Package ‘pageRank’

April 2, 2024

Title Temporal and Multiplex PageRank for Gene Regulatory Network Analysis

Version 1.12.0

Description Implemented temporal PageRank analysis as defined by Rozenshtein and Gionis. Implemented multiplex PageRank as defined by Halu et al. Applied temporal and multiplex PageRank in gene regulatory network analysis.

Depends R (>= 4.0)

License GPL-2

Encoding UTF-8

LazyData true

Imports GenomicRanges, igraph, motifmatchr, stats, utils, grDevices, graphics

biocViews StatisticalMethod, GeneTarget, Network

URL https://github.com/hd2326/pageRank

BugReports https://github.com/hd2326/pageRank/issues

RoxygenNote 6.1.99.9001

git_url https://git.bioconductor.org/packages/pageRank

git_branch RELEASE_3_18

git_last_commit 0fb8df7

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-01

Author Hongxu Ding [aut, cre, ctb, cph]

Maintainer Hongxu Ding <hd2326@columbia.edu>
accessibility_network

Build Network from Accessibility Peaks.

Description

Build network from accessibility, e.g. ATAC-Seq peaks.

Usage

accessibility_network(table, promoter, pfm, genome, p.cutoff = 5e-05, w = 7)

Arguments

- **table** (data.frame) Peaks, with "Chr", "Start" and "End" in column name, and peak ID in row names.
- **promoter** (GRanges) Promoter regions.
- **pfm** (PFMatrixList) Position Frequency Matrices (PFMs) of regulators.
- **genome** (BSgenome or character) Genome build in which regulator motifs will be searched.
- **p.cutoff** (numeric) P-value cutoff for motifs searching within peaks for TF identification.
- **w** (numeric) Window size for motifs searching within peaks for TF identification.

Value

(data.frame) Network, with "reg" and "target" in column name.
adjust_graph

Author(s)
DING, HONGXU (hd2326@columbia.edu)

Examples

```r
table <- data.frame(Chr=c("chr1", "chr1"), Start=c(713689, 856337),
                    End=c(714685, 862152), row.names=c("A", "B"),
                    stringsAsFactors=FALSE)
regulators=c("FOXF2", "MZF1")
# peaks and regulators to be analyzed

library(GenomicRanges)
library(GenomicFeatures)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
library(annotate)
promoter <- promoters(genes(TxDb.Hsapiens.UCSC.hg19.knownGene))
names(promoter) <- getSYMBOL(names(promoter), data="org.Hs.eg")
promoter <- promoter[!is.na(names(promoter))]
# get promoter regions

library(JASPAR2018)
library(TFBSTools)
lmature <- motifmatchr(pfm <- getMatrixSet(JASPAR2018, list(species="Homo sapiens")))
pfm <- pfm[,lapply(pfm, function(x) name(x)) %in% regulators]
# get regulator position frequency matrix (PFM) list

library(BSgenome.Hsapiens.UCSC.hg19)
accessibility_network(table, promoter, pfm, "BSgenome.Hsapiens.UCSC.hg19")
# generate network
```

Description

Re-calculate PageRank with updated damping factor, personalized vector and edge weights.

Usage

```r
adjust_graph(graph, damping = 0.85, personalized = NULL, weights = NULL)
```

Arguments

- **graph** (igraph) The graph to be adjusted.
- **damping** (numeric) Damping factor.
- **personalized** (numeric) Personalized vector.
- **weights** (numeric) Weight vector.
aracne_network

Value

(igraph) Network with updated "pagerank" as vertex attribute.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

Examples

library(igraph)
set.seed(1)
graph <- igraph::erdos.renyi.game(100, 0.01, directed = TRUE)
igraph::V(graph)$name <- 1:100
igraph::V(graph)$pagerank <- igraph::page_rank(graph, damping=0.85)$vector
adjust_graph(graph, damping=0.1)

__aracne_network__

Re-format ARACNe Network.

Description

Re-format ARACNe network in regulon object to data.frame with regulator, target and direction columns.

Usage

aracne_network(regulon)

Arguments

regulon (regulon) ARACNe network.

Value

(data.frame) Network, with "reg", "target" and "direction" in column name. For direction, 1/0 denotes positive/negative regulation.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

Examples

library(bcellViper)
data(bcellViper)
aracne_network(regulon[1:10])
Description

Make bubbleplot.

Usage

```r
bubble_plot(
  s_mat,
  c_mat,
  n_mat,
  col = colorRampPalette(c("Blue", "Grey", "Red"))(100),
  breaks = seq(-2, 2, length.out = 100),
  main = NULL
)
```

Arguments

- **s_mat** (matrix) Matrix denotes the size of bubbles.
- **c_mat** (matrix) Matrix denotes the color of bubbles.
- **n_mat** (matrix) Matrix denotes the name of bubbles.
- **col** (character) Colors.
- **breaks** (numeric) Breakpoints of colors.
- **main** (character) Title.

Value

(NULL) A bubbleplot.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

Examples

```r
s_mat <- c_mat <- n_mat <- matrix(1:12, 3, 4, dimnames=list(1:3, 1:4))
bubble_plot(s_mat, c_mat, n_mat, breaks=seq(1, 12, length.out=100), main="")
```
conformation_network

clean_graph
Clean Graph

Description

Remove graph nodes by residing subgraph sizes, vertex names and PageRank values.

Usage

```
clean_graph(graph, size = NULL, vertices = NULL, pagerank = NULL)
```

Arguments

- `graph` (igraph): The graph to be cleaned.
- `size` (numeric): Subgraph size cutoff.
- `vertices` (character): Vertices to be kept.
- `pagerank` (numeric): PageRank cutoff.

Value

(igraph) Network updated "pagerank" as vertex attribute.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

Examples

```
library(igraph)
set.seed(1)
graph <- igraph::erdos.renyi.game(100, 0.01, directed = TRUE)
igraph::V(graph)$name <- 1:100
igraph::V(graph)$pagerank <- igraph::page_rank(graph)$vector
clean_graph(graph, size=5)
```

conformation_network
Build Network from Conformation Peaks.

Description

Build network from conformation, e.g. HiChIP records.
conformation_network

Usage

conformation_network(
 table,
 promoter,
 pfm,
 genome,
 range = 500,
 p.cutoff = 5e-05,
 w = 7
)

Arguments

table (data.frame) Records, with "Chr1", "Position1", "Strand1", "Chr2", "Position2" and "Strand2" in column name, and record ID in row names.

promoter (GRanges) Promoter regions.

pfm (PFMatrixList) Position Frequency Matrices (PFMs) of regulators.

genome (BSgenome or character) Genome build in which regulator motifs will be searched.

range (numeric) Search radius from "Position1" and "Position2" for promoters.

p.cutoff (numeric) P-value cutoff for motifs searching within peaks for TF identification.

w (numeric) Window size for motifs searching within peaks for TF identification.

Value

(data.frame) Network, with "reg" and "target" in column name.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

Examples

table <- data.frame(Chr1=c("chr1", "chr1"),
 Position1=c(569265, 713603),
 Strand1=c("+", "+") ,
 Chr2=c("chr4", "chr1"),
 Position2=c(206628, 715110),
 Strand2=c("+", "-"),
 row.names=c("A", "B"), stringsAsFactors=FALSE)

regulators=c("FOXF2", "MZF1")
#peaks and regulators to be analyzed

library(GenomicRanges)
library(GenomicFeatures)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
library(annotate)
promoter <- promoters(genes(TxDb.Hsapiens.UCSC.hg19.knownGene))
Calculate Temporal PageRank from Two Graphs

Description

Calculate temporal PageRank by changing edges between graph1 and graph2. This is a simplified version of temporal PageRank described by Rozenshtein and Gionis, by only analyzing temporally adjacent graph pairs.

Usage

diff_graph(graph1, graph2)

Arguments

graph1 (igraph) The 1st graph.

graph2 (igraph) The 2nd graph.

Value

(igraph) Network graph1-graph2 with "moi (mode of interaction)" and "pagerank" as edge and vertex attributes.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

References

Examples

```r
library(igraph)
set.seed(1)
graph1 <- igraph::erdos.renyi.game(100, 0.01, directed = TRUE)
igraph::V(graph1)$name <- 1:100
set.seed(2)
graph2 <- igraph::erdos.renyi.game(100, 0.01, directed = TRUE)
igraph::V(graph2)$name <- 1:100
diff_graph(graph1, graph2)
```

gene_bin

Bin Gene Expression Space

Description

Bin gene expression space for marginal/joint probability calculation.

Usage

```r
gene_bin(genes, expmat, sep = 5)
```

Arguments

- **genes** (character) Genes to be analyzed.
- **expmat** (matrix) Gene expression matrix.
- **sep** (numeric) Number of bins.

Value

(matrix) Border values of gene expression bins.

Author(s)

DING, HONGXU (hd2326@columbia.edu)
get_color_gradient Generate Color Gradient

Description
Generate color gradient for, e.g. gene expression.

Usage
get_color_gradient(
 x,
 col = colorRampPalette(c("Blue", "Red"))(100),
 breaks = seq(-2, 2, length.out = 100)
)

Arguments
- x (numeric) Vector based on which color gradient is generated.
- col (character) Color vector.
- breaks (numeric) A set of breakpoints for the colors. Must be the same length of col.

Value
(character) Colors.

Author(s)
DING, HONGXU (hd2326@columbia.edu)

Examples
get_color_gradient(-2:2)

multiplex_page_rank Calculate Multiplex PageRank

Description
Calculate multiplex PageRank following definition by Halu et al.

Usage
multiplex_page_rank(graph, ..., beta = 1, gamma = 1, damping = 0.85)
Arguments

graph (igraph) The base graph with pagerank and name as vertex attributes.

... (igraph) Supporter graphs with pagerank and name as vertex attributes.

beta (numeric) Parameters for adjusting supporter graph PageRank values. For the same nodes, PageRank values from different supporter graphs will first be multiplied. The products will then be exponenti-ated by beta and gamma, as outgoing edge weights and personalizations of the base graph. Four special multiplex PageRank forms are defined by varying (beta, gamma), including additive (0, 1), multiplicative (1, 0), combined (1, 1) and neutral (0, 0).

gamma (numeric) Parameters for adjusting supporter graph PageRank values. For the same nodes, PageRank values from different supporter graphs will first be multiplied. The products will then be exponenti-ated by beta and gamma, as outgoing edge weights and personalizations of the base graph. Four special multiplex PageRank forms are defined by varying (beta, gamma), including additive (0, 1), multiplicative (1, 0), combined (1, 1) and neutral (0, 0).

damping (numeric) Damping factor.

Value

(numeric) Multiplex PageRank values.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

References

Examples

library(igraph)
set.seed(1)
graph1 <- igraph::erdos.renyi.game(100, 0.01, directed = TRUE)
igraph::V(graph1)$name <- 1:100
igraph::V(graph1)$pagerank <- igraph::page_rank(graph1)$vector
set.seed(2)
graph2 <- igraph::erdos.renyi.game(100, 0.01, directed = TRUE)
igraph::V(graph2)$name <- 1:100
igraph::V(graph2)$pagerank <- igraph::page_rank(graph2)$vector
multiplex_page_rank(graph1, graph2)
PX
Marginal Probability Calculation

Description
Calculate marginal probability.

Usage

\[PX(\text{expmat}, \text{bin}) \]

Arguments

- **expmat** (matrix) Gene expression matrix.
- **bin** (matrix) Results of gene_bin function.

Value
(matrix) Marginal probability matrix.

Author(s)
DING, HONGXU (hd2326@columbia.edu)

PXPY
Product of Marginal Probability

Description
Calculate the product of marginal probability.

Usage

\[PXPY(\text{px}, \text{combinations}) \]

Arguments

- **px** (matrix) Marginal probability generated by PX fuction.
- **combinations** (character) Variable combinations ("x_y") to be analyzed.

Value
(list) Product of marginal probability.

Author(s)
DING, HONGXU (hd2326@columbia.edu)
PXY

Joint Probability Calculation

Description
Calculate joint probability.

Usage
PXY(expmat, bin, x, y)

Arguments
- expmat (matrix) Gene expression matrix.
- bin (matrix) Results of gene_bin function.
- x (character) The first variable.
- y (character) The pairing second variable.

Value
(list) Joint probability.

Author(s)
DING, HONGXU (hd2326@columbia.edu)

P_dist
Calculate Probability-Based Distance

Description
Calculate distance based on PXY and PXPY.

Usage
P_dist(pxy, pxpy, method = c("difference", "mi"))

Arguments
- pxy (list) Joint probability generated by PXY fuction.
- pxpy (list) Product of marginal probability generated by PXPY fuction.
- method (character) Method for calculating distance, either PXY-PXPY ("difference") or mutual information ("mi").
P_graph

Build Probability-Based Network

Description

Build probability-based regulator-target interaction network.

Usage

```r
P_graph(
  expmat,
  net,
  sep = 5,
  method = c("difference", "mi"),
  null = NULL,
  threshold = 0.001
)
```

Arguments

- `expmat` (matrix) Gene expression matrix.
- `net` (data.frame) Network, with "reg" and "target" in column name.
- `sep` (numeric) Number of bins for calculating marginal/joint probability.
- `method` (character) Method for calculating probability-based distance, either PXY-PXPY ("difference") or mutual information ("mi").
- `null` (ecdf) Null distribution of probability-based distance. Either from random interactions by `P_null` function, or all interactions in net.
- `threshold` (numeric) P-value threshold for filtering interactions in net.

Value

(igraph) Network graph with "pvalue" and "direction", and "pagerank" as edge/vertex attributes.

Author(s)

DING, HONGXU (hd2326@columbia.edu)
Examples

```r
library(bcellViper)
data(bcellViper)
dset <- exprs(dset)
net <- do.call(rbind, lapply(1:10, function(i, regulon){
data.frame(reg=rep(names(regulon)[i], 10),
target=names(regulon[[i]][[1]]][1:10],
direction=rep(1, 10),
stringsAsFactors = FALSE)), regulon=regulon))
P_graph(dset, net, method="difference", null=NULL, threshold=0.05)
```

Description

Build null model for evaluating the significance of interactions by generating random regulator-target pairs.

Usage

```r
P_null(expmat, net, n = 10000, sep = 5, method = c("difference", "mi"))
```

Arguments

- `expmat` (matrix) Gene expression matrix.
- `net` (data.frame) Network, with "reg" and "target" in column name.
- `n` (numeric) Number of random pairs.
- `sep` (numeric) Number of bins for calculating marginal/joint probability.
- `method` (character) Method for calculating probability-based distance, either PXY-PXPY ("difference") or mutual information ("mi").

Value

(ecdf) ECDF of null distribution.

Author(s)

DING, HONGXU (hd2326@columbia.edu)
Examples

```r
library(bcellViper)
data(bcellViper)
dset <- exprs(dset)
net <- do.call(rbind, lapply(1:10, function(i, regulon){
data.frame(reg=rep(names(regulon)[i], 10),
    target=names(regulon[[i]][[1]]][1:10],
    direction=rep(1, 10),
    stringsAsFactors = FALSE)}, regulon=regulon))
P_null(dset, net, n=100, method="difference")
```

time_expmat

Generate Timewise Average Gene Expression

Description

Generate timewise average gene expression.

Usage

`time_expmat(time, expmat)`

Arguments

- `time` (character) Time-annotation of samples.
- `expmat` (matrix) Gene expression matrix.

Value

(matrix) Time-wise average gene expression.

Author(s)

DING, HONGXU (hd2326@columbia.edu)

Examples

```r
expmat <- matrix(rnorm(90), 10, 9, dimnames=list(LETTERS[1:10], 1:9))
time <- c(rep("T1", 3), rep("T2", 3), rep("T3", 3))
time_expmat(time, expmat)
```
Index

* internal
 gene_bin, 9
 P_dist, 13
 PX, 12
 PXPY, 12
 PXY, 13

accessibility_network, 2
adjust_graph, 3
aracne_network, 4

bubble_plot, 5

clean_graph, 6
conformation_network, 6

diff_graph, 8

gene_bin, 9
get_color_gradient, 10

multiplex_page_rank, 10

P_dist, 13
P_graph, 14
P_null, 15
PX, 12
PXPY, 12
PXY, 13

time_expmat, 16