rTRM

BugReports https://github.com/ddiez/rTRM/issues

git_url https://git.bioconductor.org/packages/rTRM

git_branch RELEASE_3_18

git_last_commit d1183dd

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-05
R topics documented:

- `rTRM-package` ... 2
- `annotateFreq` ... 3
- `annotateModule` .. 4
- `annotateTRM` ... 4
- `biogrid_hs` .. 5
- `biogrid_mm` .. 5
- `findTRM` .. 6
- `getAnnotations` .. 7
- `getBiogridData` .. 7
- `getConcentricList` ... 8
- `getLargestComp` ... 9
- `getMaps` ... 9
- `getMatrices` ... 10
- `getMotifsFromEntrezgene` 10
- `getMotifsFromSymbol` 11
- `getOrthologFromMatrix` 11
- `getOrthologs` ... 12
- `getOrthologsFromBiomart` 12
- `getSequencesFromGenome` 13
- `getSimilarityMatrix` 14
- `getTFclass` .. 14
- `getTFclassFromEntrezgene` 15
- `getTFterms` .. 15
- `initBiomart` ... 16
- `layout.arc` .. 16
- `layout.concentric` ... 17
- `plotDegree` .. 17
- `plotGraph` .. 18
- `plotTRM` ... 19
- `plotTRMlegend` ... 20
- `processBiogrid` .. 20
- `removeVertices` .. 21
- `writeTRMreport` .. 21

Index

<table>
<thead>
<tr>
<th>rTRM-package</th>
<th>Identification transcription regulatory modules (TRMs)</th>
</tr>
</thead>
</table>

Description

This package identifies transcriptional regulatory modules (TRMs) from PPI networks.

Details
annotateFreq

Package: rTRM
Type: Package
Version: 1.0
Date: 2013-02-01
License: GPL-3

Author(s)
Diego Diez
Maintainer: Diego Diez <diego10ruiz@gmail.com>

Examples
getAnnotations()

annotateFreq | Annotate a graph with frequency of nodes/edges in other graphs.

Description
Returns an annotated graph with node size and edge width proportional at the number of occurrences of nodes/edges in a supplied list of graphs.

Usage
annotateFreq(g, graph_list)

Arguments
 g target graph to annotate.
 graph_list list of graph to extract information from.

Details
Commonly graph_list refers to a list of predicted TRMs (with findTRM) and g is the combined TRM. This function annotates the nodes/edges in g to known their frequency in the original list of graphs.

Author(s)
Diego Diez
annotateModule

Annotate a network module with information

Description

Uses information about expression, enrichment and parent PPI network to annotate a subgraph.

Usage

```
annotateModule(g, enrich, trm, targets, ppi, exprs, tfs)
```

Arguments

- `g`: graph to annotate in igraph format.
- `enrich`: list of enriched transcription factors (or motifs).
- `trm`: TRM to compare with (to identify bridges).
- `targets`: list of target transcription factors (typically those with ChIP-seq data).
- `ppi`: parent PPI network (to check membership of nodes).
- `exprs`: list of entrezgene ids representing expressed genes.
- `tfs`: list of...

Author(s)

Diego Diez

annotateTRM

Annotate a network object with information about clusters.

Description

This function takes a network object and includes cluster information as piecolor attribute, suitable to be plotted with plotTRM()

Usage

```
annotateTRM(g, target)
```

Arguments

- `g`: a network object.
- `target`: target node (from findTRM())

Author(s)

Diego Diez
biogrid_hs

Network dataset of class 'igraph'

Description

Human protein-protein interaction (PPI) dataset from the BioGRID database release.

Usage

```r
data(biogrid_hs)
```

Format

An igraph object.

Author(s)

Diego Diez

biogrid_mm

Network dataset of class 'igraph'

Description

Mouse protein-protein interaction (PPI) dataset from the BioGRID database.

Usage

```r
data(biogrid_mm)
```

Format

An igraph object.

Author(s)

Diego Diez
findTRM

Identifies a TRM associated with a target node and one or more query nodes.

Description

This is the main function used to identify TRMs. It takes a graph object and use it to search in the neighborhood of a target node for query nodes that are separated a maximum distance (controlled by max.bridge parameter).

Usage

findTRM(g, target, query, method = "nsa", max.bridge = 1, extended = FALSE, strict = FALSE, type = "igraph")

Arguments

g
the network used to identify TRMs (tipically a PPI network)
target
character variable with the name of a target node.
query
character vector with the list of query nodes.
method
method to use.
max.bridge
maximum number of nodes allowed between the target and query nodes.
extended
whether to allow distance restrictions to include both target and query nodes.
strict
whether to return a single component (using decompose.graph())
type
type of graph object to return, either an "igraph" (the default) or a "graphNEL"

Details

Currently only "first" and "nsa" methods are available. First is used for tests and returns the first neighborhood of the target node. Method "nsa" implements the TRM finding algorithm.

Value

A network in igraph format or NULL.

Author(s)

Diego Diez

Examples

load example network.
load(system.file(package = "rTRM", "extra/example.rda"))

define target and query nodes.
target = "N6"
query = c("N7", "N12", "N28")
find TRM:
s = findTRM(g, target = target, query = query, method = "nsa", max.bridge = 1)

getAnnotations

Obtain the ’pwm’ table from the database, containing PWM’s annotations.

Description

Obtain the ’pwm’ table from the database, containing PWM’s annotations.

Usage

getAnnotations(filter, dbname = NULL)

Arguments

filter
one or more PWM ids.

dbname
the location of the database (to load custom databases).

Author(s)

Diego Diez

Examples

ann = getAnnotations()

getBiogridData

Downloads network data from BioGRID in TAB2 format.

Description

This function is used to generate igraph network objects from BioGRID data. It downloads the database into a data.frame object that can be used later with processBiogrid()

Usage

getBiogridData(release)

Arguments

release
release of BioGRID to download.
Details

The release to download must be specified as currently there is no way to download automatically the latests release.

Value

An data.frame object.

Author(s)

Diego Diez

getConcentricList
Returns a list with nodes membership to be used in a graph with a concentric layout

Description

Specify target and enriched motifs and returns a list with circle membership. This information is used by layout.concentric to position the nodes in plots.

Usage

getConcentricList(g, t, e, max.size = 60, order.by = "label")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>graph to layout (extract the nodes).</td>
</tr>
<tr>
<td>t</td>
<td>list of target nodes (will go in the center).</td>
</tr>
<tr>
<td>e</td>
<td>list of enriched nodes (will go in the periphery).</td>
</tr>
<tr>
<td>max.size</td>
<td>maximum number of nodes per layer.</td>
</tr>
<tr>
<td>order.by</td>
<td>ordering attribute for list before split.</td>
</tr>
</tbody>
</table>

Author(s)

Diego Diez
getLargestComp

Gets the largest connected component

Description

Returns the largest connected component from a graph.

Usage

```r
getLargestComp(g)
```

Arguments

- `g`: an igraph object.

Author(s)

Diego Diez

getMaps

Obtain the mapping between PWM and Entrez Gene identifiers.

Description

Obtain the mapping between PWM and Entrez Gene identifiers.

Usage

```r
getMaps(filter, dbname = NULL)
```

Arguments

- `filter`: vector of PWMs to filter results.
- `dbname`: vector of Entrez Gene identifiers.

Author(s)

Diego Diez

Examples

```r
getMaps()
```
getMotifFromEntrezgene

Description
Retrieve PWMs associated with genes provided as entrezgene identifiers.

Usage
getMotifsFromEntrezgene(e, organism)

Arguments
- e: vector of entrezgene identifiers to retrieve exiting PWMs.
- organism: target organism.

Author(s)
Diego Diez

getMatrices
Obtain a list of PWMs.

Description
Returns a list of PWMs, by default all the PWMs in the database. Alternatively, filtered by the ids provided by filter.

Usage
getMatrices(filter, dbname = NULL)

Arguments
- filter: list of PWMs to filter results.
- dbname:

Author(s)
Diego Diez

Examples
pwms = getMatrices()
getMotifsFromSymbol

Retrieve PWMs associated with genes provided as symbol.

Description
Retrieve PWMs associated with genes provided as symbol.

Usage
getMotifsFromSymbol(s, organism)

Arguments
s vector of gene symbols.
organism target organism.

Author(s)
Diego Diez

getOrthologFromMatrix
Obtain gene identifiers for a target organism associated with a list of PWMs.

Description
Obtain gene identifiers for a target organism associated with a list of PWMs.

Usage
getOrthologFromMatrix(filter, organism = "human", dbname = NULL)

Arguments
filter vector of matrices to filter results.
organism target organism.
dbname database- usually not need to specify.

Author(s)
Diego Diez
getOrthologs

Obtain the mapping to Entrez Gene identifiers in the given organism.

Description
Obtain the mapping to Entrez Gene identifiers in the given organism.

Usage
getOrthologs(filter, organism, dbname = NULL)

Arguments
- filter: entrezgene identifiers for the original mapping (PWM to gene). These can belong to diverse species and correspond to the “entrezgene” column obtained with getMaps() function.
- organism: target organisms, currently supported "human" and "mouse"
- dbname

Details
If organism is not specified the entire table of orthologs (with all supported species) is returned.

Value
A data.frame object with ortholog information.

Author(s)
Diego Diez

Examples
getOrthologs(organism = "human")

getOrthologsFromBiomart

Returns ortholog genes for a target organism

Description
Returns ortholog genes for a target organism

Usage
getOrthologsFromBiomart(eg, target_org, mart)
getSequencesFromGenome

Arguments

eg list of entrezgene ids to obtain orthologs.
target_org target organism.
mart mart object.

Author(s)

Diego Diez

getSequencesFromGenome

Retrieves a set of sequences from a BSgenome object and optionally appends a label to each sequence id.

Description

This is just a wrapper to getSeq() in package Biostrings that facilitates adding a label to each sequence.

Usage

getSequencesFromGenome(BED, genome, append.id)

Arguments

BED file with peak locations in BED format.
genome a BSgenome object (e.g. Mmusculus)
append.id optional label to append to each sequence id.

Author(s)

Diego Diez
getSimilarityMatrix Compute similarity matrix of list of graphs.

Description
This function computes pair-wise similarity based on common nodes (default) or edges between the graphs passed as a list.

Usage
getSimilarityMatrix(g_list, type = "edges")

Arguments
 g_list list of graph objects.
 type type of similarity, either node or edge (default).

Author(s)
Diego Diez

getTFclass Return the ontology in the TFclass database associated with an entrezgene identifier

Description
Return the ontology in the TFclass database associated with an entrezgene identifier.

Usage
getTFclass(dbname = NULL)

Arguments
 dbname SQLite file to use as database.

Author(s)
Diego Diez
getTFclassFromEntrezgene

Applies `getTFclass` sequentially to a vector of `entrezgene` identifiers.

Description

Applies `getTFclass` sequentially to a vector of `entrezgene` identifiers.

Usage

```r
getTFclassFromEntrezgene(x, subset = "Class", tfclass, dbname = NULL)
```

Arguments

- `x`: vector of `entrezgene` identifiers.
- `subset`: level in the ontology (subset in `TFclass` terminology. By default "Class")
- `tfclass`: data.frame with `tfclass` data to pass to the recursive function.
- `dbname`: SQLite file to use as database.

Author(s)

Diego Diez

getTFterms

Get terms associated with a specified `TFclass` subset.

Description

Returns a vector of names (not ids) with the members of a particular subset in the `TFclass` database. By default it returns the `Class` subset.

Usage

```r
getTFterms(subset = "Class", dbname = NULL)
```

Arguments

- `subset`: a subset in `TFclass` (default `Class`).
- `dbname`: SQLite file to use as database.

Author(s)

Diego Diez
initBiomart

Initializes mart objects to identify ortholog genes

Description

Initializes mart objects to identify ortholog genes.

Usage

`initBiomart(filter, biomart = "ensembl", host)`

Arguments

- `filter`
 list of supported organisms
- `biomart`
 host
- `host`

Author(s)

Diego Diez

layout.arc

Layouts a graph using arcs.

Description

Generates a layout for graphs that places in the center the target transcription factors, in the sides the enriched transcription factors and in between of them the bridge proteins.

Usage

`layout.arc(g, target, query)`

Arguments

- `g`
 the graph object to layout.
- `target`
 list of target nodes (typically target transcription factors.)
- `query`
 list of query nodes (typically enriched transcription factors.)

Value

A matrix with the x and y locations of each node in the target graph.

Author(s)

Diego Diez
layout.concentric

Generates a concentric layout for graphs

Description

Generates a matrix with x,y coordinates for each node in a target graph, which layouts the nodes using concentric circles.

Usage

```
layout.concentric(g, concentric = NULL, radius = NULL, order.by)
```

Arguments

- `g` graph (igraph) to layout.
- `concentric` list with the components of each layer.
- `radius` radius of each layer.
- `order.by` graph attributes to order nodes by.

Author(s)

Diego Diez

plotDegree

Plot degree distribution for network nodes

Description

Plots the degree distribution and fits a power law, returning in the legend the values of the fitted parameters.

Usage

```
plotDegree(g)
```

Arguments

- `g` igraph object

Author(s)

Diego Diez
Describe the function and its arguments in a clear and concise manner.
plotTRM

Plot an annotated TRM.

Description

This function plots the output findTRM() after it has been annotated with cluster information with annotateTRM() function. Cluster membership is plotted using a pie plot.

Usage

plotTRM(g, layout = layout.fruchterman.reingold, mar = .5, vertex.col, vertex.cex, vertex.lwd, edge.col, edge.lwd, edge.lty, label = TRUE, label.cex, label.col, label.pos = NULL, label.offset = 1.5, adjust.label.col = FALSE, normalize.layout = TRUE)

Arguments

g
layout
mar
vertex.col
vertex.cex
vertex.lwd
edge.col
edge.lwd
edge.lty
label
label.cex
label.col
label.pos
label.offset
adjust.label.col
normalize.layout

Author(s)

Diego Diez
plotTRMlegend
Plot the legend of a TRM with information about the cluster families.

Description

This function just plots a legend with the cluster membership of the provided list of genes. The legend includes the most prominent families of each cluster and there is some name polishing as well.

Usage

```r
plotTRMlegend(x, title = NULL, cex = 1)
```

Arguments

- `x`: list of family names or igraph object.
- `title`: title for the legend.
- `cex`: numeric value controlling the size of the legend’s text.

Author(s)

Diego Diez

processBiogrid
Process a data.frame with BioGRID data into a network for a target organism

Description

Process a data.frame with BioGRID data into a network for a target organism.

Usage

```r
processBiogrid(dblist, org = "human", simplify = TRUE, type = "physical", mimic.old = FALSE)
```

Arguments

- `dblist`: data.frame containing the BioGRID data.
- `org`: target organism (default: "human")
- `simplify`: whether to eliminate redundant edges (default: TRUE)
- `type`: type of interaction (physical or genetic) to include (default: "physical")
- `mimic.old`: mimic old behavior of processBiogrid() when interactions for multiple species could be retrieved. Used only for testing.
removeVertices

Value

An igraph object.

Author(s)

Diego Diez

Description

Remove nodes from a graph and returns the largest component

Usage

removeVertices(g, filter, keep.hanging = FALSE)

Arguments

g graph to remove nodes.

filter

keep.hanging (logical) whether to return the largest component or not.

Author(s)

Diego Diez

writeTRMreport

Export a table with TRM nodes and associated information.

Description

This function generates a data.frame with the nodes in the provided graph and associated annotations.

Usage

writeTRMreport(graph, file, organism, target, query, sort.by = "symbol")
Arguments

- **graph**: a graph object.
- **file**: file name.
- **organism**: organisms for the annotations.
- **target**: target transcription factor.
- **query**: query transcription factors.
- **sort.by**: order the columns of the data.frame by (default: "symbol").

Author(s)

Diego Diez
Index

* datasets
 biogrid_hs, 5
 biogrid_mm, 5

* package
 rTRM-package, 2

annotateFreq, 3
annotateModule, 4
annotateTRM, 4

biogrid_hs, 5
biogrid_mm, 5

findTRM, 6

getAnnotations, 7
getBiogridData, 7
getConcentricList, 8
getLargestComp, 9
getMaps, 9
getMatrices, 10
getMotifsFromEntrezgene, 10
getMotifsFromSymbol, 11
getOrthologFromMatrix, 11
getOrthologs, 12
getOrthologsFromBiomart, 12
getSequencesFromGenome, 13
getSimilarityMatrix, 14
getTFclass, 14
getTFclassFromEntrezgene, 15
getTFterms, 15

initBiomart, 16

layout.arc, 16
layout.concentric, 17

plotDegree, 17
plotGraph, 18
plotTRM, 19
plotTRMlegend, 20

processBiogrid, 20
removeVertices, 21
rTRM(rTRM-package), 2
writeTRMreport, 21