Package ‘planttfhunter’

February 22, 2024

Title Identification and classification of plant transcription factors
Version 1.2.0
Date 2022-03-10

Description planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

License GPL-3

URL https://github.com/almeidasilvaf/planttfhunter

BugReports https://support.bioconductor.org/t/planttfhunter

biocViews Software, Transcription, FunctionalPrediction, GenomeAnnotation, FunctionalGenomics, HiddenMarkovModel, Sequencing, Classification

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

SystemRequirements HMMER <http://hmmer.org/>

Imports Biostrings, SummarizedExperiment, utils, methods

Suggests BiocStyle, covr, sessioninfo, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>= 4.2.0)

LazyData false

git_url https://git.bioconductor.org/packages/planttfhunter

git_branch RELEASE_3_18
planttfhunter-package

planttfhunter-package

Description

planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in Plant-TFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

Author(s)

Maintainer: Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com> (ORCID)

Authors:

- Yves Van de Peer <yves.vandepeer@psb.vib-ugent.be> (ORCID)
annotate_pfam

See Also

Useful links:

- https://github.com/almeidasilvaf/planttfhunter
- Report bugs at https://support.bioconductor.org/t/planttfhunter

| annotate_pfam | Annotate proteins sequences with PFAM domains |

Description

PFAM domains are assigned to each sequence using HMMER.

Usage

annotate_pfam(seq = NULL, evalue = 1e-05)

Arguments

- **seq**: An AAStringSet object as returned by `Biostrings::readAAStringSet()`. The sequences in this object must represent only the translated sequences of primary (or longest) transcripts.
- **evalue**: Numeric indicating the E-value threshold for hmmsearch to be used for domains without pre-defined domain cutoffs. Only valid if parameter mode = 'local'. Default: 1e-05.

Value

A 2-column data frame with the variables **Gene** and **Domain**, which contain gene IDs and domain IDs, respectively.

Examples

```r
data(gsu)
seq <- gsu[1:5]
if(hmmer_is_installed()) {
  annotate_pfam(seq)
}
```
classification_scheme
Data frame of TF family classification scheme

Description

The classification scheme is the same as the one used by PlantTFDB.

Usage

```r
data(classification_scheme)
```

Format

A data frame with the following variables:

- **Family** TF family name.
- **Subfamily** TF subfamily name.
- **DBD** DNA-binding domain
- **Auxiliary** Auxiliary domain
- **Forbidden** Forbidden domain

References

Examples

```r
data(classification_scheme)
```

classify_tfs
Identify TFs and classify them in families

Description

Identify TFs and classify them in families

Usage

```r
classify_tfs(domain_annotation = NULL)
```

Arguments

- **domain_annotation**
 A 2-column data frame with the gene ID in the first column and the domain ID in the second column.
get_tf_counts

Value

A 2-column data frame with the variables Gene and Family representing gene ID and TF family, respectively.

Examples

data(gsu_annotation)
domain_annotation <- gsu_annotation
families <- classify_tfs(domain_annotation)

get_tf_counts(proteomes, species_metadata = NULL)

Arguments

proteomes List of AAStringSet objects
species_metadata (Optional) A data frame containing species names in row names (names must match element names in the proteomes list), and species metadata (e.g., taxonomic information, ecological information) in columns. If NULL, the colData of the SummarizedExperiment object will be empty.

Value

A SummarizedExperiment object containing transcription factor frequencies per family in each species, as well as species metadata (if species_metadata is not NULL).

Examples

data(gsu)

set.seed(123)
Pick random subsets of 100 genes to simulate other species
proteomes <- list(
 Gsu1 = gsu[sample(names(gsu), 50, replace = FALSE)],
 Gsu2 = gsu[sample(names(gsu), 50, replace = FALSE)],
 Gsu3 = gsu[sample(names(gsu), 50, replace = FALSE)],
 Gsu4 = gsu[sample(names(gsu), 50, replace = FALSE)]
)
gusu

Protein sequences of the algae species Galdieria sulphuraria

Description

Data obtained from PLAZA Diatoms. Only genes containing domains used for TF family classification were kept for package size issues.

Usage

data(gsu)

Format

An AAStringSet object as returned by Biostrings::readAAStringSet().

References

Examples

data(gsu)
Domain annotation for the algae species *Galdieria sulphuraria* The data set was created using the function `annotate_pfam()` in local mode.

Usage

```r
data(gsu_annotation)
```

Format

A 2-column data frame with the following variables:

- **Gene** Gene ID
- **Annotation** Domain ID or domain name when ID is not available in PFAM

Examples

```r
data(gsu_annotation)
```

TFs families of the algae species *Galdieria sulphuraria* The data set was created using the function `classify_tfs()`.

Usage

```r
data(gsu_families)
```

Format

A 2-column data frame with the following variables:

- **Gene** Gene ID
- **Family** TF family

Examples

```r
data(gsu_families)
```
hmmer_is_installed

Check if HMMER is installed

Description

Check if HMMER is installed

Usage

hmmer_is_installed()

Value

Logical indicating whether HMMER is installed or not.

Examples

hmmer_is_installed()

tf_counts

TF counts per family in 4 simulated species

Description

Simulated species were created by sampling 100 genes from the example data set gsu with after set.seed(123).

Usage

data(tf_counts)

Format

A SummarizedExperiment with TF frequencies per family in each species in assay and species metadata in colData.

Examples

data(tf_counts)
Index

* datasets
 classification_scheme, 4
 gsu, 6
 gsu_annotation, 7
 gsu_families, 7
 tf_counts, 8
* internal
 planttfhunter-package, 2

annotate_pfam, 3
classification_scheme, 4
classify_tfs, 4
get_tf_counts, 5
gsu, 6
gsu_annotation, 7
gsu_families, 7

hmmer_is_installed, 8

planttfhunter (planttfhunter-package), 2
planttfhunter-package, 2
tf_counts, 8