Package ‘qsvaR’

February 28, 2024

Title Generate Quality Surrogate Variable Analysis for Degradation Correction

Version 1.6.0

Date 2023-06-27

Description The qsvaR package contains functions for removing the effect of degradation in rna-seq data from postmortem brain tissue. The package is equipped to help users generate principal components associated with degradation. The components can be used in differential expression analysis to remove the effects of degradation.

License Artistic-2.0

URL https://github.com/LieberInstitute/qsvaR

BugReports https://support.bioconductor.org/t/qsvaR

biocViews Software, WorkflowStep, Normalization, BiologicalQuestion, DifferentialExpression, Sequencing, Coverage

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests BioCFileCache, BiocStyle, covr, knitr, limma, RefManageR, markdown, sessioninfo, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports sva, stats, ggplot2, methods

Depends R (>= 4.2), SummarizedExperiment

LazyData true

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/qsvaR

git_branch RELEASE_3_18

git_last_commit c2cf2d7

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18
Date/Publication 2024-02-27

Author Joshua Stolz [aut] (<https://orcid.org/0000-0001-5694-5247>),
Hedia Tnani [ctb, cre] (<https://orcid.org/0000-0002-0380-9740>),
Leonardo Collado-Torres [ctb] (<https://orcid.org/0000-0003-2140-308X>)

Maintainer Hedia Tnani <hediatnani0@gmail.com>

R topics documented:

- covComb_tx_deg ... 2
- degradation_tstats ... 3
- DEqual ... 3
- getDegTx ... 4
- getPCs ... 5
- get_qsvs ... 6
- k_qsvs ... 6
- qSVA ... 7
- select_transcripts .. 8
- transcripts ... 9

Index

covComb_tx_deg RSE object of RNA-seq data that serves as output for degradation analysis

Description

This data was generated from an experiment using degraded RNA-seq samples post-mortem brain tissue. The transcripts included are the result of the qsva expanded framework study and will be used to remove the effect of degradation in bulk RNA-seq data.

Format

A RangedSummarizedExperiment-class

See Also

getPCs k_qsvs getDegTx
Description

These t-statistics are derived from the same data that was used for `covComb_tx_deg`. They are the results from main model where we determined the relationship with degradation time adjusting for the brain region (so parallel degradation effects across brain regions). They are used for plotting in `DEqual()`.

Format

A `data.frame()` with the t-statistics for degradation time. The `rownames()` are the GENCODE transcript IDs.

See Also

`DEqual`

DEqual

Differential expression quality (DEqual) plot

Description

A DEqual plot compares the effect of RNA degradation from an independent degradation experiment on the y axis to the effect of the outcome of interest. They were originally described by Jaffe et al, PNAS, 2017 https://doi.org/10.1073/pnas.1617384114. Other DEqual versions are included in Collado-Torres et al, Neuron, 2019 https://doi.org/10.1016/j.neuron.2019.05.013. This function compares your t-statistics of interest computed on transcripts against the t-statistics from degradation time adjusting for the six brain regions from degradation experiment data used for determining `covComb_tx_deg`.

Usage

`DEqual(DE)`

Arguments

DE

A `data.frame()` with one column containing the t-statistics from Differential Expression, typically generated with `limma::topTable()`. The `rownames(DE)` should be transcript GENCODE IDs.

Value

A `ggplot` object of the DE t-statistic vs the DE statistic from degradation.
getDegTx

Examples

```r
## Random differential expression t-statistics for the same transcripts
## we have degradation t-statistics for in `degradation_tstats`.
set.seed(101)
random_de <- data.frame(
  t = rt(nrow(degradation_tstats), 5),
  row.names = sample(
    rownames(degradation_tstats),
    nrow(degradation_tstats)
  )
)
## Create the DEqual plot
DEqual(random_de)
```

getDegTx

Obtain expression matrix for degraded transcripts

Description

This function is used to obtain a `RangedSummarizedExperiment-class` of transcripts and their expression values. These transcripts are selected based on a prior study of RNA degradation in postmortem brain tissues. This object can later be used to obtain the principle components necessary to remove the effect of degradation in differential expression.

Usage

```r
getDegTx(
  rse_tx,
  type = "cell_component",
  sig_transcripts = select_transcripts(type),
  assayname = "tpm"
)
```

Arguments

- **rse_tx** A `RangedSummarizedExperiment-class` object containing the transcript data desired to be studied.
- **type** A character(1) specifying the transcripts set type. These were determined by Joshua M. Stolz et al, 2022. Here the names "cell_component", "top1500", and "standard" refer to models that were determined to be effective in removing degradation effects. The "standard" model involves taking the union of the top 1000 transcripts associated with degradation from the interaction model and the main effect model. The "top1500" model is the same as the "standard model except the union of the top 1500 genes associated with degradation is selected. The most effective of our models, "cell_component", involved deconvolution of the degradation matrix to determine the proportion of cell types within our
getPCs

studied tissue. These proportions were then added to our `model.matrix()` and the union of the top 1000 transcripts in the interaction model, the main effect model, and the cell proportions model were used to generate this model of qSVs.

`sig_transcripts`
A list of transcripts determined to have degradation signal in the qsva expanded paper.

`assayname`
character string specifying the name of the assay desired in `rse_tx`

Value
A `RangedSummarizedExperiment-class` object.

Examples

```r
getDegTx(covComb_tx_deg)  
stopifnot(mean(rowMeans(assays(covComb_tx_deg)$tpm)) > 1)
```

getPCs
PCs from transcripts

Description

This function returns the pcs from the obtained `RangedSummarizedExperiment` object of selected transcripts

Usage

```r
getPCs(rse_tx, assayname = "tpm")
```

Arguments

- `rse_tx`
 Ranged Summarized Experiment with only transcripts selected for qsva

- `assayname`
 character string specifying the name of the assay desired in `rse_tx`

Value

`prcomp` object generated by taking the pcs of degraded transcripts

Examples

```r
getPCs(covComb_tx_deg, "tpm")
```
get_qsvs
Generate matrix of qsvs

Description

Using the pcs and the k number of components be included, we generate the qsva matrix.

Usage

```
get_qsvs(qsvPCs, k)
```

Arguments

- `qsvPCs`
 prcomp object generated by taking the pcs of degraded transcripts
- `k`
 number of qsvs to be included.

Value

matrix with k principal components for each sample.

Examples

```r
qsv <- list(x = matrix(seq_len(9), ncol = 3))
get_qsvs(qsv, 2)
```

k_qsvs
Apply num.sv algorithm to determine the number of pcs to be included

Description

Apply num.sv algorithm to determine the number of pcs to be included

Usage

```
k_qsvs(rse_tx, mod, assayname)
```

Arguments

- `rse_tx`
 A RangedSummarizedExperiment-class object containing the transcript data desired to be studied.
- `mod`
 Model Matrix with necessary variables the you would model for in differential expression
- `assayname`
 character string specifying the name of the assay desired in rse_tx
qSVA

Value

integer representing number of pcs to be included

Examples

```r
## First we need to define a statistical model. We'll use the example
covComb_tx_deg data. Note that the model you'll use in your own data
might look different from this model.
mod <- model.matrix(~ mitoRate + Region + rRNA_rate + totalAssignedGene + RIN,
data = colData(covComb_tx_deg))
```

```r
## To ensure that the results are reproducible, you will need to set a
## random seed with the set.seed() function. Internally, we are using
## sva::num.sv() which needs a random seed to ensure reproducibility of the
## results.
set.seed(20230621)
k_qsvs(covComb_tx_deg, mod, "tpm")
```

qSVA

A wrapper function used to perform qSVA in one step.

Description

A wrapper function used to perform qSVA in one step.

Usage

```r
gSVA(
  rse_tx,
  type = "cell_component",
  sig_transcripts = select_transcripts(type),
  mod,
  assayname
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rse_tx</td>
<td>A RangedSummarizedExperiment-class object containing the transcript data desired to be studied.</td>
</tr>
<tr>
<td>type</td>
<td>a character string specifying which model you would like to use when selecting a degradation matrix.</td>
</tr>
<tr>
<td>sig_transcripts</td>
<td>A list of transcripts that are associated with degradation signal. Use <code>select_transcripts()</code> to select sets of transcripts identified by the qSVA expanded paper. Specifying a character() input of ENSEMBL transcript IDs (or whatever values you have at <code>rownames(rse_tx)</code>) obtained outside of <code>select_transcripts()</code> overrides the user friendly type argument. That is, this argument provides more fine tuning options for advanced users.</td>
</tr>
</tbody>
</table>
select_transcripts

mod Model Matrix with necessary variables the you would model for in differential expression

assayname character string specifying the name of the assay desired in rse_tx

Value

matrix with k principal components for each sample

Examples

First we need to define a statistical model. We'll use the example
covComb_tx_deg data. Note that the model you'll use in your own data
might look different from this model.
mod <- model.matrix(~ mitoRate + Region + rRNA_rate + totalAssignedGene + RIN,
 data = colData(covComb_tx_deg))

To ensure that the results are reproducible, you will need to set a
random seed with the set.seed() function. Internally, we are using
sva::num.sv() which needs a random seed to ensure reproducibility of the
results.
set.seed(20230621)
qSVA(rse_tx = covComb_tx_deg, type = "cell_component", mod = mod, assayname = "tpm")

select_transcripts Select transcripts associated with degradation

Description

Helper function to select which experimental model will be used to generate the qSVs.

Usage

select_transcripts(type = c("cell_component", "top1500", "standard"))

Arguments

type A character(1) specifying the transcripts set type. These were determined by Joshua M. Stolz et al, 2022. Here the names "cell_component", "top1500", and "standard" refer to models that were determined to be effective in removing degradation effects. The "standard" model involves taking the union of the top 1000 transcripts associated with degradation from the interaction model and the main effect model. The "top1500" model is the same as the "standard model" except the union of the top 1500 genes associated with degradation is selected. The most effective of our models, "cell_component", involved deconvolution of the degradation matrix to determine the proportion of cell types within our studied tissue. These proportions were then added to our model_matrix() and the union of the top 1000 transcripts in the interaction model, the main effect model, and the cell proportions model were used to generate this model of qSVs.
transcripts

Value

A character() with the transcript IDs.

Examples

Default set of transcripts associated with degradation
sig_transcripts <- select_transcripts()
length(sig_transcripts)
head(sig_transcripts)

Example where match.arg() auto-completes
select_transcripts("top")

transcripts

Transcripts for Degradation Models

Description

An object storing three lists of transcripts each corresponding to a model used in the degradation experiment. These were determined by Joshua M. Stolz et al, 2022. Here the names "cell_component", "top1500", and "standard" refer to models that were determined to be effective in removing degradation effects. The "standard" model involves taking the union of the top 1000 transcripts associated with degradation from the interaction model and the main effect model. The "top1500" model is the same as the "standard" model except the union of the top 1500 genes associated with degradation is selected. The most effective of our models, "cell_component", involved deconvolution of the degradation matrix to determine the proportion of cell types within our studied tissue. These proportions were then added to our `model.matrix()` and the union of the top 1000 transcripts in the interaction model, the main effect model, and the cell proportions model were used to generate this model of qSVs.

Usage

transcripts

Format

A list() with character strings containing the transcripts selected by each model. Each string is a GENCODE transcript IDs.

See Also

select_transcripts
Index

* datasets
 covComb_tx_deg, 2
 degradation_tstats, 3
 transcripts, 9

 covComb_tx_deg, 2, 3
 degradation_tstats, 3
 DEqual, 3, 3

 get_qsvs, 6
 getDegTx, 2, 4
 getPCs, 2, 5

 k_qsvs, 2, 6

 qSVA, 7

 RangedSummarizedExperiment-class, 2, 4–7

 select_transcripts, 8, 9

 transcripts, 9