Package ‘netSmooth’

March 14, 2024

Type Package
Title Network smoothing for scRNAseq
Version 1.22.0
Description netSmooth is an R package for network smoothing of single cell RNA sequencing data. Using bio networks such as protein-protein interactions as priors for gene co-expression, netsmooth improves cell type identification from noisy, sparse scRNAseq data.

biocViews Network, GraphAndNetwork, SingleCell, RNASeq, GeneExpression, Sequencing, Transcriptomics, Normalization, Preprocessing, Clustering, DimensionReduction

URL https://github.com/BIMSBbioinfo/netSmooth

BugReports https://github.com/BIMSBbioinfo/netSmooth/issues

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5), scater (>= 1.15.11), clusterExperiment (>= 2.1.6)
Imports entropy, SummarizedExperiment, SingleCellExperiment, Matrix, cluster, data.table, stats, methods, DelayedArray, HDF5Array (>= 1.15.13)

Suggests knitr, testthat, Rtsne, biomaRt, igraph, STRINGdb, NMI, pheatmap, ggplot2, BiocStyle, rmarkdown, BiocParallel, uwot

VignetteBuilder knitr

RoxygenNote 7.0.2

git_url https://git.bioconductor.org/packages/netSmooth

git_branch RELEASE_3_18

git_last_commit d9163f4

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-13
Author Jonathan Ronen [aut, cre],
Altuna Akalin [aut]

Maintainer Jonathan Ronen <yablee@gmail.com>

R topics documented:

- calc2DEntropy .. 2
- clusterExperimentWorkflow 3
- clusterOne ... 4
- dimReduce ... 4
- human.ppi .. 5
- l1NormalizeColumns 5
- l1NormalizeRows 6
- mouse.ppi .. 6
- netSmooth,matrix-method 7
- pickDimReduction,matrix-method 9
- projectFromNetworkRecombine,matrix-method 10
- projectOnNetwork,matrix-method 10
- randomWalkByIterations 11
- randomWalkByMatrixInv,matrix-method 12
- randomWalkBySolve,matrix-method 12
- robustClusters,SummarizedExperiment-method 13
- scoreSmoothing .. 14
- smallPPI .. 14
- smallscRNAsseq .. 15
- smoothAndRecombine,matrix-method 15

Index

calc2DEntropy
Calculate entropy in 2D data

Description

Calculate entropy in 2D data

Usage

```
calc2DEntropy(x, numBins1 = 20, numBins2 = 20)
```

Arguments

- `x`
 the 2D data to get entropy from

- `numBins1`
 the number of bins along the first dimension to discretize data into

- `numBins2`
 the number of bins along the second dimension to discretize data into
clusterExperimentWorkflow

Value

The Shannon entropy in the 2D data x

Description

Performs clustering workflow using `clusterExperiment` functions

Usage

```r
clusterExperimentWorkflow(
  se,
  dimReduceFlavor = c("pca", "tsne", "dm", "umap"),
  cluster.ks = 5:10,
  cluster.function = "pam",
  nVarDims = c(100, 500, 1000),
  makeConsensusProportion = 0.7,
  makeConsensusMinSize = 4,
  runMergeClusters = TRUE,
  is.counts = TRUE,
  random.seed = 1
)
```

Arguments

- `se` SummarizedExperiment object
- `dimReduceFlavor` algorithm for reduced dimension embedding step
- `cluster.ks` range of Ks to cluster over
- `cluster.function` clustering algorithm to use for all clusterings
- `nVarDims` numbers of variable genes to perform clusterings over
- `makeConsensusProportion` proportion of times samples need to be co-clustered for co-clustering step
- `makeConsensusMinSize` minimum cluster size
- `runMergeClusters` logical: merge similar clusters
- `is.counts` logical: is data counts
- `random.seed` passed to clusterExperiment. set to NULL in order to not set a random seed.

Value

cluster assignments
clusterOne

Description
Run one clustering using kmeans or PAM

Usage
clusterOne(x, algorithm = c("kmeans", "pam"), k = 5)

Value
kmeans or PAM cluster assignments

dimReduce

Description
Get lower dimension embedding

Usage
dimReduce(
 x,
 flavor = c("pca", "tsne", "umap"),
 k = 2,
 is.counts = TRUE,
 ntop = 500
)

Arguments
- **x**: gene expression matrix [GENES x SAMPLES]
- **flavor**: the algorithm to use to obtain the dimensionality reduction must be in c('pca', 'tsne', 'umap')
- **k**: the number of dimensions in the reduced dimension representation
- **is.counts**: logical: is 'x' counts data
- **ntop**: number of most variable genes to use for dimensionality reduction

Value
reduced dimensionality representation
human.ppi

Human Protein-Protein interaction graph

Description
An adjacency matrix of the 10 percent highest confidence interactions between human proteins on STRINGdb.

Usage
human.ppi

Format
A square matrix where A_{ij}=1 if gene i interacts with gene j

Details
See the script in `system.file(package="netSmooth", "data-raw", "make_ppi_from_string.R")` for full details of how this object was made.

Source
http://www.string-db.org/

l1NormalizeColumns

Column-normalize a sparse, symmetric matrix (using the l1 norm) so that each column sums to 1.

Description
Column-normalize a sparse, symmetric matrix (using the l1 norm) so that each column sums to 1.

Usage
l1NormalizeColumns(A)

Arguments
A

Value
column-normalized sparse matrix object
l1NormalizeRows

Row-normalize a sparse, symmetric matrix (using the 1 norm) so that each row sums to 1.

Description
Row-normalize a sparse, symmetric matrix (using the 1 norm) so that each row sums to 1.

Usage
l1NormalizeRows(A)

Arguments
A matrix

Value
row-normalized sparse matrix object

mouse.ppi

Mouse Protein-Protein interaction graph

Description
An adjacency matrix of the 10 percent highest confidence interactions between mouse proteins on STRINGdb.

Usage
mouse.ppi

Format
A square matrix where A_ij=1 if gene i interacts with gene j

Details
See the script in 'system.file(package="netSmooth", "data-raw", "make_ppi_from_string.R")' for full details of how this object was made.

Source
http://www.string-db.org/
Perform network smoothing of gene expression or other omics data

S4 method for signature 'matrix'
netSmooth(
 x,
 adjMatrix,
 alpha = "auto",
 normalizeAdjMatrix = c("rows", "columns"),
 autoAlphaMethod = c("robustness", "entropy"),
 autoAlphaRange = 0.1 * (seq_len(9)),
 autoAlphaDimReduceFlavor = "auto",
 is.counts = TRUE,
 bpparam = BiocParallel::SerialParam(),
 ...
)

S4 method for signature 'SummarizedExperiment'
netSmooth(x, ...)

S4 method for signature 'SingleCellExperiment'
netSmooth(x, ...)

S4 method for signature 'Matrix'
netSmooth(
 x,
 adjMatrix,
 alpha = "auto",
 normalizeAdjMatrix = c("rows", "columns"),
 autoAlphaMethod = c("robustness", "entropy"),
 autoAlphaRange = 0.1 * (seq_len(9)),
 autoAlphaDimReduceFlavor = "auto",
 is.counts = TRUE,
 bpparam = BiocParallel::SerialParam(),
 ...
)

S4 method for signature 'DelayedMatrix'
netSmooth(
 x,
adjMatrix,
alpha = "auto",
normalizeAdjMatrix = c("rows", "columns"),
autoAlphaMethod = c("robustness", "entropy"),
autoAlphaRange = 0.1 * (seq_len(9)),
autoAlphaDimReduceFlavor = "auto",
is.counts = TRUE,
bpparam = BiocParallel::SerialParam(),
filepath = NULL,
...
)

Arguments

x matrix or SummarizedExperiment

adjMatrix adjacency matrix of gene network to use

alpha numeric in [0,1] or 'auto'. if 'auto', the optimal value for alpha will be automatically chosen among the values specified in 'autoAlphaRange', using the strategy specified in 'autoAlphaMethod'

normalizeAdjMatrix how to normalize the adjacency matrix possible values are 'rows' (in-degree) and 'columns' (out-degree)

autoAlphaMethod if 'robustness', pick alpha that gives the highest proportion of samples in robust clusters if 'entropy', pick alpha that gives highest Shannon entropy in 2D PCA embedding

autoAlphaRange if 'alpha='optimal'' , search these values for the best alpha

autoAlphaDimReduceFlavor algorithm for dimensionality reduction that will be used to pick the optimal value for alpha. Either the 2D embedding to calculate the Shannon entropy for (if 'autoAlphaMethod="entropy"'), or the dimensionality reduction algorithm to be used in robust clustering (if 'autoAlphaMethod="robustness"')

is.counts logical: is the assay count data

bpparam instance of bpparam, for parallel computation with the 'alpha='auto' option. See the BiocParallel manual.

... arguments passed on to 'robustClusters' if using the robustness criterion for optimizing alpha

filepath String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

network-smoothed gene expression matrix or SummarizedExperiment object
pickDimReduction.matrix-method

Examples

```r
x <- matrix(rnbinom(12000, size=1, prob = .1), ncol=60)
rownames(x) <- paste0('gene', seq_len(dim(x)[1]))

adj_matrix <- matrix(as.numeric(rnorm(200*200)>.8), ncol=200)
rownames(adj_matrix) <- colnames(adj_matrix) <- paste0('gene', seq_len(dim(x)[1]))
x.smoothed <- netSmooth(x, adj_matrix, alpha=0.5)
```

Description

Pick the dimensionality reduction method for a dataset that gives the 2D embedding with the highest entropy.

Usage

```r
## S4 method for signature 'matrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)
```

```r
## S4 method for signature 'SummarizedExperiment'
pickDimReduction(x)
```

```r
## S4 method for signature 'Matrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)
```

```r
## S4 method for signature 'DelayedMatrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)
```

Arguments

- `x`: matrix or SummarizedExperiment object [GENES x SAMPLES]
- `flavors`: list of dimensionality reduction algorithms to try. Currently the options are "pca", "tsne" and "umap"
- `is.counts`: logical: is exprs count data

Value

name of dimensionality reduction method that gives the highest 2d entropy

Examples

```r
x <- matrix(rnbinom(60000, size=1, prob = .1), ncol=100)
pickDimReduction(x)
```
projectFromNetworkRecombine, matrix-method

Combine gene expression from smoothed space (that of the network) with the expression of genes that were not smoothed (not present in network)

Description

Combine gene expression from smoothed space (that of the network) with the expression of genes that were not smoothed (not present in network)

Usage

```r
## S4 method for signature 'matrix'
projectFromNetworkRecombine(original_expression, smoothed_expression)
```

Arguments

- `original_expression`:
 - the non-smoothed expression

- `smoothed_expression`:
 - the smoothed gene expression, in the space of the genes defined by the network

- `filepath`:
 - String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

a matrix in the dimensions of original_expression, where values that are present in smoothed_expression are copied from there.

projectOnNetwork, matrix-method

Project the gene expression matrix onto a lower space of the genes defined in the smoothing network

Description

Project the gene expression matrix onto a lower space of the genes defined in the smoothing network

Usage

```r
## S4 method for signature 'matrix'
projectOnNetwork(gene_expression, new_features, missing.value = 0)
```
randomWalkByIterations

Arguments
- **gene_expression**
 - gene expression matrix
- **new_features**
 - the genes in the network, on which to project the gene expression matrix
- **missing.value**
 - value to assign to genes that are in network, but missing from gene expression matrix

Value
- the gene expression matrix projected onto the gene space defined by new_features

Description
Smooth data on graph by computing iterations

Usage
```
randomWalkByIterations(
  f0,  # initial data matrix [NxM]
  adjMatrix,  # adjacency matrix of graph to network smooth on will be column-normalized.
  alpha,  # smoothing coefficient (1 - restart probability of random walk)
  normalizeAdjMatrix = c("rows", "columns"),
  tol = 1e-06,  # the tolerance (stopping criterion)
  max.iter = 100  # the maximum number of iterations before terminating
)
```

Arguments
- **f0**
- **adjMatrix**
- **alpha**
- **tol**
- **max.iter**

Value
- network-smoothed gene expression
Smooth data on graph by computing the closed-form steady state distribution of the random walk with restarts process.

Description
The closed-form solution is given by \(f_{ss} = (1 - \alpha) * (I - \alpha * A)^{-1} * f_0 \) and is computed by matrix inversion in this function.

Usage
```r
## S4 method for signature 'matrix'
randomWalkByMatrixInv(f0, adjMatrix, alpha, normalizeAdjMatrix = c("rows", "columns"))
```

Arguments
- **f0**: initial data matrix [N x M]
- **adjMatrix**: adjacency matrix of graph to network smooth on will be column-normalized.
- **alpha**: smoothing coefficient (1 - restart probability of random walk)

Value
network-smoothed gene expression

Smooth data on graph by solving the linear equation \((I - \alpha * A) * E_{sm} = E * (1 - \alpha) \)

Description
Smooth data on graph by solving the linear equation \((I - \alpha * A) * E_{sm} = E * (1 - \alpha) \)

Usage
```r
## S4 method for signature 'matrix'
randomWalkBySolve(E, A, alpha, normalizeAdjMatrix = c("rows", "columns"))
```
Arguments

\(E \)
initial data matrix \([N \times M]\)

\(A \)
adjacency matrix of graph to network smooth on will be column-normalized.

\(\alpha \)
smoothing coefficient \((1 - \text{restart probability of random walk})\)

Value

network-smoothed gene expression

robustClusters, SummarizedExperiment-method

Perform robust clustering on dataset, and calculate the proportion of samples in robust clusters

Description

Perform robust clustering on dataset, and calculate the proportion of samples in robust clusters

Usage

S4 method for signature 'SummarizedExperiment'
robustClusters(x, dimReduceFlavor = "auto", is.counts = TRUE, ...)

S4 method for signature 'matrix'
robustClusters(x, ...)

Arguments

\(x \)
matrix or SummarizedExperiment object

\(\text{dimReduceFlavor} \)
algorithm for dimensionality reduction step of clustering procedure. May be `’pca’`, `’tsne’`, `’dm’`, `’umap’` or `’auto’`, which uses shannon entropy to pick the algorithm.

\(\text{is.counts} \)
logical: is the data counts

\(\ldots \)
arguments passed on to `’clusterExperimentWorkflow’`

Value

list(clusters, proportion.robust)

Examples

data("smallscRNAseq")
robustClusters(smallscRNAseq, dimReduceFlavor='pca')
scoreSmoothing

Calculate a score for a smoothing result, for picking the best alpha value

Description

Calculate a score for a smoothing result, for picking the best alpha value.

Usage

scoreSmoothing(x, method = c("entropy", "robustness"), is.counts = TRUE, ...)

Arguments

- **x**: the network-smoothed expression matrix
- **method**: the scoring method. 'entropy' calculates shannon entropy in a 2D PCA of the data. 'robustness' performs robust clustering and reports the proportion of samples in robust clusters

Value

the score

smallPPI

A small human Protein-Protein interaction graph for use in examples.

Description

Contains a synthetic PPI of human genes.

Usage

smallPPI

Format

An object of class matrix with 611 rows and 611 columns.
smallscRNAseq

A small single cell RNA-seq dataset for use in examples.

Description

Contains scRNAseq profiles of human blastomeres.

Usage

smallscRNAseq

Format

SingleCellExperiment

Source

smoothAndRecombine, matrix-method

Perform network smoothing on network when the network genes and the experiment genes aren’t exactly the same.

Description

The gene network might be defined only on a subset of genes that are measured in any experiment. Further, an experiment might not measure all genes that are present in the network. This function projects the experiment data onto the gene space defined by the network prior to smoothing. Then, it projects the smoothed data back into the original dimensions.

Usage

```r
## S4 method for signature 'matrix'
smoothAndRecombine(
  gene_expression,
  adj_matrix,
  alpha,
  smoothing.function = randomWalkBySolve,
  normalizeAdjMatrix = c("rows", "columns")
)
```
Arguments

gene_expression
gene expression data to be smoothed [N_genes x M_samples]

adj_matrix
adjacenty matrix of network to perform smoothing over. Will be column-normalized.
Rownames and colnames should be genes.

alpha
network smoothing parameter (1 - restart probability in random walk model.

smoothing.function
must be a function that takes in data, adjacency matrix, and alpha. Will be used
to perform the actual smoothing.

normalizeAdjMatrix
which dimension (rows or columns) should the adjacency matrix be normalized
by. rows corresponds to in-degree, columns to out-degree.

filepath
String: Path to location where hdf5 output file is supposed to be saved. Will be
ignored when regular matrices or SummarizedExperiment are used as input.

Value

matrix with network-smoothed gene expression data. Genes that are not present in smoothing net-
work will retain original values.
Index

* datasets
 human.ppi, 5
 mouse.ppi, 6
 smallPP1, 14
 smallscRNseq, 15

* internal
 calc2DEntropy, 2
 clusterExperimentWorkflow, 3
 clusterOne, 4
 dimReduce, 4
 l1NormalizeColumns, 5
 l1NormalizeRows, 6
 projectFromNetworkRecombine, matrix-method, 10
 projectOnNetwork, matrix-method, 10
 randomWalkByIterations, 11
 randomWalkByMatrixInv, matrix-method, 12
 randomWalkBySolve, matrix-method, 12
 scoreSmoothing, 14
 smoothAndRecombine, matrix-method, 15

 calc2DEntropy, 2
 clusterExperimentWorkflow, 3
 clusterOne, 4
 dimReduce, 4
 human.ppi, 5
 l1NormalizeColumns, 5
 l1NormalizeRows, 6
 mouse.ppi, 6
 netSmooth, matrix-method, 7
 netSmooth, matrix-method, 7
 netSmooth, SingleCellExperiment-method
 (netSmooth, matrix-method), 7
 netSmooth, SummarizedExperiment-method
 (netSmooth, matrix-method), 7
 pickDimReduction, matrix-method
 (pickDimReduction, matrix-method), 9
 pickDimReduction, DelayedMatrix-method
 (pickDimReduction, matrix-method), 9
 pickDimReduction, Matrix-method
 (pickDimReduction, matrix-method), 9
 pickDimReduction, matrix-method, 9
 pickDimReduction, SummarizedExperiment-method
 (pickDimReduction, matrix-method), 9
 projectFromNetworkRecombine, matrix-method, 10
 projectOnNetwork, matrix-method, 10
 randomWalkByIterations, 11
 randomWalkByMatrixInv, matrix-method, 12
 randomWalkBySolve, matrix-method, 12
 robustClusters, SummarizedExperiment-method
 (robustClusters, SummarizedExperiment-method), 13
 robustClusters, matrix-method
 (robustClusters, SummarizedExperiment-method), 13
 robustClusters, SummarizedExperiment-method, 13
scoreSmoothing, 14
smallPPI, 14
smallscRNAseq, 15
smoothAndRecombine, matrix-method, 15