Package ‘phantasus’

May 4, 2024

Title Visual and interactive gene expression analysis

Version 1.24.0

Description Phantasus is a web-application for visual and interactive gene expression analysis. Phantasus is based on Morpheus – a web-based software for heatmap visualisation and analysis, which was integrated with an R environment via OpenCPU API. Aside from basic visualization and filtering methods, R-based methods such as k-means clustering, principal component analysis or differential expression analysis with limma package are supported.

URL https://alserglab.wustl.edu/phantasus

BugReports https://github.com/ctlab/phantasus/issues

Depends R (>= 4.3)

biocViews GeneExpression, GUI, Visualization, DataRepresentation, Transcriptomics, RNASeq, Microarray, Normalization, Clustering, DifferentialExpression, PrincipalComponent, ImmunoOncology

Imports ggplot2, protolite, Biobase, GEOquery, Rook, htmltools, httpuv, jsonlite, limma, edgeR, opencpu, assertthat, methods, htr, rhdf5, utils, parallel, stringr, fgsea (>= 1.9.4), svglite, gtable, stats, Matrix, pheatmap, scales, ccaPP, grid, grDevices, AnnotationDbi, DESeq2, data.table, curl, config (>= 0.3.2), rhdf5client (>= 1.25.1), yml, fs, phantasusLite, XML

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Suggests testthat, BiocStyle, knitr, rmarkdown, org.Hs.eg.db, org.Mm.eg.db

VignetteBuilder knitr

NeedsCompilation no

git_url https://git.bioconductor.org/packages/phantasus

git_branch RELEASE_3_19
Contents

adjustDataset .. 3
annotationDBMeta ... 4
calcPCA ... 5
calculatedAnnotation ... 5
checkGPLsFallback ... 6
checkGSEType ... 7
collapseDataset ... 7
colMeansByGroups ... 8
convertByAnnotationDB ... 8
createDockerConf ... 9
createES ... 10
es ... 11
fgseaExample ... 11
generatePreloadedSession 11
getArchs4Files .. 12
getCountsMetaPart ... 13
getES .. 14
getGDS .. 15
getGSE .. 15
getPhantasusConf ... 16
gseaPlot ... 17
isHSDS .. 18
limmaAnalysis .. 18
loadCounts .. 19
loadFromARCHS4 ... 20
loadGEO .. 20
loadPreloaded .. 21
performKmeans .. 21
queryAnnotationDBMeta 22
read.gct ... 23
reparseCachedESs ... 23
reproduceInR .. 24
adjustDataset

Description
Adjust dataset

Usage
adjustDataset(
 es,
 scaleColumnSum = NULL,
 log2 = FALSE,
 onePlusLog2 = FALSE,
 inverseLog2 = FALSE,
 quantileNormalize = FALSE,
 zScore = FALSE,
 robustZScore = FALSE,
 sweep = NULL
)

Arguments

 es Expression set to perform adjustment on
 scaleColumnSum perform sum scaling of columns (default FALSE)
 log2 perform logarithm2 adjustment (default FALSE)
 onePlusLog2 perform log2(1+x) adjustment (default FALSE)
 inverseLog2 perform 2^x adjustment (default FALSE)
 quantileNormalize perform quantile normalization (default FALSE)
 zScore perform zScore adjustment: subtract mean, divide by std (default FALSE)
 robustZScore perform robustZScore adjustment: subtract median, divide by MAD (default FALSE)
 sweep perform sweep adjustment on rows/columns (default FALSE)
Value

Nothing. Adjusted dataset will be assigned as ES in global environment

Examples

```r
## Not run:
es <- gseGSE('GSE53986')[[1]]
adjustDataset(es, log2 = T, quantileNormalize = T)

## End(Not run)
```

annotationDBMeta

Create meta file for AnnotationDB

Description

annotationDBMeta function creates txt files containing meta information of provided sqlite files for AnnotationDB.

Usage

```r
annotationDBMeta(annotDir)
```

Arguments

- `annotDir` path to folder with annotationDB sqlite files

Value

nothing

Examples

```r
## Not run:
annotationDBMeta('/var/phantasus/cache')

## End(Not run)
```
calcPCA Principal Component Analysis.

Description

calcPCA calculates PCA-matrix for the given ExpressionSet and returns this matrix encoded to JSON.

Usage

calcPCA(es, replacena = "mean")

Arguments

- es an ExpressionSet object, should be normalized
- replacena method for replacing NA values (mean by default)

Value

json with full description of the plot for plotly.js

Examples

Not run:
data(es)
calcPCA(es)

End(Not run)

calculatedAnnotation Create calculated annotation

Description

calculatedAnnotation adds a column calculated by operation

Usage

calculatedAnnotation(
es, operation, rows = c(), columns = c(), isColumns = FALSE, name = NULL
)

checkGPLsFallback

Arguments

- `es` ExpressionSet object.
- `operation` Name of the operation to perform calculation
- `rows` List of specified rows’ indices (optional), indices start from 0
- `columns` List of specified columns’ indices (optional), indices start from 0
- `isColumns` Apply fn to columns
- `name` Name of the new annotation

Value

Nothing. Annotated dataset will be assigned to `es` in environment

checkGPLsFallback
Check possible annotations for GEO Dataset.

Description

`checkGPLs` returns GPL-names for the specified GEO identifier.

Usage

`checkGPLsFallback(name)`

Arguments

- `name` String, containing GEO identifier of the dataset.

Value

Vector of filenames serialized in JSON format. If there is only one GPL for that dataset, the function will return `name`.

Examples

```r
## Not run:
checkGPLs('GSE27112')
checkGPLs('GSE14308')

## End(Not run)
```
checkGSEType

Description

Checks GSE to be supported

Usage

checkGSEType(name, destDir, combine = any)

Arguments

name GSE id, with optional GPL specification
destDir path to cache directory
combine function on how to combine results, when multiple platforms are present

Value

logical vector if the dataset is supported or not

collapseDataset

Description

collapseDataset performs a collapse action on expression set

Usage

collapseDataset(
es,
isRows = TRUE,
selectOne = FALSE,
fn,
fields,
removeEmpty = TRUE
)

Arguments

es Expression set
isRows Work with rows. False if columns (default True - row mode)
selectOne select best match or merge duplicates
fn select/merge function
fields fields to unique on
removeEmpty remove unannotated genes
Value

Nothing.Collapsed dataset will be assigned to es in environment

Examples

```r
## Not run:
es <- getGSE('GSE53986')[[1]]
collapseDataset(es, isRows = TRUE, selectOne = TRUE,
fn = mean, fields = c('Gene ID', 'Gene symbol'))
## End(Not run)
```

colMeansByGroups
Calculate column averages in row groups

Description

Calculate column averages in row groups

Usage

```r
colMeansByGroups(m, groups)
```

Arguments

- `m`
 matrix n x m
- `groups`
 vector of size n of numbers from 1 to k

Value

matrix k*m of column averages by groups

convertByAnnotationDB
Map indexes using Annotation DB

Description

convertByAnnotationDB function returns keyType ids from dbName mapped to columnName in es.
Usage

convertByAnnotationDB(
 es,
 dbName,
 columnName,
 columnType,
 keyType,
 otherOptions
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>es</td>
<td>source ExpressionSet</td>
</tr>
<tr>
<td>dbName</td>
<td>name of AnnotationDB file</td>
</tr>
<tr>
<td>columnName</td>
<td>name of column in featureData of source ExpressionSet</td>
</tr>
<tr>
<td>columnType</td>
<td>Type of indexes in columnName</td>
</tr>
<tr>
<td>keyType</td>
<td>Type of mapped indexes</td>
</tr>
<tr>
<td>otherOptions</td>
<td>additional parameters for conversion. Currently only named boolean delete-DotVersion is not ignored.</td>
</tr>
</tbody>
</table>

Value

JSON object with a vector of converted IDs

createDockerConf:

Creates default docker conf file Function creates default docker user configuration file based on provided setup_file or on default parameters if setup_file doesn't exist. If user_conf_file exists function does nothing.

Description

Creates default docker conf file Function creates default docker user configuration file based on provided setup_file or on default parameters if setup_file doesn't exist. If user_conf_file exists function does nothing.

Usage

```r
createDockerConf(
    setup_file = confFile("setup.yml"),
    user_conf_file = confFile("user.conf")
)
```
Arguments

- `setup_file` name of config from file. If unset or not existed, "default".
- `user_conf_file` Location of the setup.yml file with setup parameters. If not existed use file from package

createES (Create ExpressionSet)

Description

createES function produces an ExpressionSet object from given data, and exports it to global scope.

Usage

```r
createES(data, pData, varLabels, fData, fvarLabels, eData)
```

Arguments

- `data` Gene expression matrix.
- `pData` Matrix with phenotypical data.
- `varLabels` Names of phenoData columns.
- `fData` Matrix with feature data.
- `fvarLabels` Names of featureData columns.
- `eData` List with experimentData

Value

produced ExpressionSet object

Examples

```r
## Not run:
data <- matrix(1:15, 5, 3)
pData <- c("A", "B", "C")
varLabels <- "cat"
fData <- c("p", "r", "s", "t", "u")
fvarLabels <- "id"
eData <- list(name="", lab="", contact="", title="", url="", other=list(), pubMedIds="")
createES(data, pData, varLabels, fData, fvarLabels, eData)
## End(Not run)
```
es

Example dataset

Description

Small slice from GSE27112-GPL6103 for runnable examples.

Usage

data(es)

Format

An object of class `ExpressionSet` with 20 rows and 5 columns.

Examples

```r
## Not run:
data(es)
performKmeans(es, k = 2)
## End(Not run)
```

fgseaExample

Example pathway data.frame for fgsea tool

Description

Example pathway data.frame for fgsea tool

generatePreloadedSession

Generate files for preloaded session from a session link.

Description

Generate files for preloaded session from a session link.

Usage

generatePreloadedSession(sessionURL, preloadedName, preloadedDir)
getArchs4Files

Arguments

- `sessionURL` String with session link produced by phantasus.
- `preloadedName` String with name that should be assigned to the session.
- `preloadedDir` Path to the directory with preloaded datasets and sessions.

Value

Function produces two files (`preloadedName.rda` with ExpressionSet and `preloadedName.json` with session features) in `preloadedDir` folder.

Examples

```r
## Not run:
sessionURL <- "https://ctlab.itmo.ru/phantasus/?session=x063c1b365b9211" # link from 'Get dataset link...' tool in phantasus
newName <- "my_session" # user defined name
preloadedDir <- "." # directory where files will be stored. In order to get access through phantasus web-app, preloadedDir should be preloadedDir
dir.create(preloadedDir, showWarnings = FALSE)
generatePreloadedSession(sessionURL= sessionURL, 
                        preloadedName = newName, 
                        preloadedDir = preloadedDir)

servePhantasus(preloadedDir=preloadedDir, openInBrowser=FALSE)
# open browser manually at http://0.0.0.0:8000/phantasus/index.html?preloaded=my_session

## End(Not run)
```

getArchs4Files

Returns list of ARCHS4 hdf5 files with expression data

Description

Returns list of ARCHS4 hdf5 files with expression data

Usage

getArchs4Files(cacheDir)

Arguments

- `cacheDir` base directory for cache

Value

- list of .h5 files
getCountsMetaPart

Create meta-data for single counts collection

Description

Creates a part of counts collections meta-data

Usage

getCountsMetaPart(counts_dir, collection_name, verbose)

Arguments

- counts_dir: path to directory with count collections
- collection_name: name of collection and collection’s directory
- verbose: logical value which determines a content of the output.

Details

Function assumes that collection_name contains meta.txt which is valid (in sense of validateCountsCollection). For each row in meta.txt function reads specified sample_id dataset and writes every sample id to the resulting data.table with source file name and collection name.

Value

data.table with meta-data or nothing if destdir does not exist or does not contain files.

See Also

validateCountsCollection, getCountsMetaPart

Examples

```r
## Not run:
collDir <- "/path/to/my/collection"
valid_collection = validateCountsCollection(collectionDir = collDir, verbose = TRUE)
if (valid_collection){
    metaPart = getCountsMetaPart(destdir = collDir, verbose = TRUE)
}
## End(Not run)
```
getES

Load ExpressionSet by GEO identifier

Description

getES return the ExpressionSet object(s) corresponding to GEO identifier.

Usage

getES(
 name,
 type = NA,
 destdir = getPhantasusConf("cache_folders")$geo_path,
 mirrorPath = getPhantasusConf("geo_mirrors")
)

Arguments

name
String, containing GEO identifier of the dataset. It should start with 'GSE' or 'GDS' and can include exact GPL to annotate dataset, separated with dash ('-') from the identifier.

type
Type of the dataset: 'GSE' or 'GDS'. If not specified, the function will take first three letters of name variable as type.

destdir
Directory for caching loaded Series and GPL files from GEO database.

mirrorPath
URL string which specifies the source of matrices.

Value

List of ExpressionSet objects, that were available by given in name variable GEO identifier.

Examples

```r
## Not run:
getES('GSE14308', type = 'GSE', destdir = 'cache')
getES('GSE27112')
getES('GDS4922')
```

End(Not run)
getGDS

Load ExpressionSet from GEO Datasets

Description

getGDS return the ExpressionSet object corresponding to GEO Dataset identifier.

Usage

getGDS(
 name,
 destdir = getPhantasusConf("cache_folders")$geo_path,
 mirrorPath = getPhantasusConf("geo_mirrors")
)

Arguments

name String, containing GEO identifier of the dataset. It should start with 'GSE' or 'GDS' and can include exact GPL to annotate dataset, separated with dash ('-') from the identifier.
destdir Directory for caching loaded Series and GPL files from GEO database.
mirrorPath URL string which specifies the source of matrices.

Value

ExpressionSet object wrapped in list, that was available by given in name variable GEO identifier.

Examples

Not run:

End(Not run)

getGSE

Load ExpressionSet from GEO Series

Description

getGSE return the ExpressionSet object(s) corresponding to GEO Series Identifier.
getPhantasusConf

Usage

getGSE(
 name,
 destdir = getPhantasusConf("cache_folders")$geo_path,
 mirrorPath = getPhantasusConf("geo_mirrors")
)

Arguments

name String, containing GEO identifier of the dataset. It should start with 'GSE' or 'GDS' and can include exact GPL to annotate dataset, separated with dash ('-') from the identifier.

destdir Directory for caching loaded Series and GPL files from GEO database.

mirrorPath URL string which specifies the source of matrices.

Value

List of ExpressionSet objects, that were available by given in name variable GEO identifier.

Examples

Not run:
getGSE('GSE14308', destdir = 'cache')
getGSE('GSE27112')
getGSE('GSE53986')

End(Not run)

getPhantasusConf

Read Phantasus Config

Description

Read Phantasus Config

Usage

getPhantasusConf(
 value = NULL,
 configName = Sys.getenv("R_CONFIG_ACTIVE"),
 file = file.path(tools::R_user_dir(package = "phantasus", which = "config"),
 "user.conf")
)
gseaPlot

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Value to retrieve from the config file.</td>
</tr>
<tr>
<td>configName</td>
<td>R_CONFIG_ACTIVE value. If unset, "default".</td>
</tr>
<tr>
<td>file</td>
<td>Location of the config file</td>
</tr>
</tbody>
</table>

gseaPlot

Returns path to an svg file with enrichment plot

Description

Returns path to an svg file with enrichment plot

Usage

```r
gseaPlot(
  es,
  rankBy,
  selectedGenes,
  width,
  height,
  vertical = FALSE,
  addHeatmap = FALSE,
  showAnnotation = NULL,
  annotationColors = NULL,
  pallete = c("blue", "white", "red")
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>es</td>
<td>ExpressionSet object.</td>
</tr>
<tr>
<td>rankBy</td>
<td>name of the numeric column used for gene ranking</td>
</tr>
<tr>
<td>selectedGenes</td>
<td>indexes of selected genes (starting from one, in the order of fData)</td>
</tr>
<tr>
<td>width</td>
<td>width of the image (in inches)</td>
</tr>
<tr>
<td>height</td>
<td>height of the image (in inches)</td>
</tr>
<tr>
<td>vertical</td>
<td>whether to use vertical orientation (default: FALSE)</td>
</tr>
<tr>
<td>addHeatmap</td>
<td>whether to add an expression heatmap, sorted by rankBy (default: FALSE)</td>
</tr>
<tr>
<td>showAnnotation</td>
<td>a name of column annotation to add to the heatmap, default: NULL (no annotation)</td>
</tr>
<tr>
<td>annotationColors</td>
<td>a list of colors to use in annotation</td>
</tr>
<tr>
<td>pallete</td>
<td>a vector of colors to draw heatmap</td>
</tr>
</tbody>
</table>

Value

path to an svg file
isHSDS

check if url responding as HSDS server TRUE - hsds FALSE - web link but not working NULL - not web link

Description

check if url responding as HSDS server TRUE - hsds FALSE - web link but not working NULL - not web link

Usage

ishSDS(url)

Arguments

url URL to check

limmaAnalysis

Differential Expression analysis.

Description

limmaAnalysis performs differential expression analysis from limma package and returns a Protobuf-serialized resulting de-matrix.

Usage

limmaAnalysis(
 es,
 fieldValues,
 version = "One-factor design",
 contrast = list("Comparison", "Target", "Reference"),
 designData = NULL
)

Arguments

es ExpressionSet object. It should be normalized for more accurate analysis.
fieldValues Vector of comparison values, mapping categories’ names to columns/samples
version name of the limma analysis implementation. Should be "One-factor design" or "Advanced design"
contrast a character vector with exactly three elements: the name of a factor in the design formula, the name of the numerator level for the fold change, and the name of the denominator level for the fold change
designData data.frame with design matrix
loadCounts

Value

Name of the file containing serialized de-matrix.

Examples

```r
## Not run:
data(es)
limmaAnalysis(es, fieldValues = c("A", "A", "A", "B", "B"))
## End(Not run)
```

loadCounts

Loads expression data from .h5 count files. Only samples with counted expression are kept. If es already contains expression data it is returned as is.

Description

Loads expression data from .h5 count files. Only samples with counted expression are kept. If es already contains expression data it is returned as is.

Usage

```
loadCounts(es, counts_dir)
```

Arguments

- `es` : ExpressionSet from GEO to check for expression in ARCHS4/dee2 or other h5 files
- `counts_dir` : directory with .h5 files collections. There must be meta.rda file in counts_dir and each collection’s sub directory must have meta.txt file with description. Also counts_dir must contain counts_priority.txt file.

Value

either original es or an ExpressionSet with loaded count data from ARCHS4
loadFromARCHS4

Loads expression data from ARCHS4 count files. Only samples with counted expression are kept. If es already contains expression data it is returned as is.

<table>
<thead>
<tr>
<th>Description</th>
<th>Loads expression data from ARCHS4 count files. Only samples with counted expression are kept. If es already contains expression data it is returned as is.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>loadFromARCHS4(es, archs4_files)</td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
</tr>
<tr>
<td>es</td>
<td>ExpressionSet from GEO to check for expression in ARCHS4</td>
</tr>
<tr>
<td>archs4_files</td>
<td>list of available .h5 files from ARCHS4 project</td>
</tr>
<tr>
<td>Value</td>
<td>either original es or an ExpressionSet with loaded count data from ARCHS4</td>
</tr>
</tbody>
</table>

loadGEO

Load GEO Dataset.

<table>
<thead>
<tr>
<th>Description</th>
<th>loadGEO returns the file with serialized ExpressionSet using ProtoBuf, parsed from data downloaded from GEO by identifier.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>loadGEO(name, type = NA)</td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>String, containing GEO identifier of the dataset. It should start with 'GSE' or 'GDS' and can include exact GPL to annotate dataset, separated with dash ('-') from the identifier.</td>
</tr>
<tr>
<td>type</td>
<td>Type of the dataset: 'GSE' or 'GDS'. If not specified, the function will take first three letters of name variable as type.</td>
</tr>
</tbody>
</table>
loadPreloaded

Value

File with ProtoBuf-serialized ExpressionSet-s that were downloaded by this identifier. For GSE-datasets there can be multiple annotations, so in file will be a list mapping name with GPL to ExpressionSet.

Examples

```r
## Not run:
loadGEO("GSE27112")
loadGEO("GDS4922")
## End(Not run)
```

loadPreloaded

Description

loadPreloaded returns the file with serialized ExpressionSets using ProtoBuf, that were preloaded on server.

Usage

```r
loadPreloaded(name)
```

Arguments

- `name` String, containing filename. Assuming that in the directory with preloaded files `preloadedDir` exists file `filename.rda` with list of ExpressionSets `ess`.

Value

File with ProtoBuf-serialized ExpressionSet-s that were loaded from specified file.

performKmeans

K-means clusterisation.

Description

performKmeans returns a vector of corresponding clusters for each gene from a given ExpressionSet.

Usage

```r
performKmeans(es, k, replacena = "mean")
```
Arguments

es ExpressionSet object.
k Expected number of clusters.
replacena Method for replacing NA values in series matrix (mean by default)

Value

Vector of corresponding clusters, serialized to JSON.

Examples

```r
## Not run:
data(es)
performKmeans(es, k = 2)
## End(Not run)
```

queryAnnotationDBMeta
Get meta list for annotationDB files

Description

queryAnnotationDBMeta Function reads txt meta files for provided sqlite annotation databases.

Usage

queryAnnotationDBMeta()

Value

meta info in JSON

Examples

```r
## Not run:
queryAnnotationDBMeta()
## End(Not run)
```
read.gct

Reads ExpressionSet from a GCT file.

Description

Only versions 1.2 and 1.3 are supported.

Usage

read.gct(gct, ...)

Arguments

gct
Path to gct file

...
additional options for read.csv

Value

ExpressionSet object

Examples

read.gct(system.file("extdata", "centers.gct", package = "phantasus"))

reparseCachedESs

Reparses cached expression sets from GEO.

Description

The function should be used on phantasus version updates that change behavior of loading datasets from GEO. It finds all the datasets that were cached and runs 'getES' for them again. The function uses cached Series and other files from GEO.

Usage

reparseCachedESs(destdir, mirrorPath = getPhantasusConf("geo_mirrors"))

Arguments

destdir
Directory used for caching loaded Series files from GEO database.
mirrorPath
URL string which specifies the source of matrices.

Value

vector of previously cached GSE IDs
Examples

Description

Reproduce session in R code

Usage

reproduceInR(sessionName, leaf = T, step = 0, savedEnv = new.env())

Arguments

sessionName String, OCPU session name
leaf Boolean, is it leaf (default = F)
step Integer, step of recursion (default = 0)
savedEnv Environment, where to store complex arguments (default = new.env())

Value

JSON with R code

Examples

Not run:
setwd(tempdir())
reproduceInR('x039f1672026678');

End(Not run)
servePhantasus

Serve phantasus.

Description

servePhantasus starts http server handling phantasus static files and opencpu server.

Usage

servePhantasus(
 host = getPhantasusConf("host"),
 port = getPhantasusConf("port"),
 staticRoot = getPhantasusConf("static_root"),
 preloadedDir = getPhantasusConf("preloaded_dir"),
 openInBrowser = TRUE,
 quiet = TRUE
)

Arguments

host Host to listen.
port Port to listen.
staticRoot Path to static files with phantasus.js (on local file system).
preloadedDir Full path to directory with preloaded files.
openInBrowser Boolean value which states if application will be automatically loaded in default browser.
quiet Boolean value which states whether the connection log should be hidden (default: TRUE)

Value

Running instance of phantasus application.

Examples

Not run:
servePhantasus()

End(Not run)
setupPhantasus

Setup phantasus. Read user config file (or create default one) and fill cache_root using sources in file.

Description

Setup phantasus. Read user config file (or create default one) and fill cache_root using sources in file.

Usage

```
setupPhantasus(setup_name = "default", file = conffile("setup.yml"))
```

Arguments

- **setup_name**: name of config from file. If unset or not existed, "default".
- **file**: Location of the setup.yml file with setup parameters. If not existed use file from package

shinyGAMAnalysis

Constructs data frame with gene annotations and submits it into Shiny GAM web-server

Description

Constructs data frame with gene annotations and submits it into Shiny GAM web-server

Usage

```
shinyGAMAnalysis(es)
```

Arguments

- **es**: Expression set object

Value

URL for Shiny GAM
subsetES

Subsets es, if rows or columns are not specified, all are retained

Description

Subsets es, if rows or columns are not specified, all are retained

Usage

subsetES(es, columns = c(), rows = c())

Arguments

es ExpressionSet object.#'
columns List of specified columns’ indices (optional), indices start from 0#'
rows List of specified rows’ indices (optional), indices start from 0

Value

new expression set ‘es’

updateARCHS4

Update archs4 files.

Description

Download archs4 or archs4zoo counts in cacheDir. If directory does not exists function makes nothing and produce corresponding warnings.

Usage

updateARCHS4(
 cacheDir = file.path(getPhantasusConf("cache_folders")$rnaseq_counts, "archs4"),
 organism = c("all"),
 force = FALSE
)

Arguments

cacheDir file path to archs4 cache directory
organism vector which determines organisms to download: human, mouse, zoo or all as default. Also can be a genus. Possible genus:
1. drosophila
2. gallus
3. bos
4. caenorhabditis
5. danio
6. rattus
7. saccharomyces
8. arabidopsis

force: logical value which let function replace current files

updateARCHS4meta

Update ARCHS4 meta files

Description

Creates meta.txt file, which describes typical archs4 and archs4Zoo files.

Usage

```
updateARCHS4meta(
    archDir = file.path(getPhantasusConf("cache_folders")$rnaseq_counts, "archs4")
)
```

Arguments

- `archDir`: path to directory with arch4.h5 files.

Details

This function produces very specific "hardcoded" meta.txt file for arch4 and archs4ZOO counts collections. See `validateCountsCollection` for more common information and meta.txt file structure.

See Also

`validateCountsCollection`
updateCountsMeta

Description

Updates meta-data for counts collections

Usage

updateCountsMeta(
 counts_dir = getPhantasusConf("cache_folders")$rnaseq_counts,
 force = FALSE,
 verbose = FALSE
)

Arguments

counts_dir : path to counts cache directory
force : logical value which lets function replace existing meta.rda file
verbose : logical value which determines a content of the output.

Details

First of all function checks validity of priority.txt file. Every Collection should have unique priority. If priority.txt is not valid function creates new one, setting priorities for each subdirectory (=collection) equal to order in list.dir output.

Function updates meta.rda if this file is older than at least one .h5 file in counts files. meta.rda is data.table which is a result of union data.tables produced by getCountsMetaPart for each collection.

See Also

validateCountsCollection, updateCountsMeta @import data.table

updateDEE2meta

Description

Updates DEE2 meta files

Description

Creates meta.txt file, which describes typical dee2 files.
validateCountsCollection

Usage

```
updateDEE2meta(
    destDir = file.path(getPhantasusConf("cache_folders")$rnaseq_counts, "dee2")
)
```

Arguments

destDir path to directory with DEE2 .h5 files.

Details

This function produces very specific “hardcoded” meta.txt file for dee2 counts collection. See `validateCountsCollection` for more common information and `meta.txt` file structure.

See Also

- `validateCountsCollection`
gene_id name of dataset in file_name which contains ids for genes and the "meaning" for that idst (column name in result ES). For correct work this dataset should contain unique values.
Example: ENSEMBLID:/meta/genes/ensembl_gene_id

genes_annot Names of datasets and their meanings to extract gene-related metadata from file_name. Can be empty or gene_id-like values separated with semicolon(;).

write.gct

Saves ExpressionSet to a GCT file (version 1.3).

Description

Saves ExpressionSet to a GCT file (version 1.3).

Usage

write.gct(es, file, gzip = FALSE)

Arguments

- es: ExpressionSet object to save
- file: Path to output gct file
- gzip: Whether to gzip apply gzip-compression for the output file#

Value

Result of the closing file (as in ‘close()’ function)

Examples

```r
es <- read.gct(system.file("extdata", "centers.gct", package = "phantasus"))
out <- tempfile(fileext = "/.gct.gz")
write.gct(es, out, gzip=TRUE)
```
Index

* datasets
 es, 11
* internal
 checkGSEType, 7
 getCountsMetaPart, 13
 isHSDS, 18
 validateCountsCollection, 30
adjustDataset, 3
annotationDBMeta, 4
calcPCA, 5
calculatedAnnotation, 5
checkGPLsFallback, 6
checkGSEType, 7
collapseDataset, 7
colMeansByGroups, 8
convertByAnnotationDB, 8
createDockerConf, 9
createES, 10
es, 11
fgseaExample, 11
generatePreloadedSession, 11
getArches4Files, 12
getCountsMetaPart, 13, 13, 29
getES, 14
getGDS, 15
getGSE, 15
getPhantasusConf, 16
gseaPlot, 17
isHSDS, 18
limmaAnalysis, 18
loadCounts, 19
loadFromARCHS4, 20
loadGEO, 20
loadPreloaded, 21
performKmeans, 21
queryAnnotationDBMeta, 22
read.gct, 23
reparseCachedESs, 23
reproduceInR, 24
servePhantasus, 25
setupPhantasus, 26
shinyGAMAnalysis, 26
subsetES, 27
updateARCHS4, 27
updateARCHS4meta, 28
updateCountsMeta, 29, 29
updateDEE2meta, 29
validateCountsCollection, 13, 28–30, 30
write.gct, 31