Package ‘pcxn’

March 28, 2024

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>2.24.0</td>
</tr>
<tr>
<td>Title</td>
<td>Exploring, analyzing and visualizing functions utilizing the pcxnData package</td>
</tr>
<tr>
<td>Description</td>
<td>Discover the correlated pathways/gene sets of a single pathway/gene set or discover correlation relationships among multiple pathways/gene sets. Draw a heatmap or create a network of your query and extract members of each pathway/gene set found in the available collections (MSigDB H hallmark, MSigDB C2 Canonical pathways, MSigDB C5 GO BP and Pathprint).</td>
</tr>
<tr>
<td>Author</td>
<td>Sokratis Kariotis, Yered Pita-Juarez, Winston Hide, Wenbin Wei</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Sokratis Kariotis s.kariotis@sheffield.ac.uk</td>
</tr>
<tr>
<td>License</td>
<td>MIT + file LICENSE</td>
</tr>
<tr>
<td>biocViews</td>
<td>ExperimentData, ExpressionData, MicroarrayData, GEO, Homo_sapiens_Data, OneChannelData, PathwayInteractionDatabase</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>Suggests</td>
<td>igraph, annotate, org.Hs.eg.db</td>
</tr>
<tr>
<td>Imports</td>
<td>methods, grDevices, utils, pheatmap</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.4), pcxnData</td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>6.0.1</td>
</tr>
<tr>
<td>git_url</td>
<td>https://git.bioconductor.org/packages/pcxn</td>
</tr>
<tr>
<td>git_branch</td>
<td>RELEASE_3_18</td>
</tr>
<tr>
<td>git_last_commit</td>
<td>1069ed1</td>
</tr>
<tr>
<td>git_last_commit_date</td>
<td>2023-10-24</td>
</tr>
<tr>
<td>Repository</td>
<td>Bioconductor 3.18</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2024-03-27</td>
</tr>
</tbody>
</table>
R topics documented:

pcxn ... 2
pcxn-class .. 4
pcxn_explore_analyze 5
pcxn_gene_members 6
pcxn_heatmap 7
pcxn_network 8

Index 9

pcxn Exploring, analyzing and visualizing functions utilizing the pcxnData package

Description

Discover the correlated pathways/gene sets of a single pathway/gene set or discover correlation relationships among multiple pathways/gene sets. Draw a heatmap or create a network of your query and extract members of each pathway/gene set found in the available collections (MSigDB H hallmark, MSigDB C2 Canonical pathways, MSigDB C5 GO BP and Pathprint).

Details

Package:	pcxn
Type:	Package
Version:	2.0.0
Date:	2018-4-1
License:	MIT

Author(s)

Sokratis Kariotis, Yered Pita-Juarez, Winston Hide, Wenbin Wei
Maintainer: Sokratis Kariotis <s.kariotis@sheffield.ac.uk>

References

Examples

library(pcxnData)

load the data
ds = c("cp_gs_v5.1", "gobp_gs_v5.1", "h_gs_v5.1","pathprint.Hs.gs",
 "pathCor_CPv5.1_dframe",
 "pathCor_CPv5.1_unadjusted_dframe",
 "pathCor_GOBPv5.1_dframe",
 "pathCor_GOBPv5.1_unadjusted_dframe",
 "pathCor_Hv5.1_dframe",
 "pathCor_Hv5.1_unadjusted_dframe",
 "pathCor_pathprint_v1.2.3_dframe",
 "pathCor_pathprint_v1.2.3_unadjusted_dframe")
data(list = ds)

Explore the static extendable network (correlation coefficients are adjusted
for gene overlap) by focusing on single pathways and their 10 most correlated
neighbours in the pathprint collection
pcxn.obj <- pcxn_explore(collection = "pathprint",
 query_geneset = "Alzheimer's disease (KEGG)",
 adj_overlap = TRUE,
 top = 10,
 min_abs_corr = 0.05,
 max_pval = 0.05)

Explore the static extendable network (correlation coefficients are not
adjusted for gene overlap) by focusing on single pathways and their
10 most correlated neighbours in the pathprint collection
pcxn.obj <- pcxn_explore(collection = "pathprint",
 query_geneset = "Alzheimer's disease (KEGG)",
 adj_overlap = FALSE,
 top = 10,
 min_abs_corr = 0.05,
 max_pval = 0.05)

Analyse relationships between groups of pathways shown to be enriched in the
collection by gene set enrichment (correlation coefficients are adjusted
for gene overlap)
pcxn.obj <- pcxn_analyze(collection = "pathprint",
 phenotype_0_genesets = c("ABC transporters (KEGG)",
 "ACE Inhibitor Pathway (Wikipathways)",
 "AR down reg. targets (Netpath)"),
 phenotype_1_genesets = c("DNA Repair (Reactome)"),
 adj_overlap = TRUE,
 top = 10,
 min_abs_corr = 0.05,
 max_pval = 0.05)

Analyse relationships between groups of pathways shown to be enriched in the
collection by gene set enrichment (correlation coefficients are not adjusted
for gene overlap)
A pcxn object produced by pcxn_explore() or pcxn_analyze(). It holds the corresponding analysis, the data produced by the analysis and the geneset groups involved.

Description

A pcxn object produced by pcxn_explore() or pcxn_analyze(). It holds the corresponding analysis, the data produced by the analysis and the geneset groups involved.

Value

pcxn object with a type, data and geneset_groups field

Slots

 type character.
 data matrix.
 geneset_groups list.

Examples

Create and show a pcxn object
pcxn <- pcxn_explore("pathprint","Alzheimer's disease (KEGG)", 10, 0.05, 0.05)

pcxn
pcxn_explore_analyze

Discover correlated pathway/gene sets of a single pathway/gene set or correlation relationships among multiple pathways/gene sets.

Description

Using pcxn_explore, select a single pathway/gene set from one of the four collections (MSigDB H hallmark gene sets, MSigDB C2 Canonical pathways, MSigDB C5 GO BP gene sets, and Pathprint) and discover its correlated pathway/gene sets within the same collection.

Using pcxn_analyze, discover correlation relationships among multiple pathways/gene sets identified by GSEA (gene set enrichment analysis). All the input pathways/gene sets should come from the same collection. MSigDB H hallmark gene sets, MSigDB C2 Canonical pathways, MSigDB C5 GO BP gene sets, and Pathprint are treated as four separate collections.

Usage

pcxn_explore(collection = c("pathprint", "MSigDB_H", "MSigDB_C2_CP", "MSigDB_C5_GO_BP"),
query_geneset,
adj_overlap = FALSE,
top = 10,
min_abs_corr = 0.05,
max_pval = 0.05)

pcxn_analyze(collection = c("pathprint", "MSigDB_H", "MSigDB_C2_CP", "MSigDB_C5_GO_BP"),
phenotype_0_genesets,
phenotype_1_genesets,
adj_overlap = FALSE,
top = 10,
min_abs_corr = 0.05,
max_pval = 0.05)

Arguments

collection pathways’ collection chosen among: "pathprint", "MSigDB_H", "MSigDB_C2_CP", "MSigDB_C5_GO_BP"
query_geneset the single pathway of interest
phenotype_0_genesets genesets/pathways of the first group of pathways
phenotype_1_genesets genesets/pathways of the second group of pathways
adj_overlap whether the correlation coefficients are adjusted for gene overlap
top most correlated genesets/pathways
min_abs_corr minimum absolute correlation
max_pval maximum p-value
pcxn_gene_members

Value

a pcxn object

Author(s)

Sokratis Kariotis

References

Examples

pcxn_explore function can be used with the default parameters:
pcxn_explore("pathprint","Alzheimer's disease (KEGG)"

If specific parameters are desired we can use the full list of arguments:
pcxn_explore("pathprint","Alzheimer's disease (KEGG)", FALSE, 100, 0.02, 0.045)

pcxn_analyze can be used with two gene sets and the default parameters:
pcxn_analyze("pathprint",c("ABC transporters (KEGG)", "ACE Inhibitor Pathway (Wikipathways)", "AR down reg. targets (Netpath)", c("DNA Repair (Reactome)"))

Alternatively, you can use only one gene set:
pcxn_analyze("MSigDB_H",c("HALLMARK_COAGULATION", "HALLMARK_UV_RESPONSE_UP")

If specific parameters are desired we can use the full list of arguments:
pcxn_analyze("pathprint",c("ABC transporters (KEGG)", "ACE Inhibitor Pathway (Wikipathways)", "AR down reg. targets (Netpath)", c("DNA Repair (Reactome)", FALSE, top = 100, min_abs_corr = 0.025, max_pval = 0.03)

pcxn_gene_members

Acquire the gene members of a pathway from the pcxnData package

Description

Acquire the gene members of one of the available pathways that belong to MSigDB H hallmark pathways, MSigDB C2 Canonical pathways, MSigDB C5 GO BP gene sets or Pathprint genesets
pcxn_gene_members

Usage

pcxn_gene_members(pathway_name = "Alzheimer's disease (KEGG)")

Arguments

pathway_name the pathway whose members we want

Value

a matrix of Entrez IDs and gene symbols

Author(s)

Sokratis Kariotis

Examples

Get the members of a single pathway
pcxn_gene_members("Alzheimer's disease (KEGG)")

pcxn_heatmap

Draw a heatmap of a pcxn object

Description

Draw a heatmap of a pcxn object where color represents correlation coefficients.

Usage

pcxn_heatmap(object, cluster_method = "complete")

Arguments

object pcxn object created by pcxn_explore or pcxn_analyze functions
cluster_method clustering method drawn from: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid"

Value

a pheatmap object

Author(s)

Sokratis Kariotis

See Also

pcxn_network
Examples

Draw a heatmap of a pcxn object with a specific clustering method
object <- pcxn_explore("pathprint","Alzheimer's disease (KEGG)",10,0.05,0.05)

pcxn_heatmap(object,"complete")

pcxn_network

Create a network of a pcxn object

Description
Create a network of a pcxn object

Usage
pcxn_network(object)

Arguments
object pcxn object created by explore or analyze functions

Value
draws a tkplot object and saves a graph object representing the network

Examples

Create a network of a pcxn object
object <- pcxn_explore("pathprint","Alzheimer's disease (KEGG)",10,0.05,0.05)

network <- pcxn_network(object)
Index

* package
 pcxn, 2

Introduction to pcxn (pcxn), 2

pcxn, 2
pcxn-class, 4
pcxn_analyze (pcxn_explore_analyze), 5
pcxn_explore (pcxn_explore_analyze), 5
pcxn_explore_analyze, 5
pcxn_gene_members, 6
pcxn_heatmap, 7
pcxn_network, 7, 8