Package ‘planttfhunter’

May 14, 2024

Title Identification and classification of plant transcription factors
Version 1.4.0
Date 2022-03-10
Description planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.
License GPL-3
URL https://github.com/almeidasilvaf/planttfhunter
BugReports https://support.bioconductor.org/t/planttfhunter
biocViews Software, Transcription, FunctionalPrediction, GenomeAnnotation, FunctionalGenomics, HiddenMarkovModel, Sequencing, Classification
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
SystemRequirements HMMER <http://hmmer.org/>
Imports Biostrings, SummarizedExperiment, utils, methods
Suggests BiocStyle, covr, sessioninfo, knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
Depends R (>= 4.2.0)
LazyData false
git_url https://git.bioconductor.org/packages/planttfhunter
git_branch RELEASE_3_19
planttfhunter-package

Description

planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

Author(s)

Maintainer: Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com> (ORCID)

Authors:

- Yves Van de Peer <yves.vandepeer@psb.vib-ugent.be> (ORCID)
annotate_pfam

See Also

Useful links:

- https://github.com/almeidasilvaf/planttfhunter
- Report bugs at https://support.bioconductor.org/t/planttfhunter

annotate_pfam
Annotate proteins sequences with PFAM domains

Description

PFAM domains are assigned to each sequence using HMMER.

Usage

```r
annotate_pfam(seq = NULL, evalue = 1e-05)
```

Arguments

- `seq`
 An AAStringSet object as returned by `Biostrings::readAAStringSet()`. The sequences in this object must represent only the translated sequences of primary (or longest) transcripts.

- `evalue`
 Numeric indicating the E-value threshold for `hmmsearch` to be used for domains without pre-defined domain cutoffs. Only valid if parameter `mode = 'local'`. Default: `1e-05`.

Value

A 2-column data frame with the variables **Gene** and **Domain**, which contain gene IDs and domain IDs, respectively.

Examples

```r
data(gsu)
seq <- gsu[1:5]
if(hmmer_is_installed()) {
  annotate_pfam(seq)
}
```
classification_scheme
Data frame of TF family classification scheme

Description

The classification scheme is the same as the one used by PlantTFDB.

Usage

```r
data(classification_scheme)
```

Format

A data frame with the following variables:

- **Family** TF family name.
- **Subfamily** TF subfamily name.
- **DBD** DNA-binding domain
- **Auxiliary** Auxiliary domain
- **Forbidden** Forbidden domain

References

Examples

```r
data(classification_scheme)
```

classify_tfs
Identify TFs and classify them in families

Description

Identify TFs and classify them in families

Usage

```r
classify_tfs(domain_annotation = NULL)
```

Arguments

- **domain_annotation**

 A 2-column data frame with the gene ID in the first column and the domain ID in the second column.
get_tf_counts

Value
A 2-column data frame with the variables Gene and Family representing gene ID and TF family, respectively.

Examples

```r
data(gsu_annotation)
domain_annotation <- gsu_annotation
families <- classify_tfs(domain_annotation)
```

get_tf_counts Get TF frequencies for each species as a SummarizedExperiment object

Description
This function identifies and classifies TFs, and returns TF counts for each family as a SummarizedExperiment object.

Usage

```r
get_tf_counts(proteomes, species_metadata = NULL)
```

Arguments

- `proteomes` List of AAStringSet objects
- `species_metadata` (Optional) A data frame containing species names in row names (names must match element names in the proteomes list), and species metadata (e.g., taxonomic information, ecological information) in columns. If NULL, the colData of the SummarizedExperiment object will be empty.

Value
A SummarizedExperiment object containing transcription factor frequencies per family in each species, as well as species metadata (if species_metadata is not NULL).

Examples

```r
data(gsu)
set.seed(123)
# Pick random subsets of 100 genes to simulate other species
proteomes <- list(
  Gsu1 = gsu[sample(names(gsu), 50, replace = FALSE)],
  Gsu2 = gsu[sample(names(gsu), 50, replace = FALSE)],
  Gsu3 = gsu[sample(names(gsu), 50, replace = FALSE)],
  Gsu4 = gsu[sample(names(gsu), 50, replace = FALSE)]
)
# Create species metadata
species_metadata <- data.frame(
  row.names = names(proteomes),
  Division = "Rhodophyta",
  Origin = c("US", "Belgium", "China", "Brazil")
)

# Get SummarizedExperiment object
if(hmmer_is_installed()) {
  se <- get_tf_counts(proteomes, species_metadata)
}

---

**gsu**

*Protein sequences of the algae species Galdieria sulphuraria*

**Description**

Data obtained from PLAZA Diatoms. Only genes containing domains used for TF family classification were kept for package size issues.

**Usage**

```r
data(gsu)
```

**Format**

An AAStringSet object as returned by `Biostrings::readAAStringSet()`.

**References**


**Examples**

```r
data(gsu)
```
gsu_annotation

Domain annotation for the algae species Galdieria sulphuraria. The data set was created using the function `annotate_pfam()` in local mode.

Usage

```r
data(gsu_annotation)
```

Format

A 2-column data frame with the following variables:

- **Gene**: Gene ID
- **Annotation**: Domain ID or domain name when ID is not available in PFAM

Examples

```r
data(gsu_annotation)
```

gsu_families

TFs families of the algae species Galdieria sulphuraria. The data set was created using the function `classify_tfs()`.

Usage

```r
data(gsu_families)
```

Format

A 2-column data frame with the following variables:

- **Gene**: Gene ID
- **Family**: TF family

Examples

```r
data(gsu_families)
```
hmmer_is_installed  
*Check if HMMER is installed*

**Description**

Check if HMMER is installed

**Usage**

hmmer_is_installed()

**Value**

Logical indicating whether HMMER is installed or not.

**Examples**

hmmer_is_installed()

---

**tf_counts**  
*TF counts per family in 4 simulated species*

**Description**

Simulated species were created by sampling 100 genes from the example data set gsu with after set.seed(123).

**Usage**

data(tf_counts)

**Format**

A SummarizedExperiment with TF frequencies per family in each species in **assay** and species metadata in **colData**.

**Examples**

data(tf_counts)
Index

* datasets
  classification_scheme, 4
  gsu, 6
  gsu_annotation, 7
  gsu_families, 7
  tf_counts, 8
* internal
  planttfhunter-package, 2
annotate_pfam, 3
classification_scheme, 4
classify_tfs, 4
get_tf_counts, 5
  gsu, 6
  gsu_annotation, 7
  gsu_families, 7
hmmer_is_installed, 8
planttfhunter (planttfhunter-package), 2
planttfhunter-package, 2
tf_counts, 8