Package ‘projectR’

March 28, 2024

Type Package
Title Functions for the projection of weights from PCA, CoGAPS, NMF, correlation, and clustering
Version 1.18.0
Author Gaurav Sharma, Genevieve Stein-O'Brien
Maintainer Genevieve Stein-O'Brien <gsteinobrien@gmail.com>
Description Functions for the projection of data into the spaces defined by PCA, CoGAPS, NMF, correlation, and clustering.
License GPL (>=2)
Imports methods, cluster, stats, limma, NMF, ROCr, ggalluvial, RColorBrewer, dplyr, reshape2, viridis, scales, Matrix, MatrixModels, ggplot2, cowplot, ggrepel, umap, tsne
Suggests BiocStyle, CoGAPS, gridExtra, grid, testthat, devtools, rmarkdown, knitr, rmarkdown, ComplexHeatmap, gplots
LazyData TRUE
RoxygenNote 7.2.3
Encoding UTF-8
VignetteBuilder knitr
biocViews FunctionalPrediction, GeneRegulation, BiologicalQuestion, Software
BugReports https://support.bioconductor.org/t/projectR/
URL https://github.com/genesofeve/projectR/
Depends R (>= 4.0.1)
git_url https://git.bioconductor.org/packages/projectR
git_branch RELEASE_3_18
git_last_commit 91ca9bd
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-27
alluvialMat

Description

Function to provide alluvial matrix for generating alluvial plot
Usage

```r
alluvialMat(
  projection,
  annotations,
  annotationName = "Cell type",
  annotationType = "Cell",
  plot = TRUE,
  minPropExplained = 0.75,
  pvalThreshold = 0.05,
  qvalThreshold = 0.05
)
```

Arguments

- `projection`: a projection generated from projectR, ensure that full = TRUE while generating projection
- `annotations`: a character vector of annotations for the data
- `annotationName`: a character for collective name of the annotations, default is "Cell type"
- `annotationType`: a character indicating the type of data annotated, default is "Cell"
- `plot`: logical indicating whether to return the alluvial plot, default is TRUE
- `minPropExplained`: threshold for minimum proportion of samples that correspond to a pattern to be used for plotting
- `pvalThreshold`: threshold level of significance for p-value
- `qvalThreshold`: threshold level of significance for Benjamini-Hochberg corrected p-value

Value

A matrix to generate alluvial plots

Examples

```r
projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=AP.RNAseq6l3c3t$Amean, dataNames = map.ESepiGen4c1l[["GeneSymbols"]], full = TRUE)
alluvialMat(projection,pd.ESepiGen4c1l$Condition)
```

AP.RNAseq6l3c3t

CoGAPS patterns and genes weights for p.RNAseq6l3c3t

Description

AP.RNAseq6l3c3t contains the output of the gapsRun function in the CoGAPS package for data = p.RNAseq6l3c3t
Usage

AP.RNAseq6l3c3t

Format

A list of 12 items

<table>
<thead>
<tr>
<th>aucMat</th>
<th>aucMat</th>
</tr>
</thead>
</table>

Description

Calculates AUC values for each set of weights for each label and outputs the results as a matrix

Usage

aucMat(labels, weights)

Arguments

labels
a vector of labels whose length is equal to the number of columns in the weight matrix

weights
a matrix of weights from projection analysis

Value

A matrix of AUC values for each set of weights classifying each label.

Examples

`projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean, dataNames = map.ESepiGen4c1l[["GeneSymbols")]) -> projection
aucMat(pd.ESepiGen4c1l$Condition,projection)`

bonferroniCorrectedDifferences

Description

Calculate the (weighted) difference in means for each measurement between two groups.

Usage

bonferroniCorrectedDifferences(group1, group2, diff_weights = NULL, pvalue)`
cluster2pattern

Arguments

group1 count matrix 1
group2 count matrix 2
diff_weights loadings to weight the differential expression between the groups
pvalue significance value to threshold at

cluster2pattern Generic cluster2pattern function

Description

Function to make patterns of continuous weights from clusters.

Usage

cluster2pattern(clusters, NP, data, ...)

S4 method for signature 'character'
cluster2pattern(clusters, data)

S4 method for signature 'numeric'
cluster2pattern(clusters, data)

S4 method for signature 'kmeans'
cluster2pattern(clusters, data)

S4 method for signature 'hclust'
cluster2pattern(clusters, NP, data = NA)

Arguments

custers a cluster object which could be either an hclust or a kmeans object
NP number of desired patterns
data data used to make clusters object
... Additional arguments to cluster2pattern

Value

An object of class pclust containing pattern weights corresponding for each cluster.
Examples

```r
k.RNAseq6l3c3t<-kmeans(t(p.RNAseq6l3c3t),3)
cluster2pattern(clusters=k.RNAseq6l3c3t,data=p.RNAseq6l3c3t)

distp <- dist(t(p.RNAseq6l3c3t))
hc.RNAseq6l3c3t <- hclust(distp)
cluster2pattern(clusters=hc.RNAseq6l3c3t,NP=3,data=p.RNAseq6l3c3t)
```

cluster2pattern-class
`cluster2pattern`

Description

class of `cluster2pattern` output.

Slots

- `clusterMatrix` matrix of continuous values for projection that is output of `cluster2pattern` function

clusterPlotR
Generic `clusterPlotR` function

Description

plotting function for clustering objects

Usage

```r
clusterPlotR(cData, cls, x, NC, ...)
```

```r
## S4 method for signature 'ANY,kmeans'
clusterPlotR(  
cData = NA,
cls = NA,
x = NA,
NC = NA,
annoIndx = NA,
label = NULL,
...)
```

```r
## S4 method for signature 'ANY,hclust'
clusterPlotR(  
cData = NA,
cls = NA,
```
correlateR

cData = NA,
NC = NA,
annoIndx = NA,
label = NULL,
...
)

Arguments

cData data used to get clusters
cls a cluster (kmeans or hclust) object
x a vector of length equal to number of samples to use for plotting
NC vector of integers indicating which clusters to use
... additional parameters for plotting. ex. pch,cex,col,labels, xlab, etc.
annoIndx vector indexing into subsets for plotting
label character vector to use for plotting text, defaults is NULL

Value

A plot of the mean behavior for each cluster

Examples

Not run:
k.RNAseq6l3c3t<-kmeans(p.RNAseq6l3c3t,22)
clusterPlotR(p.RNAseq6l3c3t, cls=k.RNAseq6l3c3t,NC=1,x=pd.RNAseq6l3c3t$days,
col=pd.RNAseq6l3c3t$color)
End(Not run)

correlateR
correlateR

description

Function to extract genes highly correlated with a gene or reference expression pattern.

Usage

correlateR(genes, dat, threshtype = "R", threshold = 0.7, absR = FALSE, ...)

correlateR
correlateR
Arguments

genes gene or character vector of genes for reference expression pattern
dat matrix or data frame with genes to be used for to calculate correlation
threshtype Default "R" indicates thresholding by R value or equivalent. Alternatively, "N"
 indicates a numerical cut off.
threshold numeric indicating value at which to make threshold.
absR logical indicating where to include both positive and negatively correlated genes
...
addtion inputs to cor, such as method

Details

If threshtype is "R" than threshold must be between -1 and 1. Otherwise if top N correlated genes
are required, set threshtype as "N" and set threshold = N, i.e, the number of correlated genes
required.

Value

A correlation matrix

Examples

 cor2T<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N", threshold=10, absR=TRUE)

correlateR-class correlateR

Description

class of correlateR output.

Slots

corM correlation matrix obtained from correlateR
CR.RNAseq6l3c3t

Description

CR.RNAseq6l3c3t contains the output of the CoGAPS function in the CoGAPS package for data = p.RNAseq6l3c3t

Usage

CR.RNAseq6l3c3t

Format

A CogapsResult object

geneMatchR

Generic geneMatchR function

Description

Matches genes across datasets

Usage

geneMatchR(
 data1,
 data2,
 data1Names = NULL,
 data2Names = NULL,
 merge = FALSE,
 ...
)

Arguments

data1 a data matrix, typically genes by samples
data2 an amplitude matrix, typically genes by factors
data1Names rownames of data matrix, for eg genenames
data2Names rownames of amplitude matrix to be matched to rownames of datamatrix
merge logical indicating whether or not to merged data sets
... Additional arguments to geneMatchR
getUMAP

Value
A list of genes (intersection) in both datasets. (if merge = TRUE, also returns merged data.)

Examples

geneMatchR(data1=p.ESepiGen4c1l$mRNA.Seq,data2=p.RNAseq6l3c3t,
data1Names=map.ESepiGen4c1l["GeneSymbols"])

getTSNE

Description
Function to provide tSNE of projection

Usage
getTSNE(projection, axis = 2, ...)

Arguments
projection matrix, a projection generated from projectR
axis integer, either 1 umap of projection or 2 for umap of transpose of projection
... additional arguments passed to tsne

Examples
projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean,
dataNames = map.ESepiGen4c1l["GeneSymbols"], full = TRUE)
projectionTSNE <- getTSNE(projection)

getUMAP

Description
Function to provide umap of projection

Usage
getUMAP(projection, axis = 2, umapMethod = "naive", umapConfig = umap.defaults)
glial_counts

Arguments

- **projection**: matrix, a projection generated from projectR
- **axis**: integer, either 1 for umap of projection or 2 for umap of transpose of projection
- **umapMethod**: character, implementation. Available methods are 'naive' (an implementation written in pure R) and 'umap-learn' (requires python package 'umap-learn')
- **umapConfig**: umap.config, a list of parameters to customize umap embedding

Value

A umap of projection

Examples

```r
library(umap)
projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=AP.RNAseq6l3c3t$Amean, dataNames = map.ESepiGen4c1l[["GeneSymbols"]], full = TRUE)
umapConfig = umap.defaults
umapConfig$n_neighbors = 3
projectionUMAP <- getUMAP(projection, umapConfig = umapConfig)
```

glial_counts

log-normalized count data from astrocytes and oligodendrocytes in the p6 mouse cortex.

Description

log-normalized count data from astrocytes and oligodendrocytes in the p6 mouse cortex.

Usage

`glial_counts`

Format

A gene (rows) by cell (column) matrix
initialize,cluster2pattern-method

Constructor for cluster2pattern

Description

Constructor for cluster2pattern

Usage

```r
## S4 method for signature 'cluster2pattern'
initialize(.Object, clusterMatrix, ...)
```

Arguments

- `.Object` clusterMatrix object
- `clusterMatrix` matrix of continuous values for projection that is output of cluster2pattern function
- `...` additional arguments to initialize cluster2pattern

Value

initialized cluster2pattern object

initialize,correlateR-method

Constructor for correlateR

Description

Constructor for correlateR

Usage

```r
## S4 method for signature 'correlateR'
initialize(.Object, corM, ...)
```

Arguments

- `.Object` correlateR object
- `corM` correlation matrix obtained from correlateR
- `...` additional arguments to initialize correlateR

Value

initialized correlateR object
initialize,rotatoR-method

Constructor for rotatoR

Description

Constructor for rotatoR

Usage

```r
## S4 method for signature 'rotatoR'
initialize(.Object, rotatedM, ...)
```

Arguments

- **.Object**: rotatoR object
- **rotatedM**: rotated matrix from rotatoR function
- **...**: additional arguments to initialize rotatoR

Value

initialized rotatoR object

intersectoR

Generic intersectoR function

Description

A function to find and test the intersecting values of two sets of objects, presumably the genes associated with patterns in two different datasets. Both the input objects need to be of the same type either kmeans or hclust.

Usage

```r
intersectoR(pSet1, pSet2, pval, ...)
```

```
## S4 method for signature 'kmeans,kmeans'
intersectoR(pSet1 = NA, pSet2 = NA, pval = 0.05, full = FALSE)

## S4 method for signature 'hclust,hclust'
intersectoR(pSet1 = NA, pSet2 = NA, pval = 0.05, full = FALSE, k = NULL)
```
Arguments

pSet1 an object for a set of patterns where each entry is a set of genes associated with a single pattern

pSet2 an object for a second set of patterns where each entry is a set of genes associated with a single pattern

pval the maximum p-value considered significant

full logical indicating whether to return full data frame of significantly overlapping sets. Default is false will return summary matrix.

k Numeric giving cut height for hclust objects, if a vector is given arguments will be applied to pSet1 and pSet2 in that order

Value

A list containing: Overlap matrix, overlap index, and overlapping sets.

Examples

```r
ESepiGen4c11mRNASeq <- p.ESepiGen4c11$mRNA.Seq
rownames(ESepiGen4c11mRNASeq) <- map.ESepiGen4c11$GeneSymbols

k.RNAseq6l3c3t<-kmeans(p.RNAseq6l3c3t,22)
k.ESepiGen4c11<-kmeans(ESepiGen4c11mRNASeq,10)
intersectoR(k.RNAseq6l3c3t, k.ESepiGen4c11, pval=.05)

h.RNAseq6l3c3t<-hclust(as.dist(1-(cor(t(p.RNAseq6l3c3t)))))
h.ESepiGen4c11<-hclust(as.dist(1-(cor(t(ESepiGen4c11mRNASeq)))))
intersectoR(pSet1=h.ESepiGen4c11, pSet2=h.RNAseq6l3c3t, pval=.05, k=c(3,4))
```

Description

map.ESepiGen4c11 contains gene annotations

Usage

map.ESepiGen4c11

Format

A data frames with 93 rows and 9 variables:
References

map.RNAseq6l3c3t

RNAseqing from human 3 iPS & 3 ES cell lines in 3 experimental condition at 3 time points

Description

map.RNAseq6l3c3 contains gene annotations for polyA bulk sequencing of 6 cell lines in 3 experimental condition at 3 time points.

Usage

map.RNAseq6l3c3t

Format

A data frames with 108 rows and 54 variables:

<table>
<thead>
<tr>
<th>microglial_counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>log-normalized count data from microglial cells in the p6 mouse cortex.</td>
</tr>
</tbody>
</table>

Description

log-normalized count data from microglial cells in the p6 mouse cortex.

Usage

microglial_counts

Format

A gene (rows) by cell (column) matrix
Description

p.ESepiGen4c11 contains log2(RPKM + 1) values for polyA bulk sequencing and log2 counts of normalized ChIPSeq reads of 1 cell lines with 2 replicates in 4 experimental conditions at a single time point.

Usage

p.ESepiGen4c11

Format

p.ESepiGen4c11 is a list of 6 data frames each with 93 rows and between 4 and 9 variables:

References

Description

p.RNAseq6l3c3t contains log2(RPKM + 1) values for polyA bulk sequencing of 6 cell lines in 3 experimental condition at 3 time points.

Usage

p.RNAseq6l3c3t

Format

A data frames with 108 rows and 54 variables:
pd.ESepiGen4cl1

Description

pd.ESepiGen4cl1.4cond contains sample phenotype and experimental information

Usage

pd.ESepiGen4cl1

Format

A data frames with 9 rows and 2 variables:

References

pd.RNAseq613c3t

Description

pd.RNAseq613c3t contains sample phenotype and experimental information for polyA bulk sequencing of 6 cell lines in 3 experimental condition at 3 time points.

Usage

pd.RNAseq613c3t

Format

A data frames with 54 rows and 38 variables:
plotConfidenceIntervals

Description

Generate point and line confidence intervals from provided estimates.

Usage

plotConfidenceIntervals(
 confidence_intervals,
 interval_name = c("low", "high"),
 pattern_name = NULL,
 sort = T,
 genes = NULL,
 weights = NULL,
 weights_clip = 0.99,
 weights_vis_norm = "none"
)

Arguments

confidence_intervals
A dataframe of features x estimates.

interval_name
names of columns that contain the low and high estimates, respectively. Default: c("low","high")

pattern_name
string to use as the title for plots.

sort
Boolean. Whether or not to sort genes by their estimates (default = T)

genes
a vector with names of genes to include in plot. If sort=F, estimates will be plotted in this order.

weights
optional. weights of features to include as annotation.

weights_clip
optional. quantile of data to clip color scale for improved visualization. Default: 0.99

weights_vis_norm
Which processed version of weights to visualize as a heatmap. Options are "none" (which uses provided weights) or "quantiles". Default: none

Value

A list with pointrange estimates and, if requested, a heatmap of pattern weights.
Description

Calculate the weighted difference in expression between two groups (group1 - group2)

Usage

```r
projectionDriveR(
  cellgroup1,
  cellgroup2,
  loadings,
  loadingsNames = NULL,
  pattern_name,
  pvalue = 1e-05,
  display = TRUE,
  normalize_pattern = TRUE
)
```

Arguments

- `cellgroup1`: gene x cell count matrix for cell group 1
- `cellgroup2`: gene x cell count matrix for cell group 2
- `loadings`: A matrix of continuous values defining the features
- `loadingsNames`: a vector with names of loading rows. Defaults to rownames.
- `pattern_name`: column of loadings for which drivers will be calculated.
- `pvalue`: confidence level for the bonferroni confidence intervals. Default 1e-5
- `display`: boolean. Whether or not to plot and display confidence intervals
- `normalize_pattern`: Boolean. Whether or not to normalize pattern weights.

Value

A list with weighted mean differences, mean differences, and differential genes that meet the provided significance threshold.
projectR

Generic projectR function

Description
A function for the projection of new data into a previously defined feature space.

Usage
projectR(data, loadings, dataNames = NULL, loadingsNames = NULL, ...)

S4 method for signature 'matrix,matrix'
projectR(
 data,
 loadings,
 dataNames = NULL,
 loadingsNames = NULL,
 NP = NA,
 full = FALSE,
 family = "gaussianff",
 bootstrapPval = FALSE,
 bootIter = 1000
)

S4 method for signature 'dgCMatrix,matrix'
projectR(
 data,
 loadings,
 dataNames = NULL,
 loadingsNames = NULL,
 NP = NA,
 full = FALSE,
 family = "gaussianff"
)

S4 method for signature 'matrix,LinearEmbeddingMatrix'
projectR(
 data,
 loadings,
 dataNames = NULL,
 loadingsNames = NULL,
 NP = NA,
 full = FALSE,
 model = NA,
 family = "gaussianff",
 bootstrapPval = FALSE,
 bootIter = 1000
)
projectR

```r
## S4 method for signature 'matrix,prcomp'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE
)

## S4 method for signature 'matrix,rotatoR'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE
)

## S4 method for signature 'matrix,correlateR'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  bootstrapPval = FALSE,
  bootIter = 1000
)

## S4 method for signature 'matrix,hclust'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  full = FALSE,
  targetNumPatterns,
  sourceData,
  bootstrapPval = FALSE,
  bootIter = 1000
)

## S4 method for signature 'matrix,kmeans'
```
projectR(
 data,
 loadings,
 dataNames = NULL,
 loadingsNames = NULL,
 full = FALSE,
 sourceData,
 bootstrapPval = FALSE,
 bootIter = 1000
)

S4 method for signature 'matrix,cluster2pattern'
projectR(
 data,
 loadings,
 dataNames = NULL,
 loadingsNames = NULL,
 full = FALSE,
 sourceData,
 bootstrapPval = FALSE,
 bootIter = 1000
)

Arguments

- **data**: Target dataset into which you will project. It must of type matrix.
- **loadings**: Loadings learned from source dataset.
- **dataNames**: A vector containing unique name, i.e. gene names, for the rows of the target dataset to be used to match features with the loadings, if not provided by `rownames(data)`. Order of names in vector must match order of rows in data.
- **loadingsNames**: A vector containing unique names, i.e. gene names, for the rows of loadings to be used to match features with the data, if not provided by `rownames(loadings)`. Order of names in vector must match order of rows in loadings.
- **...**: Additional arguments to `projectR`.
- **NP**: Vector of integers indicating which columns of loadings object to use. The default of NP=NA will use entire matrix.
- **full**: Logical indicating whether to return the full model solution. By default only the new pattern object is returned.
- **family**: VGAM family function for model fitting (default: "gaussianff").
- **bootstrapPval**: Logical to indicate whether to generate p-values using bootstrap, not available for `prcomp` and `rotatoR` objects.
- **bootIter**: Number of bootstrap iterations, default = 1000.
- **model**: Optional arguments to choose method for projection.
- **targetNumPatterns**: Desired number of patterns with hclust.
- **sourceData**: Data used to create cluster object.
Details

Loadings can belong to one of several classes depending on upstream analysis. Currently permitted classes are matrix, CogapsResult, CoGAPS, pclust, prcomp, rotatoR, and correlateR. Please note that loadings should not contain NA.

Value

A matrix of sample weights for each input basis in the loadings matrix (if full=TRUE, full model solution is returned).

Examples

```r
projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=AP.RNAseq6l3c3t$Amean, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])

library("CoGAPS")
# CR.RNAseq6l3c3t <- CoGAPS(p.RNAseq6l3c3t, params = new("CogapsParams", nPatterns=5))
projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=CR.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])

pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
pca.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=pca.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])

r.RNAseq6l3c3t<-rotatoR(1,1,-1,-1,pca.RNAseq6l3c3t$rotation[,1:2])
pca.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=r.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])

c.RNAseq6l3c3t<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N", threshold=10, absR=TRUE)
cor.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=c.RNAseq6l3c3t, NP="PositiveCOR", dataNames = map.ESepiGen4c1l[["GeneSymbols"]])

library("projectR")
data(p.RNAseq6l3c3t)
nP<-3
kClust<-kmeans(t(p.RNAseq6l3c3t),centers=nP)
kpattern<-cluster2pattern(clusters = kClust, NP = nP, data = p.RNAseq6l3c3t)
p<-as.matrix(p.RNAseq6l3c3t)
projectR(p,kpattern)
```

retinal patterns

CoGAPS patterns learned from the developing mouse retina.

Description

CoGAPS patterns learned from the developing mouse retina.
Usage

retinal_patterns

Format

A gene (rows) by pattern (column) matrix

References

Description

a function for rotating two basis about a point or line in that plane

Usage

rotatoR(x1, y1, x2, y2, basisSET)

Arguments

x1 a value describing a the coordinate of a point in the first basis. If no values are provided for x2
y1 a value describing a the coordinate of a point in the second basis
x2 a value describing a the coordinate of the second point in the second basis
y2 a value describing a the coordinate of the second point in the second basis
basisSET the basis to be rotated

Value

An object of class rotatoR.

Examples

pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
r.RNAseq6l3c3t<-rotatoR(1,1,-1,-1,pca.RNAseq6l3c3t$rotation[,1:2])
rotatoR-class

rotatoR-class *rotatoR*

Description

class of rotatoR output.

Slots

- `rotatedM` rotated basis set (matrix) that is output of rotatoR function
Index

* datasets
 AP.RNAseq6l3c3t, 3
 CR.RNAseq6l3c3t, 9
 glial_counts, 11
 map.ESepiGen4c1l, 14
 map.RNAseq6l3c3t, 15
 microglial_counts, 15
 p.ESepiGen4c1l, 16
 p.RNAseq6l3c3t, 16
 pd.ESepiGen4c1l, 17
 pd.RNAseq6l3c3t, 17
 retinal_patterns, 23

alluvialMat, 2
AP.RNAseq6l3c3t, 3
aucMat, 4

bonferroniCorrectedDifferences, 4
cluster2pattern, 5
cluster2pattern, character-method
 (cluster2pattern), 5
cluster2pattern, hclust-method
 (cluster2pattern), 5
cluster2pattern, kmeans-method
 (cluster2pattern), 5
cluster2pattern, numeric-method
 (cluster2pattern), 5
cluster2pattern-class, 6
clusterPlotR, 6
clusterPlotR, ANY, hclust-method
 (clusterPlotR), 6
clusterPlotR, ANY, kmeans-method
 (clusterPlotR), 6
correlateR, 7
correlateR-class, 8
CR.RNAseq6l3c3t, 9

geneMatchR, 9
getTSNE, 10
getUMAP, 10
glial_counts, 11
initialize, cluster2pattern-method, 12
initialize, correlateR-method, 12
initialize, rotatoR-method, 13
intersectoR, 13
intersectoR, hclust, hclust-method
 (intersectoR), 13
intersectoR, kmeans, kmeans-method
 (intersectoR), 13

map.ESepiGen4c1l, 14
map.RNAseq6l3c3t, 15
microglial_counts, 15

p.ESepiGen4c1l, 16
p.RNAseq6l3c3t, 16
pd.ESepiGen4c1l, 17
pd.RNAseq6l3c3t, 17
plotConfidenceIntervals, 18
projectionDriveR, 19
projectR, 20
projectR, dgCMatrix, matrix-method
 (projectR), 20
projectR, matrix, cluster2pattern-method
 (projectR), 20
projectR, matrix, correlateR-method
 (projectR), 20
projectR, matrix, hclust-method
 (projectR), 20
projectR, matrix, kmeans-method
 (projectR), 20
projectR, matrix, LinearEmbeddingMatrix-method
 (projectR), 20
projectR, matrix, matrix-method
 (projectR), 20
projectR, matrix, prcomp-method
 (projectR), 20
INDEX

projectR, matrix, rotatoR-method (projectR), 20
retinal_patterns, 23
rotatoR, 24
rotatoR-class, 25