Title Next generation structural variant annotation and classification

Version 1.18.0

Author Surajit Bhattacharya, Hayk Barsheghyan, Emmanuele C Delot and Eric Vilain

Description
Whole genome sequencing (WGS) has successfully been used to identify single-nucleotide variants (SNV), small insertions and deletions (INDELs) and, more recently, small copy number variants (CNVs). However, due to utilization of short reads, it is not well suited for identification of structural variants (SV). Optical mapping (OM) from Bionano Genomics, utilizes long fluorescently labeled megabase size DNA molecules for de novo genome assembly and identification of SVs with a much higher sensitivity than WGS. Nevertheless, currently available SV annotation tools have limited number of functions. NanotatoR is an R package written to provide a set of annotations for SVs identified by OM. It uses Database of Genomic Variants (DGV), Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER) as well as a subset (154 samples) of 1000 Genome Project to calculate the population frequencies of the SVs (an optional internal cohort SV frequency calculation is also available). NanotatoR creates a primary gene list (PG) from NCBI databases based on proband’s phenotype specific keywords and compares the list to the set of genes overlapping/near SVs. The output is given in an Excel file format, which is subdivided into multiple sheets based on SV type (e.g., INDELs, Inversions, Translocations). Users then have a choice to filter SVs using the provided annotations for de novo (if parental samples are available) or inherited rare variants.

Depends R (>= 4.1),

Imports hash(>= 2.2.6), openxlsx(>= 4.0.17), rentrez(>= 1.1.0), stats, rlang, stringr, knitr, testthat, utils, AnnotationDbi, httr, GenomicRanges, tidyverse, VarfromPDB, org.Hs.eg.db, curl, dplyr, XML, XML2R

Suggests rmarkdown, yaml

VignetteBuilder knitr

License file LICENSE

biocViews Software, WorkflowStep, GenomeAssembly, VariantAnnotation

Encoding UTF-8

RoxygenNote 7.1.1.9001
URL. https://github.com/VilainLab/nanotatoR

BugReports. https://github.com/VilainLab/nanotatoR/issues

git_url. https://git.bioconductor.org/packages/nanotatoR

git_branch. RELEASE_3_18

git_last_commit. 9ad2203

git_last_commit_date. 2023-10-24

Repository. Bioconductor 3.18

Date/Publication. 2024-03-22

Maintainer. Surajit Bhattacharya <sbhattach2@childrensnational.org>

R topics documented:

BNDBfrequency ... 3
buildrunBNBedFiles ... 5
clinvar_gene ... 6
Decipherfrequency .. 6
DGVfrequency ... 8
extract_clinvar_mod ... 9
FamilyInfoPrep ... 10
gene_extraction ... 11
gene_list_generation .. 11
gtr_gene ... 12
internalFrequencyTrio_Duo .. 13
internalFrequency_solo ... 16
makeInternalBNDatabase ... 19
mergingSMAP_SE ... 20
mergingSMAP_SVMerge ... 20
merging_SE_SVMerge .. 21
nanotatoR .. 22
nanotatoR_Duo_SVmerge ... 23
nanotatoR_main_Duo_SE ... 28
nanotatoR_main_Solo_SE ... 33
nanotatoR_main_Solo_SVmerge ... 38
nanotatoR_main_Trio_SE ... 43
nanotatoR_SVmerge_Trio .. 47
nonOverlapGenes ... 52
nonOverlappingDNGenes ... 54
nonOverlappingUPGenes .. 55
nonOverlapRNAseq .. 55
nonOverlapRNAseq_solo .. 56
omim_gene .. 57
overlapGenes .. 58
overlapnearestgeneSearch ... 59
overlappingGenes .. 60
OverlapRNAseq .. 61
BNDBfrequency

Calculates the internal frequencies of BNDB cohorts

Description

Calculates the internal frequencies of BNDB cohorts

Usage

```r
BNDBfrequency(
  internalBNDB,
  smappath,
  smap,
  buildBNInternalDB = FALSE,
  smapdata,
  input_fmt_SV = c("Text", "dataFrame"),
  dbOutput = c("dataframe", "text"),
  BNDBpath,
  BNDBpattern,
  outpath,
  win_indel = 10000,
  win_inv_trans = 50000,
  perc_similarity = 0.5,
  indelconf = 0.5,
  invconf = 0.01,
  limsize = 1000,
  transconf = 0.1,
  returnMethod = c("Text", "dataFrame"),
)```

**Example**

```r
BNDBfrequency(
 internalBNDB,
 smappath,
 smap,
 buildBNInternalDB = FALSE,
 smapdata,
 input_fmt_SV = "Text",
 dbOutput = "dataframe",
 BNDBpath,
 BNDBpattern,
 outpath,
 win_indel = 10000,
 win_inv_trans = 50000,
 perc_similarity = 0.5,
 indelconf = 0.5,
 invconf = 0.01,
 limsize = 1000,
 transconf = 0.1,
 returnMethod = "text",
)```
```r
EnzymeType = c("SVmerge", "SE")
```

Arguments

- `internalBNDB`: character. Path to the merged SV files.
- `smappath`: character. path to the query smap file.
- `smap`: character. File name for the smap build
- `buildBNInternalDB`: boolean. Checking whether the merged BNDB file database exist.
- `smapdata`: dataframe. smapdata in the form of dataframe.
- `input_fmt_SV`: character. Choice between Text and DataFrame.
- `dbOutput`: character. database output type. Options dataframe or text.
- `BNDBpath`: character. Path to the BNDB file database.
- `BNDBpattern`: character. pattern of the file names to merge.
- `outpath`: character. Path to merged SV solo datasets.
- `win_indel`: Numeric. Insertion and deletion error window.
- `win_inv_trans`: Numeric. Inversion and translocation error window.
- `perc_similarity`: Numeric. ThresholdPercentage similarity of the query SV and reference SV.
- `indelconf`: Numeric. Threshold for insertion and deletion Score.
- `limsize`: Numeric. SV size limit.
- `transconf`: Numeric. Threshold for translocation Score.
- `EnzymeType`: Character. Type of enzyme. Options SVmerge and SE.

Value

Text file or data frames containing internalFrequency data.

Examples

```r
path <- system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern <- "*_hg19_*"
smapName="GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
BNDBfrequency(smap = smap, buildBNInternalDB=TRUE, input_fmt_SV = "Text", dbOutput="dataframe", BNDBpath = path, BNDBpattern = pattern, outpath, win_indel = 10000,
```
buildrunBNBedFiles

Reads BED files to produce bionano Bed files

Description

Reads BED files to produce bionano Bed files

Usage

```
buildrunBNBedFiles(
  bedFile, 
  returnMethod = c("Text", "dataFrame"),
  outdir, 
  fname
)
```

Arguments

- **bedFile**: character. Path to UCSC Bed File.
- **returnMethod**: character. Path to output directory.
- **outdir**: character. Path to output directory.
- **fname**: character. Output File name.

Value

Data Frame or text file. Contains the gene information.

Examples

```
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed",
  package="nanotatoR")
bed<-buildrunBNBedFiles(bedFile,returnMethod="dataFrame")
```
clinvar_gene
Extracting genes from clinvar database NCBI.

Description

Extracting genes from clinvar database NCBI.

Usage

clinvar_gene(terms, clinvar, downloadClinvar, omimID = NULL)

Arguments

- **terms**: Single or Multiple Terms.
- **clinvar**: character clinvar database location.
- **downloadClinvar**: boolean If TRUE, download the gtr database. Default FALSE.
- **omimID**: numeric Omim Id for disease.

Value

Dataframe returned containing gene lists in entrezid and Gene Symbols, and terms associated with it.

Examples

```r
terms = "Liver cirrhosis"
clinvar = system.file("extdata", "localPDB/", package="nanotatoR")
downloadClinvar = FALSE
ge <- clinvar_gene(terms = terms, clinvar = clinvar, downloadClinvar = downloadClinvar, omimID = "OMIM:118980")
```

Decipherfrequency
Frequency calculation of variants compared to Decipher.

Description

Frequency calculation of variants compared to Decipher.
Decipherfrequency

Usage

Decipherfrequency(
 decipherpath,
 smap,
 smap_data,
 win_indel = 10000,
 perc_similarity = 0.5,
 returnMethod = c("Text", "dataFrame"),
 input_fmt_SV = c("Text", "dataFrame"),
 EnzymeType = c("SVMerge", "SE"),
 outpath
)

Arguments

decipherpath character. Decipher Text file.

smap character Filepath for smap.

smap_data Dataset containing smap data.

win_indel character indel window. Default 10000.

perc_similarity Numeric . ThresholdPercentage similarity of the query SV and reference SV.

returnMethod character. Choice between text or data frame as the output.

input_fmt_SV boolean . Options SE and SVMerge.

EnzymeType boolean . Options SE and SVMerge.

outpath character. Path where gene lists are saved.

Value

dataframe containing decipher data. are stored as text files.

Examples

decipherpath = system.file("extdata", "population_cnv.txt",
 package="nanotatoR")
smappath = system.file("extdata", "GM24385_Ason_DLE1_VAP_trio5.smap",
 package="nanotatoR")
datdecipher <- Decipherfrequency (decipherpath = decipherpath,
 smap = smappath, win_indel = 10000,
 EnzymeType = "SE",
 perc_similarity = 0.5, returnMethod = "dataFrame",
 input_fmt_SV = "Text")
datdecipher[1,]
DGVfrequency
Frequency calculation of variants compared to DGV.

Description

Frequency calculation of variants compared to DGV.

Usage

```r
DGVfrequency(
  hgpath,  
  smap,  
  smap_data,  
  win_indel_DGV = 10000,  
  win_inv_trans_DGV = 50000,  
  perc_similarity_DGV = 0.5,  
  input_fmt_SV = c("Text", "dataframe"),  
  returnMethod = c("Text", "dataFrame"),  
  outpath,  
  EnzymeType = c("SVMerge", "SE")
)
```

Arguments

- **hgpath** character. Path to Database of Genomic Variants (DGV) Text file.
- **smap** character. File name for smap textfile.
- **smap_data** dataframe. Dataset containing smap data.
- **win_indel_DGV** Numeric. Insertion and deletion error window. Default 10000 bases.
- **win_inv_trans_DGV** Numeric. Inversion and translocation error window. Default 50000 bases.
- **perc_similarity_DGV** Numeric. ThresholdPercentage similarity of the query SV and reference SV. Default 0.5.
- **input_fmt_SV** boolean. Options Text and dataframe.
- **returnMethod** character. Choice between text or data frame as the output.
- **outpath** character. Path where gene lists are saved.
- **EnzymeType** boolean. Options SE and SVMerge.

Value

Text and character vector containing gene list and terms associated with them are stored as text files.
Examples

```r
hgpath = system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
smappath = system.file("extdata", "GM24385_Ason_DLE1_VAP_trio5.smap", package="nanotatoR")
datDGV <- DGVfrequency(hgpath = hgpath,
                        smap = smappath,
                        win_indel_DGV = 10000,
                        EnzymeType = "SE",
                        input_fmt_SV = "Text",
                        perc_similarity_DGV = 0.5, returnMethod="dataFrame")
```

extract_clinvar_mod
Extract the genes and variants related to a genetic disorder from ClinVar

Description

Extract the genes and variants related to a genetic disorder from ClinVar

Usage

```r
extract_clinvar_mod(
  keyword,  
  localPDB.path,  
  type = "both",  
  HPO.disease = NULL,  
  genelist = NULL,  
  OMIM = NULL
)
```

Arguments

- **keyword** character. character string: keyword, to search a disease, a clinical feature, or a phenotype.
- **localPDB.path** character. the path of localized public data bases. The default value is set in the working directory.
- **type** character. the type of the information to extract, must be one of "gene", "variant", "both"(default).
- **HPO.disease** character. MIM number of the disease. The default value is NULL, which means that all the OMIM number of the disease in HPO are added. localized public data bases. The default value is set in the working directory.
- **genelist** character. the gene(s) associated to the disease, or the genes you are interested.
- **OMIM** character. whether use the information from OMIM database. The default value is NULL. It can be set 'yes' when you make sue you have a OMIM API key.
Value

subset of the file gene_condition_source_id, which include all the information about genes and phenotypes in ClinVar and subset of the file variant_summary.txt, but added several columns which describe the phenotype from GeneReview, MedGen, and OMIM databases. Function modified from extract_clinvar function VarFromPDB.

Examples

```r
keyword = "retinoblastoma"
extract_clinvar_mod(keyword,
localPDB.path = system.file("extdata", "localPDB", package="nanotatoR"),
type = "both", HPO.disease = NULL,
genelist = NULL, OMIM = NULL)
```

FamilyInfoPrep Mapping Realtionship to unique nanoIDs

Description

Mapping Realtionship to unique nanoIDs

Usage

```r
FamilyInfoPrep(
Samplecodes = "X:/Hayks_Materials/BNG/Projects/nanotatoR_sample_codes.csv",
mergeKey = "X:/Hayks_Materials/BNG/Projects/MergeKey.csv",
outMode = c("Text", "dataframe"),
outpath = "X:/Hayks_Materials/BNG/Projects/VAP_DLE1_solo_SMAPs/Merged"
)
```

Arguments

- **Samplecodes** character. File containing relations and IDs associated to them.
- **mergeKey** character. File containing sample ID and relation.
- **outMode** character. The output mode. Choices, dataframe or Text.
- **outpath** character. Path where the dual labelled merged samples are kept. Is mandatory if outMode is Text.

Value

Text files containing merged smaps from different samples

Examples

```r
FamilyInfoPrep(
Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR"),
mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR"),
outMode = c("dataframe"))
```
gene_extraction

Extracting genes from gene database NCBI.

Description
Extracting genes from gene database NCBI.

Usage
gene_extraction(terms)

Arguments
terms Single or Multiple Terms.

Value
Dataframe returned containing gene lists in entrezid and Gene Symbols, and terms associated with it.

Examples
terms="Liver cirrhosis"
ge <- gene_extraction(terms)

gene_list_generation

Extracting genes for phenotype/diseases from NCBI.

Description
Extracting genes for phenotype/diseases from NCBI.

Usage
gene_list_generation(
 method_entrez = c("Single", "Multiple", "Text"),
 termPath,
 omimID = NULL,
 term,
 outpath,
 thresh = 5,
 returnMethod = c("Text", "dataFrame"),
 omim,
 clinvar,
 gtr,
 removeClinvar = FALSE,
gene_list_generation

removeGTR = FALSE,
downloadClinvar = FALSE,
downloadGTR = FALSE,
url_gtr
)

Arguments

termPath character. Path and file name for textfile. FileName should be in the following format "SampleID_Keywords.csv".
omimID numeric. mimID for disease. Default is NULL.
term character. Single or Multiple Terms.
outpath character. Path where gene lists are saved.
thresh integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.
returnMethod Method of returning output. Options, Text or data.frame.
omim character. omim2gene file name and location.
clinvar character. clinvar file name and location.
gtr character. gtr file name and location.
removeClinvar logical. Deletes the Clinvar database if TRUE.
removeGTR logical. Deletes the GTR database if TRUE.
downloadClinvar logical. Downloads the Clinvar database if TRUE.
downloadGTR logical. Downloads the GTR database if TRUE.
url_gtr character. url for GTR.

Value

Text files containg gene list and terms associated with them are stored as text files.

Examples

terms="CIRRHOSIS, FAMILIAL"
genes <- gene_list_generation(
 method_entrez = c("Single"),
 term = terms,
 returnMethod=c("dataFrame"),
 omimID = "OMIM:118980",
 omim = system.file("extdata", "mim2gene.txt", package="nanotatoR"),
 clinvar = system.file("extdata", "localPDB/", package="nanotatoR"),
 gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR"),
 downloadClinvar = FALSE, downloadGTR = FALSE)
gtr_gene

Extracting genes from gtr database NCBI.

Description

Extracting genes from gtr database NCBI.

Usage

gtr_gene(terms, gtr, url_gtr, downloadGTR = TRUE)

Arguments

terms Single or Multiple Terms.
gtr character gtr database location.
url_gtr character url for gtr database.
downloadGTR boolean If TRUE, download the gtr database. Default FALSE.

Value

Dataframe returned containing gene lists in entrezid and Gene Symbols, and terms associated with it

Examples

terms="Liver cirrhosis"
gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR")
ge <- gtr_gene(terms = terms,gtr = gtr, downloadGTR = FALSE)

internalFrequencyTrio_Duo

Calculates the internal frequencies of SV in internal cohorts, for SVMerge

Description

Calculates the internal frequencies of SV in internal cohorts, for SVMerge
Usage

internalFrequencyTrio_Duo(
 mergedFiles,
 smappath,
 smap,
 buildSVInternalDB = FALSE,
 smapdata,
 path,
 pattern,
 outpath,
 win_indel = 10000,
 win_inv_trans = 50000,
 perc_similarity = 0.5,
 indelconf = 0.5,
 invconf = 0.01,
 fname,
 limsize = 1000,
 win_indel_parents = 5000,
 win_inv_trans_parents = 40000,
 transconf = 0.1,
 dbOutput = c("dataframe", "text"),
 perc_similarity_parents = 0.9,
 returnMethod = c("Text", "dataFrame"),
 input_fmt_SV = c("Text", "dataFrame"),
 indexfile,
 EnzymeType = c("SVmerge", "SE"),
 labelType = c("SVMerge", "SE", "Both"),
 SVMerge_path,
 SVMerge_pattern,
 SE_path,
 SE_pattern,
 Samplecodes,
 mergeKey,
 mergedKeyOutpath,
 mergedKeyFname
)

Arguments

mergedFiles character. Path to the merged SV files.
smappath character. path to the query smap file.
smap character. File name for the smap
buildSVInternalDB boolean. Checking whether the merged solo file database exist.
smapdata character. Dataframe if input type chosen as dataframe.
path character. Path to the solo file database.
pattern character. pattern of the file names to merge.
internalFrequencyTrio_Duo

outpath character. Path where the merged samples are kept.

win_indel Numeric. Insertion and deletion error window. Default 10000.

win_inv_trans Numeric. Inversion and translocation error window. Default 50000.

derived_similarity Numeric. Threshold Percentage similarity of the query SV and reference SV. Default 0.5.

indelconf Numeric. Threshold for insertion and deletion confidence. Default 0.5

invconf Numeric. Threshold for inversion confidence. Default 0.01

fname character. Filename in case dbOutput = Text.

limsize Numeric. Minimum size of SV that can be determined accurately by the Bionano SV caller. Default 1000.

win_indel_parents Numeric. Insertion and deletion error window to determine zygosity in case of parents. Default 5000.

win_inv_trans_parents Numeric. Inversion and translocation error window to determine zygosity in case of parents. Default 40000.

dtransconf Numeric. Threshold for translocation confidence. Default 0.1

dbOutput character. Output of merged bionano data.

derived_similarity_parents Numeric. Threshold Percentage similarity for zygosity determination. Default 0.9.

returnMethod character. Choice between Text and DataFrame. Required if you want to calculate internal frequency.

input_fmt_SV Format in which data is provided as an input to the function.

indexfile File containing connection between sample and nanoIDs

EnzymeType Character. Type of enzyme. Options Dual and DLE.

labelType character. Type of labels used for mapping. Choices are Dual, DLE and Both.

SVMerge_path character. Path for the Dual labelled cmap

SVMerge_pattern character. Pattern of the dual files.

SE_path character. Path for the Dual labelled cmap

SE_pattern character. Pattern of the dual files.

Samplecodes character. File containing relations and IDs associated to them.

mergeKey character. File containing sample ID and relation.

mergedKeyOutpath character. File path storing sample name and nanoID key information.

mergedKeyFname character. File name storing sample name and nanoID key information.

Value

Calculated internal frequency in dataframe or text.
Examples

```r
smapName = "GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
indelconf = 0.5; invconf = 0.01; transconf = 0.1; input_fmt_SV="Text"
datInf <- internalFrequency_solo(smap = smap,
buildSVInternalDB = FALSE, win_indel=10000,
win_inv_trans=50000, EnzymeType = "SE",
mergedFiles = system.file("extdata", "nanotatoRControl.txt", package="nanotatoR")
perc_similarity_parents =0.9,
indexfile = system.file("extdata", "Sample_index.csv", package="nanotatoR")
perc_similarity=0.5, indelconf=0.5, invconf=0.01,
transconf=0.1, limsize=1000, win_indel_parents=5000, input_fmt="Text",
win_inv_trans_parents=40000,
returnMethod="dataFrame", input_fmt_SV = "Text")
```

internalFrequency_solo

Calculates the internal frequencies of SV in internal cohorts, for SE

Description

Calculates the internal frequencies of SV in internal cohorts, for SE

Usage

```r
internalFrequency_solo(
mergedFiles,
smappath,
smap,
buildSVInternalDB = FALSE,
smapdata,
input_fmt = c("Text", "dataFrame"),
path,
pattern,
outpath,
win_indel = 10000,
win_inv_trans = 50000,
perc_similarity = 0.5,
indelconf = 0.5,
invconf = 0.01,
fname,
limsize = 1000,
win_indel_parents = 5000,
win_inv_trans_parents = 40000,
transconf = 0.1,
dbOutput = c("dataframe", "text"),
returnMethod = c("Text", "dataFrame"),
)```
\texttt{internalFrequency}_\texttt{solo}

\begin{verbatim}
input_fmt_SV = c("Text", "dataFrame"),
indexfile,
perc_similarity_parents = 0.9,
EnzymeType = c("SVmerge", "SE"),
labelType = c("SVMerge", "SE", "Both"),
SVMerge_path,
SVMerge_pattern,
SE_path,
SE_pattern,
Samplecodes,
mergeKey,
mergedKeyoutpath,
mergedKeyFname
)

Arguments

\begin{description}
\item[mergedFiles] character. Path to the merged SV files.
\item[smappath] character. Path to the query smap file.
\item[smap] character. File name for the smap.
\item[buildSVInternalDB] boolean. Checking whether the merged solo file database exist.
\item[smapdata] character. Dataframe if input type chosen as dataframe.
\item[input_fmt] Format in which data is provided as an input to the function.
\item[path] character. Path to the solo file database.
\item[pattern] character. Pattern of the file names to merge.
\item[outpath] character. Path where the merged samples are kept.
\item[win_indel] Numeric. Insertion and deletion error window. Default 10000.
\item[win_inv_trans] Numeric. Inversion and translocation error window. Default 50000.
\item[perc_similarity] Numeric. ThresholdPercentage similarity of the query SV and reference SV. Default 0.5.
\item[indelconf] Numeric. Threshold for insertion and deletion confidence. Default 0.5
\item[invconf] Numeric. Threshold for inversion confidence. Default 0.01.
\item[fname] character. Filename in case dbOutput = Text.
\item[limsize] Numeric. Minimum size of SV that can be determined accurately by the Bionano SV caller. Default 1000.
\item[win_indel_parents] Numeric. Insertion and deletion error window to determine zygosity in case of parents. Default 5000.
\item[win_inv_trans_parents] Numeric. Inversion and translocation error window to determine zygosity in case of parents. Default 40000.
\item[transconf] Numeric. Threshold for translocation confidence. Default 0.1.
\end{description}
\end{verbatim}
dbOutput: character. Output of merged bionano data.
returnMethod: character. Choice between Text and DataFrame. Required if you want to calculate internal frequency.
inputFmt_SV: character. Choice between Text and DataFrame.
indexfile: File containing connection between sample and nanoIDs.
perc_similarity_parents: Numeric. ThresholdPercentage similarity for zygosity determination. Default 0.9.
EnzymeType: Character. Type of enzyme. Options Dual and DLE.
labelType: character. Type of labels used for mapping. Choices are Dual, DLE and Both.
SVMerge_path: character. Path for the Dual labelled cmap.
SVMerge_pattern: character. Pattern of the dual files.
SE_path: character. Path for the Dual labelled cmap.
SE_pattern: character. Pattern of the dual files.
Samplecodes: character. File containing relations and IDs associated to them.
mergeKey: character. File containing sample ID and relation.
mergedKeyoutput: character. File path storing sample name and nanoID key information.
mergedKeyFname: character. File name storing sample name and nanoID key information.

Value

Calculated internal frequency in dataframe or text.

Examples

smapName = "NA12878_DLE1_VAP_solo5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
datInf <- internalFrequency_solo( smap = smap, buildSVInternalDB = FALSE, win_indel=10000,
win_inv_trans=50000, EnzymeType = "SE", mergedFiles = system.file("extdata", "nanotatoRControl.txt", package="nanotatoR"),
perc_similarity_parents =0.9,
indexfile = system.file("extdata", "Sample_index.csv", package="nanotatoR"),
perc_similarity =0.5, indelconf=0.5, invconf=0.01,
transconf=0.1, limsize=1000, win_indel_parents=5000,input_fmt="Text",
win_inv_trans_parents=40000,
returnMethod="dataFrame", inputFmt_SV = "Text"
makeInternalBNDatabase

Merges Solo SV files to one common SV file

Description

Merges Solo SV files to one common SV file

Usage

makeInternalBNDatabase(
  path,
  pattern,
  outpath,
  fname,
  dbOutput = c("dataframe", "text")
)

Arguments

path character. Path to the solo files.
pattern character. file name pattern for solo files.
outpath character. file path for the output file.
fname character. file name for the output file.
dbOutput character. Output option database or text.

Value

Text file containing all the solo SMAP files.

Examples

path <- system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern <- ".hg19.txt"
mergedSmap <- makeInternalBNDatabase(path = path,
  pattern = pattern, dbOutput = "dataframe")
mergedSmap[1,,]
mergingSMAP_SE  

**Merging DLE labelled smaps**

**Description**

Merging DLE labelled smaps

**Usage**

`mergingSMAP_SE(path, pattern, outMode = c("Text", "dataframe"), outpath)`

**Arguments**

- **path** character. Path to the solo files directory.
- **pattern** character. Pattern for the solo files.
- **outMode** character. The output mode. Choices, dataframe or Text.
- **outpath** character. Path where the dual labelled merged samples are kept. Is mandatory if outMode is Text.

**Value**

Text files containing merged smaps from different samples

**Examples**

```r
mergedSmap <- mergingSMAP_SE(
 path = system.file("extdata", "SoloFile/", package="nanotatoR"),
 pattern = "*_DLE1_*", outMode = "dataframe",
 outpath = system.file("extdata", "Merged/", package="nanotatoR"))
```

mergingSMAP_SVMerge  

**Merging dual labelled smaps**

**Description**

Merging dual labelled smaps

**Usage**

`mergingSMAP_SVMerge(path, pattern, outMode = c("dataframe", "Text"), outpath)`
### merging_SE_SVMerge

**Merging Dual and DLE, and adding nanotatoR relation ID**

**Arguments**

- **path** character. Path to the solo files directory.
- **pattern** character. Pattern for the solo files.
- **outMode** character. The output mode. Choices, dataframe or Text.
- **outpath** character. Path where the dual labelled merged samples are kept. Is mandatory if outMode is Text.

**Value**

Text files containing merged smaps from different samples

**Examples**

```r
a <- mergingSMAP_SVMerge(
 path = system.file("extdata", "SoloFile/", package="nanotatoR"),
 pattern = "*.txt", outMode = "dataframe",
 outpath = system.file("extdata", "SoloFile/", package="nanotatoR"))
```

**Description**

Merging Dual and DLE, and adding nanotatoR relation ID

**Usage**

```r
merging_SE_SVMerge(
 labelType = c("SVMerge", "SE", "Both", "SE_Cancer"),
 SVMerge_path,
 SVMerge_pattern,
 SE_path,
 SE_pattern,
 Samplecodes,
 mergeKey,
 outpath,
 mergedKeyoutpath,
 mergedKeyFname,
 filename,
 outputMode = c("dataframe", "Text")
)
```
Arguments

- **labelType** character. Type of labels used for mapping. Choices are Dual, DLE and Both.
- **SVMerge_path** character. Path for the Dual labelled cmap
- **SVMerge_pattern** character. Pattern of the dual files.
- **SE_path** character. Path for the Dual labelled cmap
- **SE_pattern** character. Pattern of the dual files.
- **Samplecodes** character. File containing relations and IDs associated to them.
- **mergeKey** character. File containing sample ID and relation.
- **outpath** character. Path where the merged samples are kept.
- **mergedKeyoutpath** character. File path storing sample name and nanoID key information.
- **mergedKeyFname** character. File name storing sample name and nanoID key information.
- **filename** character. Output file name.
- **outputMode** character. Mode of database output. Text or dataframe.

Value

Text files containing merged smaps from different samples

Examples

```r
dat1 <- merging_SE_SVMerge (
 labelType = c("SE"),
 SE_path = system.file("extdata", "SoloFile/", package="nanotatoR"),
 SE_pattern = "*_DLE1_*",
 Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR"),
 mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR"),
 outpath = system.file("extdata", package="nanotatoR"),
 mergedKeyoutpath = system.file("extdata", package="nanotatoR"),
 mergedKeyFname = "Sample_index.csv",
 filename= "nanotatoRControl.txt",
 outputMode = "dataframe")
```

**nanotatoR**

*nannotatoR: Annotation package for Bionano Data*

Description

Annotation of Bionano data using available databases
Examples

```r
path <- system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern <- ".hg19.txt"
mergedSmap <- makeInternalBNDatabase(path = path,
 pattern = pattern, dbOutput = "dataframe")
mergedSmap[1,]
```

Description

Annotation and visualisation of Bionano SV, of SVMerge Duo samples.

Usage

```r
nanotatoR_Duo_SVmerge(
 smap, bed,
 inputfmtBed = c("bed", "BNBed"), n = 3,
 buildBNInternalDB = TRUE, mergedFiles,
 smapPath, buildSVInternalDB = FALSE,
 path, pattern,
 win_indel_INF = 10000,
 win_inv_trans_INF = 50000, perc_similarity_INF = 0.5,
 indelconf = 0.5, invconf = 0.01, transconf = 0.1,
 perc_similarity_INF_parents = 0.9,
 hgpath,
 win_indel_DGV = 10000,
 win_inv_trans_DGV = 50000, perc_similarity_DGV = 0.5,
 method_entrez = c("Single", "Multiple", "Text"), termPath,
 term,
 thresh = 5, limsize = 1000,
 EnzymeType = c("SVmerge", "SE"),
 labelType = c("SVMerge", "SE", "Both"),
 SVMergePath,
 SVMerge_pattern,
```
Arguments

smap character. File name for the smap

bed Text Bionano Bed file.

inputfmtBed character. Whether the bed input is UCSC bed or Bionano bed.

n numeric. Number of genes to report which are nearest to the breakpoint. Default is 3.
nanotatoR_Duo_SVmerge

buildBNInternalDB
  boolean. Checking whether the merged BNDB file database exist.

mergedFiles
  character. Path to the merged SV files.

smappath
  character. Path and file name for textfile.

buildSVInternalDB
  boolean. Checking whether the merged solo file database exist.

path
  character. Path to the solo file database.

pattern
  character. pattern of the file names to merge.

win_indel_INF
  Numeric. Insertion and deletion error window.

win_inv_trans_INF
  Numeric. Inversion and translocation error window.

perc_similarity_INF
  Numeric. ThresholdPercentage similarity of the query SV and reference SV.

indelconf
  Numeric. Threshold for insertion and deletion confidence.

invconf
  Numeric. Threshold for inversion confidence.

transconf
  Numeric. Threshold for translocation confidence.

perc_similarity_INF_parents
  Numeric. ThresholdPercentage similarity for parent zygosity calculation. Default threshold 0.9.

hgpath
  character. Path to Database of Genomic Variants (DGV) Text file.

win_indel_DGV
  Numeric. Insertion and deletion error window for DGV.

win_inv_trans_DGV
  Numeric. Inversion and translocation error window for DGV.

perc_similarity_DGV
  Numeric. ThresholdPercentage similarity of the query SV and reference SV, for DGV.

method_entrez
  character. Input Method for terms. Choices are "Single","Multiple" and "Text".

termPath
  character. Path and file name for textfile.

term
  character. Single or Multiple Terms.

thresh
  integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.

limsize
  Numeric. Minimum size for SV. Default 1000.

EnzymeType
  Character. Type of enzyme. Options Dual and DLE.

labelType
  character. Type of labels used for mapping. Choices are Dual, DLE and Both.

SVMerge_path
  character. Path for the Dual labelled cmap

SVMerge_pattern
  character. pattern of the dual files.

SE_path
  character. Path for the Dual labelled cmap

SE_pattern
  character. pattern of the dual files.

Samplecodes
  character. File containing relations and IDs associated to them.

mergeKey
  character. File containing sample ID and relation.
mergedKeyoutpath
character. File path storing sample name and nanoID key information.
mergedKeyFname
character. File name storing sample name and nanoID key information.
RNaseqcombo
boolean whether RNASeq datasets are combined or not.
RNASeqDir
boolean Directory for RNASeq.
returnMethod
character. Choice between text or data frame as the output.
RNASeqData
dataFrame. RNAseq data with gene names.
RNASeqPATH
character. RNAseq dataset path.
pattern_Proband
character. Pattern for proband.
pattern_Mother
character. Pattern to identify the mother reads.
pattern_Father
character. Pattern to identify the father reads.
outpath
Character Directory to the output file.
outputFilename
Character Output filename.
termListPresent
logical Checks whether term list is provided by the user.
internalBNDB
character. Internak Bionano merged database.
clinvar
character. clinvar file name and location.
InternaldatabasePresent
boolean. Checking whether internal DB present.
RNASeqDatasetPresent
boolean. Checking whether RNASeq database present or not.
geneListPresent
logical Checks whether gene list is provided by the user.
omim
character. Omim2gene file name and location.
gtr
character. Gtr file name and location.
removeClinvar
logical. Deletes the Clinvar database if TRUE.
removeGTR
logical. Deletes the GTR database if TRUE.
downloadClinvar
logical. Downloads the Clinvar database if TRUE.
downloadGTR
logical. Downloads the GTR database if TRUE.
url_gtr
character. URL for GTR.
omimID
character. Omim ID.
RZIPpath
character. Path to RZippath.
directoryName
Directory name where individual SV files will be stored.
fileprefix
character Prefix to use for each of the files in the directory.
datGeneListPath
Character Path for genelist.
decipherpath
character. Decipher database path.
indexfile
character. Indexfile containing nano ID and sample relation.
primaryGenesPresent
logical Checks whether primary gene list is provided by the user.
outputType
Variants in excel tabs or in different csv files. Options Excel or csv.
Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.

Text files containing gene list and terms associated with them are stored as text files.

Examples

```
Not run:
smapName="NA12878_DLE1_VAP_solo5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lifit37.bed", package="nanotatoR")
hgpath=system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
decipherpath = system.file("extdata", "population_cnv.txt", package="nanotatoR")
omim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
clinvar = system.file("extdata", "localPDB/", package="nanotatoR")
gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR")
labelType = c("SE")
SE_path = system.file("extdata", "SoloFile/", package="nanotatoR")
SE_pattern = "*_DLE1_*"
Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR")
mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR")
mergedKeyoutpath = system.file("extdata", package="nanotatoR")
indexfile = "Sample_index.csv"
RNASeqDir = system.file("extdata", "NA12878_P_Blood_S1.genes.results", package="nanotatoR")
path = system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern = "_.hg19.txt"
outputFilename <- "GM24385_DLE1_P_trio_hg19_out"
outpath <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
nanotatoR_Duo_SVmerge(
smap = smap, bed = bedFile, inputfmtBed = c("bed"),
n=3,EnzymeType = c("SVMerge"),
buildBNInternalDB=TRUE,
path = path, pattern = pattern,
buildSVInternalDB = TRUE,
labelType = c("SE"),
SE_path = SE_path, SE_pattern = SE_pattern,
win_indel_INF = 10000, win_inv_trans_INF = 50000,
perc_similarity_INF= 0.5, indelconf = 0.5, invconf = 0.01,
transconf = 0.1, perc_similarity_INF_parents = 0.9,
hgpath = hgpath, win_indel_DGV = 10000, win_inv_trans_DGV = 50000,
perc_similarity_DGV = 0.5,
RNASeqDatasetPresent = FALSE,
RNAseqcombo = TRUE,
returnMethod = "dataFrame",
limsize = 1000,
outputFilename = outputFilename,
returnMethod = "dataFrame",
limsize = 1000,
outputFilename = outputFilename,
termListPresent = FALSE,
InternaldatabasePresent = TRUE,
outputType = c("Excel"), RZIPpath = RZIPpath)
```
## nanotatoR_main_Duo_SE

Annotation and visualisation of Bionano SV, of Single enzyme Duo samples.

### Description

Annotation and visualisation of Bionano SV, of Single enzyme Duo samples.

### Usage

```r
nanotatoR_main_Duo_SE(
 smap,
 bed,
 inputfmtBed = c("bed", "BNBed"),
 n = 3,
 buildBNInternalDB = TRUE,
 mergedFiles,
 smappath,
 buildSVInternalDB = FALSE,
 path,
 pattern,
 win_indel_INF = 10000,
 win_inv_trans_INF = 50000,
 perc_similarity_INF = 0.5,
 indelconf = 0.5,
 invconf = 0.01,
 transconf = 0.1,
 perc_similarity_INF_parents = 0.9,
 hgpath,
 win_indel_DGV = 10000,
 win_inv_trans_DGV = 50000,
 perc_similarity_DGV = 0.5,
 method_entrez = c("Single", "Multiple", "Text"),
 termPath,
 term,
 thresh = 5,
 limsize = 1000,
 EnzymeType = c("SVmerge", "SE"),
 labelType = c("SVMerge", "SE", "Both"),
 SVMerge_path,
 SVMerge_pattern,
 SE_path,
 SE_pattern,
 Samplecodes,
 mergeKey,
```

Arguments

smap character. File name for the smap
bed Text Bionano Bed file.
inputfmtBed character Whether the bed input is UCSC bed or Bionano bed.
n numeric Number of genes to report which are nearest to the breakpoint. Default is 3.
buildBNInternalDB boolean. Checking whether the merged BNDB file database exist.
mergedFiles character. Path to the merged SV files.
smappath character. Path and file name for textfile.
buildSVInternalDB
  boolean. Checking whether the merged solo file database exist.

path
  character. Path to the solo file database.

pattern
  character. Pattern of the file names to merge.

win_indel_INF
  Numeric. Insertion and deletion error window.

win_inv_trans_INF
  Numeric. Inversion and translocation error window.

perc_similarity_INF
  Numeric. ThresholdPercentage similarity of the query SV and reference SV.

indelconf
  Numeric. Threshold for insertion and deletion confidence.

invconf
  Numeric. Threshold for inversion confidence.

transconf
  Numeric. Threshold for translocation confidence.

perc_similarity_INF_parents
  Numeric. ThresholdPercentage similarity for parent zygosity calculation. Default threshold 0.9.

hgpath
  character. Path to Database of Genomic Variants (DGV) Text file.

win_indel_DGV
  Numeric. Insertion and deletion error window for DGV.

win_inv_trans_DGV
  Numeric. Inversion and translocation error window for DGV.

perc_similarity_DGV
  Numeric. ThresholdPercentage similarity of the query SV and reference SV, for DGV.

method_entrez
  character. Input Method for terms. Choices are "Single".,"Multiple" and "Text".

termPath
  character. Path and file name for textfile.

term
  character. Single or Multiple Terms.

thresh
  integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.

limsize
  Numeric. Minimum size for SV. Default 1000.

EnzymeType
  Character. Type of enzyme. Options Dual and DLE.

labelType
  character. Type of labels used for mapping. Choices are Dual, DLE and Both.

SVMerge_path
  character. Path for the Dual labelled cmap

SVMerge_pattern
  character. Pattern of the dual files.

SE_path
  character. Path for the Dual labelled cmap

SE_pattern
  character. Pattern of the dual files.

Samplecodes
  character. File containing relations and IDs associated to them.

mergeKey
  character. File containing sample ID and relation.

mergedKeyoutpath
  character. File path storing sample name and nanoID key information.

mergedKeyFname
  character. File name storing sample name and nanoID key information.

RNAseqcombo
  boolean whether RNASeq datasets are combined or not.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNASeqDir</td>
<td>boolean Directory for RNASeq.</td>
</tr>
<tr>
<td>returnMethod</td>
<td>character. Choice between text or data frame as the output.</td>
</tr>
<tr>
<td>RNASeqData</td>
<td>dataFrame. RNAseq data with gene names.</td>
</tr>
<tr>
<td>RNASeqPATH</td>
<td>character. RNAseq dataset path.</td>
</tr>
<tr>
<td>pattern_Proband</td>
<td>character. Pattern for proband.</td>
</tr>
<tr>
<td>pattern_Mother</td>
<td>character. Pattern to identify the mother reads.</td>
</tr>
<tr>
<td>pattern_Father</td>
<td>character. Pattern to identify the father reads.</td>
</tr>
<tr>
<td>outputPath</td>
<td>Character Directory to the output file.</td>
</tr>
<tr>
<td>outputFile</td>
<td>Character Output filename.</td>
</tr>
<tr>
<td>termListPresent</td>
<td>logical Checks whether term list is provided by the user.</td>
</tr>
<tr>
<td>internalBNDB</td>
<td>character. internak Bionano merged database.</td>
</tr>
<tr>
<td>clinvar</td>
<td>character. clinvar file name and location.</td>
</tr>
<tr>
<td>InternaldatabasePresent</td>
<td>boolean. Checking whether internal DB present.</td>
</tr>
<tr>
<td>RNASeqDatasetPresent</td>
<td>boolean. Checking whether RNASeq database present or not.</td>
</tr>
<tr>
<td>geneListPresent</td>
<td>logical Checks whether gene list is provided by the user.</td>
</tr>
<tr>
<td>omim</td>
<td>character. omim2gene file name and location.</td>
</tr>
<tr>
<td>gtr</td>
<td>character. gtr file name and location.</td>
</tr>
<tr>
<td>removeClinvar</td>
<td>logical. Deletes the Clinvar database if TRUE.</td>
</tr>
<tr>
<td>removeGTR</td>
<td>logical. Deletes the GTR database if TRUE.</td>
</tr>
<tr>
<td>downloadClinvar</td>
<td>logical. Downloads the Clinvar database if TRUE.</td>
</tr>
<tr>
<td>downloadGTR</td>
<td>logical. Downloads the GTR database if TRUE.</td>
</tr>
<tr>
<td>url_gtr</td>
<td>character. url for GTR.</td>
</tr>
<tr>
<td>omimID</td>
<td>character. Omim ID.</td>
</tr>
<tr>
<td>RZIPpath</td>
<td>character. Path to RZippath.</td>
</tr>
<tr>
<td>directoryName</td>
<td>Directory name where individual SV files will be stored.</td>
</tr>
<tr>
<td>fileprefix</td>
<td>character Prefix to use for each of the files in the directory.</td>
</tr>
<tr>
<td>datGeneListPath</td>
<td>Character Path for genelist.</td>
</tr>
<tr>
<td>decipherpath</td>
<td>character. Decipher database path.</td>
</tr>
<tr>
<td>indexfile</td>
<td>character. indexfile containing nano ID and sample relation.</td>
</tr>
<tr>
<td>primaryGenesPresent</td>
<td>logical Checks whether primarygene list is provided by the user.</td>
</tr>
<tr>
<td>outputType</td>
<td>Variants in excel tabs or in different csv files. Options Excel or csv.</td>
</tr>
</tbody>
</table>
Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.

Text files containing gene list and terms associated with them are stored as text files.

Examples

```r
Not run:
terms="Muscle Weakness"
smapName="NA12878_DLE1_VAP_solo5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
hgpath = system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
decipherpath = system.file("extdata", "population_cnv.txt", package="nanotatoR")
omim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
clinvar = system.file("extdata", "localPDB/", package="nanotatoR")
gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR")
labelType = c("SE")
SE_path = system.file("extdata", "SoloFile/", package="nanotatoR")
Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR")
mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR")
mergedKeyoutpath = system.file("extdata", package="nanotatoR")
mergedKeyFname = "Sample_index.csv"
RNASeqDir = system.file("extdata", "NA12878_P_Blood_S1.genes.results", package="nanotatoR")
path = system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern = "hg19.txt"
outputFilename <- "GM24385_DLE-1_P_trio_hg19_out"
output <- system.file("extdata", "nanotatoR_main_Duo_SE")
outputpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
nanotatoR_main_Duo_SE(
smap = smap, bed = bedFile, inputfmtBed = c("bed"), limsize = 1000,
n=3,EnzymeType = c("SE"),
buildBNInternalDB = TRUE,
buildSVInternalDB = TRUE,
labelType = c("SE"),
SE_path = SE_path, SE_pattern = SE_pattern,
win_indel_INF = 10000, win_inv_trans_INF = 50000,
perc_similarity_INF = 0.5, indelconf = 0.5, invconf = 0.01,
transconf = 0.1, perc_similarity_INF_parents = 0.9,
hgpath = hgpath, win_indel_DGV = 10000, win_inv_trans_DGV = 50000,
perc_similarity_DGV = 0.5,
method_entrez = c("Single"),
term = "Liver cirrhosis",
omim = omim, clinvar = clinvar, gtr = gtr,
removeClinvar = TRUE, removeGTR = TRUE,
downloadClinvar = FALSE, downloadGTR = FALSE,
RNASeqDatasetPresent = FALSE,
RNAseqcombo = TRUE,
RNASeqDir = RNASeqDir, returnMethod = "dataFrame",
pattern_Proband = "*.P.*",
output = output,
)
nanotatoR_main_Solo_SE

Annotation and visualisation of Bionano SV, of DLE Solo samples.

Description

Annotation and visualisation of Bionano SV, of DLE Solo samples.

Usage

nanotatoR_main_Solo_SE(
 smap, # input file with smap, bed format
 bed, # BED file with SVs
 inputfmtBed = c("bed", "BNBed"), # Bed or Bionano Bed format
 n = 3, # number of threads
 buildBNInternalDB = TRUE, # build Bionano internal database
 mergedFiles, # output merged files
 smappath, # path to smap
 buildSVInternalDB = FALSE, # build SV internal database
 path, # path to Bionano files
 pattern, # pattern to match files
 win_indel_INF = 10000, # window size for indel
 win_inv_trans_INF = 50000, # window size for inversion/translocation
 perc_similarity_INF = 0.5, # percentage similarity for indel
 indelconf = 0.5, # indel confidence
 invconf = 0.01, # inversion confidence
 transconf = 0.1, # translocation confidence
 hgpath, # path to HG19 assembly
 win_indel_DGV = 10000, # window size for DGV
 win_inv_trans_DGV = 50000, # window size for DGV
 perc_similarity_DGV = 0.5, # percentage similarity for DGV
 method_entrez = c("Single", "Multiple", "Text"), # method to retrieve entrez
 termPath, # path to term file
 term, # term to search
 thresh = 5, # threshold for filtering
 limsize = 1000, # maximum size
 EnzymeType = c("SVmerge", "SE"), # enzyme type
 labelType = c("SVMerge", "SE", "Both"), # label type
 SVMerge_path, # path to SVMerge
 SVMerge_pattern,
nanotatoR_main_Solo_SE

```r
SE_path,
SE_pattern,
Samplecodes,
mergeKey,
mergedKeyoutputpath,
mergedKeyFname,
RNAseqcombo = TRUE,
RNASeqDir,
returnMethod = "dataFrame",
RNASeqData,
RNASeqPATH,
pattern_Proband = NA,
outpath,
outputFilename = "",
termListPresent = TRUE,
internalBNDB,
clinvar,
InternaldatabasePresent = TRUE,
RNASeqDatasetPresent = TRUE,
datGeneListPresent = TRUE,
omim,
gtr,
removeClinvar = FALSE,
removeGTR = FALSE,
downloadClinvar = FALSE,
downloadGTR = FALSE,
url_gtr,
omimID,
RZIPpath,
directoryName,
fileprefix,
datGeneListPath,
decipherpath,
indexfile,
primaryGenesPresent = TRUE,
outputType = c("Excel", "csv")
)
```

Arguments

- **smap** character. File name for the smap
- **bed** Text Bionano Bed file.
- **inputfmtBed** character Whether the bed input is UCSC bed or Bionano bed.
- **n** numeric Number of genes to report which are nearest to the breakpoint. Default is 3.
- **buildBNInternalDB** boolean. Checking whether the merged BNDB file database exist.
- **mergedFiles** character. Path to the merged SV files.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>smappath</td>
<td>character. Path and file name for textfile.</td>
</tr>
<tr>
<td>buildSVInternalDB</td>
<td>boolean. Checking whether the merged solo file database exist.</td>
</tr>
<tr>
<td>path</td>
<td>character. Path to the solo file database.</td>
</tr>
<tr>
<td>pattern</td>
<td>character. Pattern of the file names to merge.</td>
</tr>
<tr>
<td>win_indel_INF</td>
<td>Numeric. Insertion and deletion error window.</td>
</tr>
<tr>
<td>win_inv_trans_INF</td>
<td>Numeric. Inversion and translocation error window.</td>
</tr>
<tr>
<td>perc_similarity_INF</td>
<td>Numeric. ThresholdPercentage similarity of the query SV and reference SV.</td>
</tr>
<tr>
<td>indelconf</td>
<td>Numeric. Threshold for insertion and deletion confidence.</td>
</tr>
<tr>
<td>invconf</td>
<td>Numeric. Threshold for inversion confidence.</td>
</tr>
<tr>
<td>transconf</td>
<td>Numeric. Threshold for translocation confidence.</td>
</tr>
<tr>
<td>hgpath</td>
<td>character. Path to Database of Genomic Variants (DGV) Text file.</td>
</tr>
<tr>
<td>win_indel_DGV</td>
<td>Numeric. Insertion and deletion error window for DGV.</td>
</tr>
<tr>
<td>win_inv_trans_DGV</td>
<td>Numeric. Inversion and translocation error window for DGV.</td>
</tr>
<tr>
<td>perc_similarity_DGV</td>
<td>Numeric. ThresholdPercentage similarity of the query SV and reference SV,</td>
</tr>
<tr>
<td></td>
<td>for DGV..</td>
</tr>
<tr>
<td>method_entrez</td>
<td>character. Input Method for terms. Choices are "Single","Multiple" and "Text".</td>
</tr>
<tr>
<td>termPath</td>
<td>character. Path and file name for textfile.</td>
</tr>
<tr>
<td>term</td>
<td>character. Single or Multiple Terms.</td>
</tr>
<tr>
<td>thresh</td>
<td>integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.</td>
</tr>
<tr>
<td>limsize</td>
<td>Numeric. Minimum size for SV. Default 1000.</td>
</tr>
<tr>
<td>EnzymeType</td>
<td>Character. Type of enzyme. Options Dual and DLE.</td>
</tr>
<tr>
<td>labelType</td>
<td>character. Type of labels used for mapping. Choices are Dual, DLE and Both.</td>
</tr>
<tr>
<td>SVMerge_path</td>
<td>character. Path for the Dual labelled cmap</td>
</tr>
<tr>
<td>SVMerge_pattern</td>
<td>character. Pattern of the dual files.</td>
</tr>
<tr>
<td>SE_path</td>
<td>character. Path for the Dual labelled cmap</td>
</tr>
<tr>
<td>SE_pattern</td>
<td>character. Pattern of the dual files.</td>
</tr>
<tr>
<td>Samplecodes</td>
<td>character. File containing relations and IDs associated to them.</td>
</tr>
<tr>
<td>mergeKey</td>
<td>character. File containing sample ID and relation.</td>
</tr>
<tr>
<td>mergeKeyoutputpath</td>
<td>character. File path storing sample name and nanoID key information.</td>
</tr>
<tr>
<td>mergedKeyFname</td>
<td>character. File name storing sample name and nanoID key information.</td>
</tr>
<tr>
<td>RNAseqcombo</td>
<td>boolean whether RNASeq datasets are combined or not.</td>
</tr>
<tr>
<td>RNASeqDir</td>
<td>boolean Directory for RNASeq.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>returnMethod</td>
<td>character. Choice between text or data frame as the output.</td>
</tr>
<tr>
<td>RNASeqData</td>
<td>dataFrame. RNAseq data with gene names.</td>
</tr>
<tr>
<td>RNASeqPATH</td>
<td>character. RNAseq dataset path.</td>
</tr>
<tr>
<td>pattern_Proband</td>
<td>character. Pattern for proband.</td>
</tr>
<tr>
<td>outpath</td>
<td>Character Directory to the output file.</td>
</tr>
<tr>
<td>outputFile</td>
<td>Character Output filename.</td>
</tr>
<tr>
<td>termListPresent</td>
<td>logical. Checks whether term list is provided by the user.</td>
</tr>
<tr>
<td>internaBNDDB</td>
<td>character. internaBionano merged database.</td>
</tr>
<tr>
<td>clinvar</td>
<td>character. clinvar file name and location.</td>
</tr>
<tr>
<td>InternaldatabasePresent</td>
<td>boolean. Checking whether internal DB present.</td>
</tr>
<tr>
<td>RNASeqDatasetPresent</td>
<td>boolean. Checking whether RNASeq database present or not.</td>
</tr>
<tr>
<td>datGeneListPresent</td>
<td>logical. Checks whether gene list is provided by the user.</td>
</tr>
<tr>
<td>omim</td>
<td>character. omim2gene file name and location.</td>
</tr>
<tr>
<td>gtr</td>
<td>character. gtr file name and location.</td>
</tr>
<tr>
<td>removeClinvar</td>
<td>logical. Deletes the Clinvar database if TRUE.</td>
</tr>
<tr>
<td>removeGTR</td>
<td>logical. Deletes the GTR database if TRUE.</td>
</tr>
<tr>
<td>downloadClinvar</td>
<td>logical. Downloads the Clinvar database if TRUE.</td>
</tr>
<tr>
<td>downloadGTR</td>
<td>logical. Downloads the GTR database if TRUE.</td>
</tr>
<tr>
<td>url_gtr</td>
<td>character. url for GTR.</td>
</tr>
<tr>
<td>omimID</td>
<td>character. Omim ID.</td>
</tr>
<tr>
<td>RZIPpath</td>
<td>character. Path to RZIPpath.</td>
</tr>
<tr>
<td>directoryName</td>
<td>Directory name where individual SV files will be stored.</td>
</tr>
<tr>
<td>fileprefix</td>
<td>character. Prefix to use for each of the files in the directory.</td>
</tr>
<tr>
<td>datGeneListPath</td>
<td>Character Path for genelist.</td>
</tr>
<tr>
<td>decipherpath</td>
<td>character. Decipher database path.</td>
</tr>
<tr>
<td>indexfile</td>
<td>character. indexfile containing nano ID and sample relation.</td>
</tr>
<tr>
<td>primaryGenesPresent</td>
<td>logical. Checks whether primarygene list is provided by the user.</td>
</tr>
<tr>
<td>outputType</td>
<td>Variants in excel tabs or in different csv files. Options Excel or csv.</td>
</tr>
</tbody>
</table>

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs. Text files containing gene list and terms associated with them are stored as text files.
Examples

smapName="NA12878_DLE1_VAP_solo5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
hgpath = system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
decipherpath = system.file("extdata", "population_cvnt.txt", package="nanotatoR")
omim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
clinvar = system.file("extdata", "localPDB/", package="nanotatoR")
gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR")
lbltType = c("SE")
SE_path = system.file("extdata", "SoloFile/", package="nanotatoR")
Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR")
mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR")
mergedKeyoutpath = system.file("extdata", "nanotatoR")
mergedKeyfname = "Sample_index.csv"
RNASeqDir = system.file("extdata", "NA12878_P_Blood_S1.genes.results", package="nanotatoR")
path = system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern = ".hg19.txt"
outputFilename <- "NA12878_DLE1_VAP_solo5_out"
output <- system.file("extdata", "zip.exe", package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
nanotatoR_main_Solo_SE(
smap = smap, bed = bedFile, inputfmtBed = c("bed"),
n=3,EnzymeType = c("SE"),
buildeBNInternalDB=TRUE,
buildSVInternalDB = TRUE,
labelType = c("SE"), decipherpath = decipherpath,
SE_path = SE_path, SE_pattern = SE_pattern,
win_indel_INF = 10000, win_inv_trans_INF = 50000,
perc_similarity_INF= 0.5, indelconf = 0.5, invconf = 0.01,
transconf = 0.1,
hgpath = hgpath, win_indel_DGV = 10000,
win_inv_trans_DGV = 50000,
perc_similarity_DGV = 0.5, limsize = 1000,
method_entrez=c("Single"),
term = "Liver cirrhosis", RZIPpath = RZIPpath,
omim = omim, clinvar = clinvar, gtr = gtr,
removeClinvar = TRUE, removeGTR = TRUE,
downloadClinvar = FALSE, downloadGTR = FALSE,
RNASeqDatasetPresent = TRUE,
RNAseqcombo = TRUE, datGeneListPresent = FALSE,
RNASeqDir = RNASeqDir, returnMethod = "dataFrame",
pattern_Proband = "*_P_*",
output = output,
indexfile = system.file("extdata", "Sample_index.csv",package="nanotatoR"),
primaryGenesPresent = FALSE,
outputFilename = outputFilename,
termListPresent = FALSE,
InternaldatabasePresent = TRUE,
outputType = c("Excel"))
nanotatoR_main_Solo_SVmerge

Annotation and visualisation of Bionano SV, of Solo SVMerge samples.

Description

Annotation and visualisation of Bionano SV, of Solo SVMerge samples.

Usage

```r
nanotatoR_main_Solo_SVmerge(
    smap,
    bed,
    inputfmtBed = c("bed", "BNBed"),
    n = 3,
    buildBNInternalDB = TRUE,
    mergedFiles,
    smappath,
    buildSVInternalDB = FALSE,
    path,
    pattern,
    win_indel_INF = 10000,
    win_inv_trans_INF = 50000,
    perc_similarity_INF = 0.5,
    indelconf = 0.5,
    invconf = 0.01,
    transconf = 0.1,
    hgpath,
    win_indel_DGV = 10000,
    win_inv_trans_DGV = 50000,
    perc_similarity_DGV = 0.5,
    method_entrez = c("Single", "Multiple", "Text"),
    termPath,
    term,
    thresh = 5,
    limsize = 1000,
    EnzymeType = c("SVmerge", "SE"),
    labelType = c("SVMerge", "SE", "Both"),
    SVMerge_path,
    SVMerge_pattern,
    SE_path,
    SE_pattern,
    Samplecodes,
    mergeKey,
    mergedKeyoutpath,
    mergedKeyFname,
    RNAseqcombo = TRUE,
)```
RNASeqDir,
returnMethod = "dataFrame",
RNASeqData,
RNASeqPATH,
pattern_Proband = NA,
outpath,
outputFilename = "",
termListPresent = TRUE,
internalBNDB,
clinvar,
InternaldatabasePresent = TRUE,
RNASeqDatasetPresent = TRUE,
geneListPresent = TRUE,
omim,
gtr,
removeClinvar = FALSE,
removeGTR = FALSE,
downloadClinvar = FALSE,
downloadGTR = FALSE,
url_gtr,
omimID,
RZIPpath,
directoryName,
fileprefix,
datGeneListPath,
decipherpath,
indexfile,
primaryGenesPresent = TRUE,
outputType = c("Excel", "csv")
)

Arguments

smap character. File name for the smap
bed Text Bionano Bed file.
inputfmtBed character. Whether the bed input is UCSC bed or Bionano bed.
n numeric. Number of genes to report which are nearest to the breakpoint. Default is 3.
buildBNInternalDB boolean. Checking whether the merged BNDB file database exist.
mergedFiles character. Path to the merged SV files.
smappath character. Path and file name for textfile.
buildSVInternalDB boolean. Checking whether the merged solo file database exist.
path character. Path to the solo file database.
pattern character. pattern of the file names to merge.
win_indel_INF Numeric. Insertion and deletion error window.
win_inv_trans_INF Numeric. Inversion and translocation error window.
perc_similarity_INF Numeric. Threshold Percentage similarity of the query SV and reference SV.
indelconf Numeric. Threshold for insertion and deletion confidence.
invconf Numeric. Threshold for inversion confidence.
transconf Numeric. Threshold for translocation confidence.
hgpath character. Path to Database of Genomic Variants (DGV) Text file.
win_indel_DGV Numeric. Insertion and deletion error window for DGV.
win_inv_trans_DGV Numeric. Inversion and translocation error window for DGV.
perc_similarity_DGV Numeric. Threshold Percentage similarity of the query SV and reference SV, for DGV.
termPath character. Path and file name for testfile.
term character. Single or Multiple Terms.
thresh integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.
limsize Numeric. Minimum size for SV. Default 1000.
EnzymeType character. Type of enzyme. Options Dual and DLE.
labelType character. Type of labels used for mapping. Choices are Dual, DLE and Both.
SVMerge_path character. Path for the Dual labelled cmap
SVMerge_pattern character. pattern of the dual files.
SE_path character. Path for the Dual labelled cmap
SE_pattern character. pattern of the dual files.
Samplecodes character. File containing relations and IDs associated to them.
mergeKey character. File containing sample ID and relation.
mergedKeyoutput character. File path storing sample name and nanoID key information.
mergedKeyFname character. File name storing sample name and nanoID key information.
RNAseqcombo boolean whether RNASeq datasets are combined or not.
RNASeqDir boolean Directory for RNASeq.
returnMethod character. Choice between text or data frame as the output.
RNASeqData dataframe. RNAseq data with gene names.
RNASeqPATH character. RNAseq dataset path.
pattern_Proband character. Pattern for proband.
### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outpath</td>
<td>Character Directory to the output file.</td>
</tr>
<tr>
<td>outputFilename</td>
<td>Character Output filename.</td>
</tr>
<tr>
<td>termListPresent</td>
<td>logical Checks whether term list is provided by the user.</td>
</tr>
<tr>
<td>internalBNDB</td>
<td>character. internak Bionano merged database.</td>
</tr>
<tr>
<td>clinvar</td>
<td>character. clinvar file name and location.</td>
</tr>
<tr>
<td>InternaldatabasePresent</td>
<td>boolean. Checking whether internal DB present.</td>
</tr>
<tr>
<td>RNASeqDatasetPresent</td>
<td>boolean. Checking whether RNASeq database present or not.</td>
</tr>
<tr>
<td>geneListPresent</td>
<td>logical Checks whether gene list is provided by the user.</td>
</tr>
<tr>
<td>omim</td>
<td>character. omim2gene file name and location.</td>
</tr>
<tr>
<td>gtr</td>
<td>character. gtr file name and location.</td>
</tr>
<tr>
<td>removeClinvar</td>
<td>logical. Deletes the Clinvar database if TRUE.</td>
</tr>
<tr>
<td>removeGTR</td>
<td>logical. Deletes the GTR database if TRUE.</td>
</tr>
<tr>
<td>downloadClinvar</td>
<td>logical. Downloads the Clinvar database if TRUE.</td>
</tr>
<tr>
<td>downloadGTR</td>
<td>logical. Downloads the GTR database if TRUE.</td>
</tr>
<tr>
<td>url_gtr</td>
<td>character. url for GTR.</td>
</tr>
<tr>
<td>omimID</td>
<td>character. Omim ID.</td>
</tr>
<tr>
<td>RZIPpath</td>
<td>character. Path to RZippath.</td>
</tr>
<tr>
<td>directoryName</td>
<td>Directory name where individual SV files will be stored.</td>
</tr>
<tr>
<td>fileprefix</td>
<td>character Prefix to use for each of the files in the directory.</td>
</tr>
<tr>
<td>datGenelisPath</td>
<td>Character Path for genelist.</td>
</tr>
<tr>
<td>decipherpath</td>
<td>character. Decipher database path.</td>
</tr>
<tr>
<td>indexfile</td>
<td>character. indexfile containing nano ID and sample relation.</td>
</tr>
<tr>
<td>primaryGenesPresent</td>
<td>logical Checks whether primarygene list is provided by the user.</td>
</tr>
<tr>
<td>outputType</td>
<td>Variants in excel tabs or in different csv files. Options Excel or csv.</td>
</tr>
</tbody>
</table>

### Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.

Text files containing gene list and terms associated with them are stored as text files.
Examples

```r
smapName = "NA12878.Q_S_VAP_SVmerge_solo5.txt"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCh19_lift37.bed", package="nanotatoR")
hgpath = system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
decipherpath = system.file("extdata", "population_cnv.txt", package="nanotatoR")
omim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
clinvar = system.file("extdata", "localPDB/", package="nanotatoR")
gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR")
labelType = c("SE")
SE_path = system.file("extdata", "SoloFile/", package="nanotatoR")
SE_pattern = "*_DLE1_*"
Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR")
mergedKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR")
mergedKeyFname = "Sample_index.csv"
RNASeqDir = system.file("extdata", "NA12878.P_Blood.S1.genes.results", package="nanotatoR")
path = system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern = "_hg19.txt"
outputFilename <- "NA12878.Q_S_VAP_SVmerge_solo5_out"
outpath <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
nanotatoR_main_Solo_SVmerge(
smap = smap, bed = bedFile, inputfmtBed = c("bed"),
n=3, EnzymeType = c("SVMerge"),
buildBNInternalDB=TRUE,
path = path, pattern = pattern,
buildSVInternalDB = TRUE,
labelType = c("SE"), decipherpath = decipherpath,
SE_path = SE_path, SE_pattern = SE_pattern,
win_indel_INF = 10000, win_inv_trans_INF = 50000,
perc_similarity_INF= 0.5, indelconf = 0.5, invconf = 0.01,
transconf = 0.1,
hgpath = hgpath, win_indel_DGV = 10000,
win_inv_trans_DGV = 50000,
perc_similarity_DGV = 0.5, limsize = 1000,
method_entrez=c("Single"),
term = "Liver cirrhosis", RZIPpath = RZIPpath,
omim = omim, clinvar = clinvar, gtr = gtr,
removeClinvar = TRUE, removeGTR = TRUE,
downloadClinvar = FALSE, downloadGTR = FALSE,
RNASeqDatasetPresent = TRUE,
RNASeqcombo = TRUE, geneListPresent = FALSE,
RNASeqDir = RNASeqDir, returnMethod = "dataFrame",
pattern_Proband = "*_P_*",
outpath = outpath,
indexfile = system.file("extdata", "Sample_index.csv", package="nanotatoR")
)
```
nanotatoR_main_Trio_SE

Annotation and visualisation of Bionano SV of DLE Trio samples.

Description

Annotation and visualisation of Bionano SV of DLE Trio samples.

Usage

```r
nanotatoR_main_Trio_SE(
 smap,
 bed,
 inputfmtBed = c("bed", "BNBed"),
 n = 3,
 buildBNInternalDB = TRUE,
 mergedFiles,
 smappath,
 buildSVInternalDB = FALSE,
 path,
 pattern,
 win_indel_INF = 10000,
 win_inv_trans_INF = 50000,
 perc_similarity_INF = 0.5,
 indelconf = 0.5,
 invconf = 0.01,
 transconf = 0.1,
 perc_similarity_INF_parents = 0.9,
 hgpth,
 win_indel_DGV = 10000,
 win_inv_trans_DGV = 50000,
 perc_similarity_DGV = 0.5,
 method_entrez = c("Single", "Multiple", "Text"),
 termPath,
 term,
 thresh = 5,
 limsize = 1000,
 EnzymeType = c("SVmerge", "SE"),
 labelType = c("SVMerge", "SE", "Both"),
 SVMerge_path,
 SVMerge_pattern,
 SE_path,
 SE_pattern,
 Samplecodes,
 mergeKey,
 mergedKeyoutpath,
 mergedKeyFname,
)```

RNAseqcombo = TRUE,
RNASEqDir,
returnMethod = "dataFrame",
RNASEqData,
RNASEqPATH,
pattern_Proband = NA,
pattern_Mother = NA,
pattern_Father = NA,
outpath,
outputFilename = "",
termListPresent = TRUE,
internalBNDB,
clinvar,
InternaldatabasePresent = TRUE,
RNASEqDatasetPresent = TRUE,
geneListPresent = TRUE,
omim,
gtr,
removeClinvar = FALSE,
removeGTR = FALSE,
downloadClinvar = FALSE,
downloadGTR = FALSE,
url_gtr,
omimID,
RZIPpath,
directoryName,
fileprefix,
datGeneListPath,
decipherpath,
indexfile,
primaryGenesPresent = TRUE,
outputType = c("Excel", "csv")
)

Arguments

smap character. File name for the smap
bed Text Bionano Bed file.
inputfmtBed character Whether the bed input is UCSC bed or Bionano bed.
n numeric Number of genes to report which are nearest to the breakpoint. Default is 3.
buildBNInternalDB boolean. Checking whether the merged BNDB file database exist.
mergedFiles character. Path to the merged SV files.
smappath character. Path and file name for textfile.
buildSVInternalDB boolean. Checking whether the merged solo file database exist.
path character. Path to the solo file database.
pattern character. pattern of the file names to merge.
win_indel_INF Numeric. Insertion and deletion error window.
win_inv_trans_INF Numeric. Inversion and translocation error window.
perc_similarity_INF Numeric. ThresholdPercentage similarity of the query SV and reference SV.
indelconf Numeric. Threshold for insertion and deletion confidence.
invconf Numeric. Threshold for inversion confidence.
transconf Numeric. Threshold for translocation confidence.
perc_similarity_INF_parents Numeric. ThresholdPercentage similarity for parent zygosity calculation. Default threshold 0.9.
hgpath character. Path to Database of Genomic Variants (DGV) Text file.
win_indel_DGV Numeric. Insertion and deletion error window for DGV.
win_inv_trans_DGV numeric. Inversion and translocation error window for DGV.
perc_similarity_DGV Numeric. ThresholdPercentage similarity of the query SV and reference SV.
method_entrez character. Input Method for terms. Choices are "Single","Multiple" and "Text".
termPath character. Path and file name for textfile.
term character. Single or Multiple Terms.
thresh integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.
lims size Numeric. Minimum size for SV. Default 1000.
EnzymeType Character. Type of enzyme. Options Dual and DLE.
labelType character. Type of labels used for mapping. Choices are Dual, DLE and Both.
SVMerge_path character. Path for the Dual labelled cmap
SVMerge_pattern character. pattern of the dual files.
SE_path character. Path for the Dual labelled cmap
SE_pattern character. pattern of the dual files.
Samplecodes character. File containing relations and IDs associated to them.
mergeKey character. File containing sample ID and relation.
mergedKeyoutput character. File path storing sample name and nanoID key information.
mergedKeyFname character. File name storing sample name and nanoID key information.
RNAseqcombo boolean whether RNASeq datasets are combined or not.
RNASeqDir boolean Directory for RNASeq.
returnMethod character. Choice between text or data frame as the output.
nanotatoR_main_Trio_SE

- **RNASeqData**: dataFrame. RNAseq data with gene names.
- **RNASeqPATH**: character. RNAseq dataset path.
- **pattern_Proband**: character. Pattern for proband.
- **pattern_Mother**: character. Pattern to identify the mother reads.
- **pattern_Father**: character. Pattern to identify the father reads.
- **outpath**: Character Directory to the output file.
- **outputFilename**: Character Output filename.
- **termListPresent**: logical. Checks whether term list is provided by the user.
- **internalBNDB**: character. Internal Bionano merged database.
- **clinvar**: character. Clinvar file name and location.
- **internalDatabasePresent**: boolean. Checking whether internal DB present.
- **RNASeqDatasetPresent**: boolean. Checking whether RNASeq database present or not.
- **geneListPresent**: logical. Checks whether gene list is provided by the user.
- **omim**: character. Omim2gene file name and location.
- **gtr**: character. Gtr file name and location.
- **removeClinvar**: logical. Deletes the Clinvar database if TRUE.
- **removeGTR**: logical. Deletes the GTR database if TRUE.
- **downloadClinvar**: logical. Downloads the Clinvar database if TRUE.
- **downloadGTR**: logical. Downloads the GTR database if TRUE.
- **url_gtr**: character. Url for GTR.
- **omimID**: character. Omim ID.
- **RZIPpath**: character. Path to RZippath.
- **directoryName**: Directory name where individual SV files will be stored.
- **fileprefix**: character. Prefix to use for each of the files in the directory.
- **dataGeneListPath**: Character Path for genelist.
- **decipherpath**: character. Decipher database path.
- **indexfile**: character. Indexfile containing nano ID and sample relation.
- **primaryGenesPresent**: logical. Checks whether primary gene list is provided by the user.
- **outputType**: Variants in excel tabs or in different csv files. Options Excel or csv.

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs. Text files containing gene list and terms associated with them are stored as text files.
nanotatoR_SVmerge_Trio

Annotation and visualisation of Bionano SV, of DLE Trio samples.

Examples

smapName="GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
hgpath = system.file("extdata", "GRCh37/hg19_variants_2016-05-15.txt", package="nanotatoR")
decipherpath = system.file("extdata", "population.csv", package="nanotatoR")
omim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
clinvar = system.file("extdata", "localPDB/", package="nanotatoR")
gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR")
mergedFiles = system.file("extdata", "nanotatoRControl.txt", package="nanotatoR")
indexfile = system.file("extdata", "Sample_index.csv", package="nanotatoR")
RNASeqDir = system.file("extdata", "NA12878_P_Blood_S1.genes.results", package="nanotatoR")
path = system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern = ".hg19.txt"
outputFilename <- "NA12878_DLE1_VAP_solo5_out"
outpath <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
nanotatoR_main_Trio_SE(
smap = smap, bed = bedFile, inputfmtBed = c("bed"),
n=3,EnzymeType = c("SE"),
buildBNInternalDB=TRUE,
path = path, pattern = pattern,
buildSVInternalDB = FALSE,
decipherpath = decipherpath,
win_indel_INF = 10000, win_inv_trans_INF = 50000,
perc_similarity_INF= 0.5, indelconf = 0.5, invconf = 0.01,
transconf = 0.1, perc_similarity_INF_parents = 0.9,
hgpath = hgpath, win_indel_DGV = 10000,
win_inv_trans_DGV = 50000,
perc_similarity_DGV = 0.5, limsize = 1000,
method_entrez=c("Single"),
term = "Liver cirrhosis", RZIPpath = RZIPpath,
omim = omim, clinvar = clinvar, gtr = gtr,
removeClinvar = TRUE, removeGTR = TRUE,
downloadClinvar = FALSE, downloadGTR = FALSE,
RNASeqDatasetPresent = TRUE,
RNAseqcombo = TRUE, geneListPresent = FALSE,
RNASeqDir = RNASeqDir, returnMethod = "dataFrame",
pattern_Proband = "*P_*",
output = output,
indexfile = system.file("extdata", "Sample_index.csv",package="nanotatoR")
)
primaryGenesPresent = FALSE,
outputFilename = outputFilename,
termListPresent = FALSE,
InternaldatabasePresent = TRUE,
outputType = c("Excel")
)
Description

Annotation and visualisation of Bionano SV, of DLE Trio samples.

Usage

nanotatoR_SVmerge_Trio(
 smap,
 bed,
 inputfmtBed = c("bed", "BNBed"),
 n = 3,
 buildBNInternalDB = TRUE,
 mergedFiles,
 smappath,
 buildSVInternalDB = FALSE,
 path,
 pattern,
 win_indel_INF = 10000,
 win_inv_trans_INF = 50000,
 perc_similarity_INF = 0.5,
 indelconf = 0.5,
 invconf = 0.01,
 transconf = 0.1,
 perc_similarity_INF_parents = 0.9,
 hgpath,
 win_indel_DGV = 10000,
 win_inv_trans_DGV = 50000,
 perc_similarity_DGV = 0.5,
 method_entrez = c("Single", "Multiple", "Text"),
 termPath,
 term,
 thresh = 5,
 limsize = 1000,
 EnzymeType = c("SVmerge", "SE"),
 labelType = c("SVMerge", "SE", "Both"),
 SVMerge_path,
 SVMerge_pattern,
 SE_path,
 SE_pattern,
 Samplecodes,
 mergeKey,
 mergedKeyoutputpath,
 mergedKeyFname,
 RNAseqcombo = TRUE,
 RNASeqDir,
 returnMethod = "dataFrame",
 RNASeqData,
 RNASeqPATH,
 pattern_Proband = NA,
pattern_Mother = NA,
pattern_Father = NA,
outpath,
outputFilename = "",
termListPresent = TRUE,
internalBNDB,
clinvar,
InternaldatabasePresent = TRUE,
RNASeqDatasetPresent = TRUE,
geneListPresent = TRUE,
omim,
gtr,
removeClinvar = FALSE,
removeGTR = FALSE,
downloadClinvar = FALSE,
downloadGTR = FALSE,
url_gtr,
omimID,
RZIPpath,
directoryName,
fileprefix,
datGenelPath,
decipherpath,
indexfile,
primaryGenesPresent = TRUE,
outputType = c("Excel", "csv")
)

Arguments

smap character. File name for the smap
bed Text Bionano Bed file.
inputfmtBed character Whether the bed input is UCSC bed or Bionano bed.
n numeric Number of genes to report which are nearest to the breakpoint. Default is 3.
buildBNInternalDB boolean. Checking whether the merged BNDB file database exist.
mergedFiles character. Path to the merged SV files.
smappath character. Path and file name for textfile.
buildSVInternalDB boolean. Checking whether the merged solo file database exist.
path character. Path to the solo file database.
pattern character. pattern of the file names to merge.
win_indel_INF Numeric. Insertion and deletion error window.
win_inv_trans_INF Numeric. Inversion and translocation error window.
perc_similarity_INF
 Numeric. ThresholdPercentage similarity of the query SV and reference SV.

indelconf Numeric. Threshold for insertion and deletion confidence.

invconf Numeric. Threshold for inversion confidence.

transconf Numeric. Threshold for translocation confidence.

perc_similarity_INF_parents
 Numeric. ThresholdPercentage similarity for parent zygosity calculation. Default threshold 0.9.

hgapath character. Path to Database of Genomic Variants (DGV) Text file.

win_indel_DGV Numeric. Insertion and deletion error window for DGV.

win_inv_trans_DGV Numeric. Inversion and translocation error window for DGV.

perc_similarity_DGV Numeric. ThresholdPercentage similarity of the query SV and reference SV, for DGV.

method_entrez character. Input Method for terms. Choices are "Single","Multiple" and "Text".

termPath character. Path and file name for textfile.

term character. Single or Multiple Terms.

thresh integer. Threshold for the number of terms sent to entrez. Note if large lists are sent to ncbi, it might fail to get processed. Default is 5.

limsize Numeric. Minimum size for SV. Default 1000.

EnzymeType Character. Type of enzyme. Options Dual and DLE.

labelType character. Type of labels used for mapping. Choices are Dual, DLE and Both.

SVMerge_path character. Path for the Dual labelled cmap

SVMerge_pattern character. pattern of the dual files.

SE_path character. Path for the Dual labelled cmap

SE_pattern character. pattern of the dual files.

Samplecodes character. File containing relations and IDs associated to them.

mergeKey character. File containing sample ID and relation.

mergedKeyoutputpath character. File path storing sample name and nanoID key information.

mergedKeyFname character. File name storing sample name and nanoID key information.

RNaseqcombo boolean whether RNASeq datasets are combined or not.

RNASeqDir boolean Directory for RNASeq.

returnMethod character. Choice between text or data frame as the output.

RNASeqData dataFrame. RNAseq data with gene names.

RNASeqPATH character. RNAseq dataset path .

pattern_Proband character. Pattern for proband.

pattern_Mother character. Pattern to identify the mother reads.
pattern_Father character. Pattern to identify the father reads.
outpath Character Directory to the output file.
outputFilename Character Output filename.
termListPresent logical Checks whether term list is provided by the user.
internalBNDB character. internak Bionano merged database.
clinvar character. clinvar file name and location.
InternaldatabasePresent boolean. Checking whether internal DB present.
RNASeqDatasetPresent boolean. Checking whether RNASeq database present or not.
geneListPresent logical Checks whether gene list is provided by the user.
omim character. omim2gene file name and location.
gtr character. gtr file name and location.
removeClinvar logical. Deletes the Clinvar database if TRUE.
removeGTR logical. Deletes the GTR database if TRUE.
downloadClinvar logical. Downloads the Clinvar database if TRUE.
downloadGTR logical. Downloads the GTR database if TRUE.
url_gtr character. url for GTR.
omimID character. Omim ID.
RZIPpath character. Path to RZippath.
directoryName Directory name where individual SV files will be stored.
fileprefix character Prefix to use for each of the files in the directory.
datGeneListPath Character Path for genelist.
decipherpath character. Decipher database path.
directoryName character. indexfile containing nano ID and sample relation.
primaryGenesPresent logical Checks whether primarygene list is provided by the user.
outputType Variants in excel tabs or in different csv files. Options Excel or csv.

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.
Text files containg gene list and terms associated with them are stored as text files.
Examples

```r
## Not run:
smapName="NA12878_Q.S_VAP_SVmerge_solo5.txt"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
hgpath=system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
labelType = c("SE")
SE_path = system.file("extdata", "SoloFile/", package="nanotatoR")
SE_pattern = "*_DLE1_*"
Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR")
mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR")
mergedKeyoutpath = system.file("extdata", package="nanotatoR")
mergedKeyFname = "Sample_index.csv"
RNASeqDir = system.file("extdata", "NA12878_P_Blood_S1.genes.results", package="nanotatoR")
path = system.file("extdata", "Bionano_config/", package = "nanotatoR")
pattern = ".hg19.txt"
outputFilename <- "GM24385_DLE-1_P_trio_hg19.out"
output <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
nanotatoR_main_Solo_SE(
  smap = smap, bed = bedFile, inputfmt = c("bed"),
  n=3,
  buildBNInternalDB=TRUE,
  path = path, pattern = pattern,
  buildSVInternalDB = TRUE,
  EnzymeType = c("SVMerge"),
  labelType = c("SVMerge"),
  SE_path = SE_path, SE_pattern = SE_pattern,
  win_indel_INF = 10000, win_inv_trans_INF = 50000,
  perc_similarity_INF= 0.5, indelconf = 0.5, invconf = 0.01,
  transconf = 0.1,
  hgpath = hgpath, win_indel_DGV = 10000, win_inv_trans_DGV = 50000,
  perc_similarity_DGV = 0.5,
  RNAseqcombo = TRUE, perc_similarity_INF_parents = 0.9,
  RNASeqDir = RNASeqDir, returnMethod = "dataFrame",
  pattern_Proband = "*_P_*",
  output = output,
  outputFilename = outputFilename,
  termListPresent = FALSE,
  InternaldatabasePresent = FALSE,
  primaryGenesPresent = FALSE,
  outputType = c("Excel"))
## End(Not run)
```

nonOverlapGenes
Calculates Genes that are near to the SV region

Description

Calculates Genes that are near to the SV region
Usage

```r
nonOverlapGenes(
  bed,
  chrom,
  startpos,
  chrom2,
  endpos,
  svid,
  n = 3,
  SVTyp,
  berrorindel = 3000,
  berrorinvtrans = 50000
)
```

Arguments

- **bed**: Text Bionano Bed file.
- **chrom**: character SVmap chromosome.
- **startpos**: numeric starting position of the breakpoints.
- **chrom2**: character SVmap 2nd chromosome.
- **endpos**: numeric end position of the breakpoints.
- **svid**: numeric Structural variant identifier (Bionano generated).
- **n**: numeric Number of genes to report which are nearest to the breakpoint. Default is 3.
- **SVTyp**: Character. Type of SV.
- **berrorindel**: Numeric. base pair error indel.
- **berrorinvtrans**: Numeric. base pair error invtranslocation.

Value

Data Frame. Contains the SVID, Gene name, strand information and Distance from the SV covered.

Examples

```r
smapName="GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
bed<-buildrunBNBedFiles(bedFile,returnMethod="dataFrame")
smap<-readSMap_DLE(smap, input_fmt_smap = "Text")
chrom<-smap$RefcontigID1
chrom2 <- smap$RefcontigID2
startpos<-smap$RefStartPos
endpos<-smap$RefEndPos
if (length(grep("SVIndex",names(smap)))>0){
  svid <- smap$SVIndex
```
nonOverlappingDNGenes

Extracting terms for genes that overlap SVs

Description

Extracting terms for genes that overlap SVs

Usage

`nonOverlappingDNGenes(rr, dngene)`

Arguments

- `rr` character. dataframe with primary genes and terms associated.
- `dngene` character. genes that overlap the SV.

Value

Dataframe with overlapping genes and terms.

Examples

```r
terms <- c("steroid_Gene","steroid synthesis_Gene")
genes <- c("NR1H3", "ABCC4")
rr <- data.frame(Genes = genes, Terms = terms)
smapName="GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")
datcomp<overlapnearestgeneSearch(smap = smap, bed=bedFile, inputFmtBed = "bed", outpath, n = 3, returnMethod_bedcomp = c("dataFrame"), input_fmt_SV = "Text", EnzymeType = "SE", bperrorindel = 3000, bperrorinvtrans = 50000)
dngene <- as.character(datcomp$Downstream_nonOverlapGenes_dist_kb)
dataPGDN <- nonOverlappingDNGenes (rr, dngene)
```
nonOverlappingUPGenes Extracting terms for genes that overlap SVs

Description
Extracting terms for genes that overlap SVs

Usage
nonOverlappingUPGenes(rr, upgene)

Arguments
rr character. dataframe with primary genes and terms associated.
upgene character. genes that overlap the SV.

Value
Dataframe with overlapping genes and terms.

Examples

terms = c("steroid_Gene","steroid synthesis_Gene")
genes <- c("NR1H3", "ABCC4")
rr <- data.frame(Genes = genes, Terms = terms)
smapName="GM24385_Ason_DLE1_VAP_trio5.smmap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")

datcomp<-overlapnearestgeneSearch(smap = smap,
bed=bedFile, inputfmtBed = "bed", outpath,
n = 3, returnMethod_bedcomp = c("dataFrame"),
input_fmt_SV = "Text",
EnzymeType = "SE",
bperrorindel = 3000, bperrorinvtrans = 50000)
upgene <- as.character(datcomp$Upstream_nonOverlapGenes_dist_kb)
dataPGUP <- nonOverlappingUPGenes (rr, upgene)

nonOverlapRNAseq Extract Read counts for genes that are near SVs.

Description
Extract Read counts for genes that are near SVs.
nonOverlapRNAseq_solo

Usage

nonOverlapRNAseq(
 gnsNonOverlap,
 SVID,
 RNASeqData,
 pattern_Proband = NA,
 pattern_Mother = NA,
 pattern_Father = NA
)

Arguments

gnsNonOverlap character. genes that are upstream and/or downstream of SV.
SVID character. ID of the SVs.
RNASeqData character. Expression of the genes.
pattern_Proband character. Pattern to identify the proband reads.
pattern_Mother character. Pattern to identify the mother reads.
pattern_Father character. Pattern to identify the father reads.

Value

Text or Dataframe containing TPM read counts of genes in the family.

Examples

RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"
datRNASeq <- RNAseqcombine(RNASeqDir = RNASeqDir,
 returnMethod = returnMethod)
gnsNonOverlap <- c("DDX11L1", "MIR1302-2HG", "OR4G4P")
SVID = 397
datgnnonovrlap <- nonOverlapRNAseq(gnsNonOverlap = gnsNonOverlap,
 SVID = SVID, RNASeqData = datRNASeq,
 pattern_Proband = "*_P_*")

nonOverlapRNAseq_solo Annotating the Non-Overlapping genes with RNAseq expression

Description

Annotating the Non-Overlapping genes with RNAseq expression

Usage

nonOverlapRNAseq_solo(gnsNonOverlap, SVID, RNASeqData, pattern_Proband = NA)
omim_gene

Arguments

- `gnsNonOverlap` character. Vector containing non-overlapping genes.
- `SVID` character. SV Index ID.
- `RNASeqData` dataFrame. RNAseq data with gene names.

Value

Dataframe containing TPM read counts of overlapping genes.

Examples

```r
RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"

datRNASeq <- RNAseqcombine_solo(RNASeqDir = RNASeqDir,
returnMethod = returnMethod)
gnsNonOverlap <- c("DDX11L1", "MIR1302-2HG", "OR4G4P")
SVID = 397
datgnnonovrlap <- nonOverlapRNAseq_solo(gnsNonOverlap = gnsNonOverlap,
SVID = SVID, RNASeqData = datRNASeq,
pattern_Proband = "*_P_*")
```

omim_gene

Extracting genes from OMIM database NCBI.

Description

Extracting genes from OMIM database NCBI.

Usage

```r
omim_gene(terms, omim)
```

Arguments

- `terms` character Single or Multiple Terms.
- `omim` character omim database location.

Value

Dataframe returned containing gene lists in entrezid and Gene Symbols, and terms associated with it.

Examples

```r
terms="Liver cirrhosis"
omeim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
ge <- omim_gene(terms = terms, omim = omim)
```
overlapGenes
Calculates Genes that overlap the SV region

Description

Calculates Genes that overlap the SV region

Usage

```r
overlapGenes(
  bed,
  chrom,
  startpos,
  endpos,
  svid,
  chrom2,
  SVTyp,
  bperrorindel = 3000,
  bperrorinvtrans = 50000
)
```

Arguments

- `bed`
 Text Bionano Bed file.
- `chrom`
 character SVmap chromosome.
- `startpos`
 numeric starting position of the breakpoints.
- `endpos`
 numeric end position of the breakpoints.
- `svid`
 numeric Structural variant identifier (Bionano generated).
- `chrom2`
 character SVmap chromosome number 2.
- `SVTyp`
 Character. Type of SV.
- `bperrorindel`
 Numeric. base pair error indel.
- `bperrorinvtrans`
 Numeric. base pair error invtranslocation.

Value

Data Frame. Contains the SVID, Gene name, strand information and percentage of SV covered.

Examples

```r
smapName = "GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
bed <- buildrunBNBedFiles(bedFile, returnMethod="dataFrame")
```
overlapnearestgeneSearch

Extracts gene information from bed files

Description

Extracts gene information from bed files

Usage

overlapnearestgeneSearch(
 smap,
 bed,
 inputfmtBed = c("bed", "BNBED"),
 EnzymeType = c("SVMerge", "SE"),
 outpath,
 n = 3,
 returnMethod_bedcomp = c("Text", "dataFrame"),
 input_fmt_SV = c("Text", "dataFrame"),
 bpperorindel = 3000,
 bpperorinvtrans = 50000
)

Arguments

smap character or dataframe depending on the input_fmt_SV argument. If input_fmt_SV =
"Text", it is path to SMAP file. If input_fmt_SV = "dataFrame", it is a dataframe.
bed Text. Normal Bed files or Bionano Bed file.
inputfmtBed character Whether the bed input is UCSC bed or Bionano bed. Note: ex-
tract in bed format to be read by bedsv: awk 'if($3 == "gene" && $13 ==
"gene_status") print $1,$4,$5,$16,$7 else if ($3 == "gene" && $13 == "gene_name")
print $1,$4,$5,$14,$7 ' gencode.v33.annotation.gtf >HomoSapienGRCH19.bed
overlappingGenes

Extracting terms for genes that overlap SVs

Description

Extracting terms for genes that overlap SVs

Usage

overlappingGenes(rr, ogene)

Arguments

rr character. dataframe with primary genes and terms associated.
ogene character. genes that overlap the SV.

Value

Dataframe with overlapping genes and terms.
Examples

terms = c("steroid_Gene","steroid synthesis_Gene")
genes <- c("NR1H3", "ABCC4")
rr <- data.frame(Genres = genes, Terms = terms)
smapName="GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")
datcomp=overlapnearestgeneSearch(smap = smap,
bed=bedFile, inputfmtBed = "bed", outpath,
n = 3, returnMethod_bedcomp = c("dataFrame"),
input_fmt_SV = "Text",
EnzymeType = "SE",
bperrorindel = 3000, bperrorinvtrans = 50000)
ogene <- character(datcomp$OverlapGenes_strand_perc)
datogenes <- overlappingGenes (rr, ogene)

OverlapRNAseq

Extract Read counts for genes that overlap SVs.

Description

Extract Read counts for genes that overlap SVs.

Usage

OverlapRNAseq(
 gnsOverlap, SVID, RNASeqData,
 pattern_Proband = NA, pattern_Mother = NA,
 pattern_Father = NA
)

Arguments

gnsOverlap character. genes that overlap SV.
SVID character. ID of the SVs.
RNASeqData character. Expression of the genes.
pattern_Proband character. Pattern to identify the proband reads.
pattern_Mother character. Pattern to identify the mother reads.
pattern_Father character. Pattern to identify the father reads.

Value

Text or Dataframe containing TPM read counts of genes in the family.
OverlapRNAseq_solo

Annotating the Overlapping genes with RNAseq expression

Description

Annotating the Overlapping genes with RNAseq expression

Usage

OverlapRNAseq_solo(gnsOverlap, SVID, RNASeqData, pattern_Proband = NA)

Arguments

- gnsOverlap: character. Vector containing overlapping genes.
- SVID: character. SV Index ID.
- RNASeqData: dataFrame. RNAseq data with gene names.

Value

Dataframe containing TPM read counts of overlapping genes.

Examples

```r
RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"
datRNASeq <- RNAseqcombine(RNASeqDir = RNASeqDir,
returnMethod = returnMethod)
gnsOverlap <- c("AGL")
SVID = 397
datgnovrlap <- OverlapRNAseq(gnsOverlap = gnsOverlap,
SVID = SVID, RNASeqData = datRNASeq,
pattern_Proband = "*_P_*")
```
phenoextractHPO_mod

Extract the genes related to a disease or disease alias from HPO database.

Description

Extract the genes related to a disease or disease alias from HPO database.

Usage

phenoextractHPO_mod(keyword, localPDB.path)

Arguments

keyword character. character string: keyword, to search a disease, a clinical feature, or a phenotype.

localPDB.path character. the path of localized public data bases. The default value is set in the working directory.

Value

subset of HPO and extract the genes and alias for a disease(phenotype), or a clinical feature. Function modified from pheno_extract_HPO function VarFromPDB.

Examples

HPO.phenotype = phenoextractHPO_mod("retinoblastoma", localPDB.path = system.file("extdata", "localPDB", package="nanotatoR"))

readBNBedFiles

Reads Bionano Bedfiles

Description

Reads Bionano Bedfiles

Usage

readBNBedFiles(BNFile)

Arguments

BNFile character. Path to Bionano Bed File.

Value

Data Frame Contains the gene information.
Examples

BNFile <- system.file("extdata", "HomoSapienGRCH19_lift37_BN.bed", package="nanotatoR")
bed<-readBNBedFiles(BNFile)

reading_GTR

Reading and parsing gtr database.

Description

Reading and parsing gtr database.

Usage

```r
reading_GTR(
  gtr,
  downloadGTR,
)
```

Arguments

- **gtr** character gtr database location.
- **downloadGTR** logical if true, downloads gtr database, . and store data in the gtr location, else reads dataset from gtr location.
- **url_gtr** character url for gtr database.

Value

Dataframe representation of gtr database.

Examples

```r
a <- reading_GTR(
  gtr = system.file("extdata", "gtrDatabase.txt", package="nanotatoR"),
  downloadGTR = FALSE)
```
Description

Reading and parsing OMIM database.

Usage

```r
reading_mim2gene(omim)
```

Arguments

- `omim` character omim database location.

Value

Dataframe returned containing Omim ID and gene IDs.

Examples

```r
omim = system.file("extdata", "mim2gene.txt", package="nanotatoR")
a <- reading_mim2gene(omim = omim)
```

Description

Reads SMAP files to extract information from SVMerge

Usage

```r
readSMap(smap, smapdata, input_fmt_smap = c("Text", "dataFrame"))
```

Arguments

- `smap` character. Path to SMAP file.
- `smapdata` dataframe. variable for smap dataset.
- `input_fmt_smap` character. input format for smap text or dataframe.

Value

Data Frame or text file. Contains the SMAP information.
Examples

```r
smapName="NA12878_Q.S_VAP_SVmerge_solo5.txt"
smap = system.file("extdata", smapName, package="nanotatoR")
readSMap(smap, input_fmt_smap = "Text")
```

readSMap_DLE

Reads DLE SMAP files to extract information

Description

Reads DLE SMAP files to extract information

Usage

```r
readSMap_DLE(smap, smapdata, input_fmt_smap = "Text")
```

Arguments

- `smap` character. Path to SMAP file.
- `smapdata` dataframe. variable for smap dataset.
- `input_fmt_smap` character. input format for smap text or dataframe.

Value

Data Frame or text file. Contains the SMAP information.

Examples

```r
smapName="GM24385_Ason_DLE1_VAP_trio5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
readSMap_DLE(smap, input_fmt_smap = "Text")
```

RNAseqcombine

Combining the RNAseq reads of family members in a single file.

Description

Combining the RNAseq reads of family members in a single file.

Usage

```r
RNAseqcombine(
  RNASeqDir,
  returnMethod = c("Text", "dataFrame"),
  outpath = "",
  outTagName = ""
)
```
RNAseqcombine_solo

Combining the RNAseq reads of family members in a single file.

Description

Combining the RNAseq reads of family members in a single file.

Usage

RNAseqcombine_solo(
 RNASeqDir,
 returnMethod = c("Text", "dataFrame"),
 outpath = "",
 outFileName = ""
)

Arguments

RNASeqDir character. Directory containing RNAseq reads.
returnMethod character. Method of returning Data.
outpath character. Contains file path if Method of return is chosen as Text.
outFileName character. Output file name.

Value

Text or Dataframe containing TPM read counts of genes in the family.

Examples

Not run:
RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"
datRNASeq <- RNAseqcombine(RNASeqDir = RNASeqDir,
 returnMethod = returnMethod)
End(Not run)
Examples

```r
RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"
datRNASeq <- RNAseqcombine_solo(RNASeqDir = RNASeqDir,
                                     returnMethod = returnMethod)
```

run_bionano_filter_SE_duo

Getting the data from annotated smaps to extract SV information based on type of variants.

Description

Getting the data from annotated smaps to extract SV information based on type of variants.

Usage

```r
run_bionano_filter_SE_duo(
    primaryGenesPresent = TRUE,
    input_fmt_geneList = c("Text", "dataFrame"),
    input_fmt_SV = c("Text", "dataFrame"),
    smap = NULL,
    svData,
    dat_geneList,
    fileName,
    outpath,
    outputFilename = "",
    RZIPpath,
    EnzymeType = c("SVMerge", "SE"),
    outputType = c("Excel", "csv"),
    directoryName,
    fileprefix
)
```

Arguments

- **primaryGenesPresent**
 - boolean Checks whether the primary gene List is present or not.
- **input_fmt_geneList**
 - character. Choice of gene list input Text or Dataframe.
- **input_fmt_SV**
 - character. Choice of gene list input Text or Dataframe.
- **smap**
 - character. SV file name.
- **svData**
 - Dataframe Input data containing SV data.
- **dat_geneList**
 - Dataframe Input data containing geneList data.
- **fileName**
 - Character Name of file containing Gene List data.
run_bionano_filter_SE_solo

Getting the data from annotated smaps to extract SV information based on type of variants.

Description

Getting the data from annotated smaps to extract SV information based on type of variants.

Usage

```r
run_bionano_filter_SE_solo(
  input_fmt_geneList = c("Text", "dataFrame"),
  input_fmt_SV = c("Text", "dataFrame"),
  EnzymeType = c("SE", "SVMerge"),
  smap = NULL,
  output_filename = "GM24385_DLE-1_P_trio_hg19_out",
  outputType = c("Excel"),
  directoryName = "outputDir",
  fileprefix = "file_prefix",
  EnzymeType = c("SE"),
  outputType = c("Excel"),
  primaryGenesPresent = FALSE
)
```

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.

Examples

```r
## Not run:
smapName <- "GM24385_DLE-1_P_trio_hg19.smap"
outputFilename <- "GM24385_DLE-1_P_trio_hg19_out"
smappath <- system.file("extdata", smapName, package = "nanotatoR")
output <- system.file("extdata", outputFilename, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
run_bionano_filter_SE_duo (input_fmt_geneList = c("Text"),
  input_fmt_SV = c("Text"),
  smap = smappath,
  dat_geneList = dat_geneList,
  RZIPpath = RZIPpath, EnzymeType = c("SE"),
  outputType = c("Excel"),
  primaryGenesPresent = FALSE,
  outputFilename = outputFilename,
  outpath = outpath)#'
## End(Not run)
```
Arguments

- `input_fmt_geneList`: character. Choice of gene list input Text or Dataframe.
- `input_fmt_SV`: character. Choice of gene list input Text or Dataframe.
- `EnzymeType`: character. Enzyme type used. Options SVMerge or SE.
- `smap`: character. SV file name.
- `svData`: Dataframe Input data containing SV data.
- `dat_geneList`: Dataframe Input data containing geneList data.
- `fileName`: Character Name of file containing Gene List data.
- `outpath`: Character Directory to the output file.
- `outputFilename`: Character Output filename.
- `RZIPpath`: Character Path for the Rtools Zip package.
- `primaryGenesPresent`: boolean Checks whether the primary gene List is present or not.
- `outputType`: Character. Variants in excel tabs or in different csv files. Options Excel or csv.
- `directoryName`: Character. Directory name where individual SV files will be stored.
- `fileprefix`: Character. fileprefix to use for each of the files in the directory.

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.

Examples

```r
smapName <- "NA12878_DLE1_VAP_solo5.smap"
outputFilename <- "NA12878_DLE1_VAP_solo5_out"
smappath <- system.file("extdata", smapName, package = "nanotatoR")
output <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")
datcomp<-overlapnearestgeneSearch(smap = smap,
```
run_bionano_filter_SE_solo

bed=bedFile, inputfmtBed = "bed", outpath,
n = 3, returnMethod_bedcomp = c("dataFrame"),
input_fmt_SV = "Text",
EnzymeType = "SE",
bperrorindel = 3000, bperrorinvtrans = 50000

hgpath=system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
datDGV <- DGVfrequency (hgpath = hgpath,
 smap_data = datcomp,
 win_indel_DGV = 10000,
 input_fmt_SV = "dataFrame", EnzymeType = "SE",
 perc_similarity_DGV = 0.5,returnMethod="dataFrame")
indelconf = 0.5; invconf = 0.01; transconf = 0.1;
datInf <- internalFrequency_solo(smapdata = datDGV,
 buildSVInternalDB=TRUE, win_indel=10000,
 win_inv_trans=50000,
 labelType = c("SE"), EnzymeType = "SE",
 SE_path = system.file("extdata", "SoloFile/", package="nanotatoR")
 SE_pattern = "*_DLE1_*", perc_similarity_parents = 0.9,
 Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR")
 mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR")
 mergedKeyoutpath = system.file("extdata", package="nanotatoR")
 mergedKeyFname = "Sample_index.csv"
 indexfile = system.file("extdata", mergedKeyFname, package="nanotatoR")
 perc_similarity = 0.5, indelconf = 0.5, invconf = 0.01,
 transconf = 0.1, limsize = 1000, win_indel_parents = 5000,
 win_inv_trans_parents = 40000,
 returnMethod="dataFrame", input_fmt_SV = "dataFrame")
path <- system.file("extdata", "Bionano_config/", package = "nanotatoR")
directoryName <- system.file("extdata", package="nanotatoR")
datBNDB <- BNDBfrequency(smapdata = datInf,
 buildBNInternalDB=TRUE, win_indel=10000,
 win_inv_trans=50000,
 labelType = c("SE"), EnzymeType = "SE",
 BNDBpath = path,
 BNDBpattern = pattern,
 fname, outpath,
 win_indel = 10000,
 win_inv_trans = 50000,
 perc_similarity = 0.5,
 indelconf = 0.5,
 invconf = 0.01,
 limsize = 1000,
 transconf = 0.1,
 returnMethod=c("dataFrame"),
 EnzymeType = c("SE"))
decipherpath = system.file("extdata", "population_cnv.txt", package="nanotatoR")
datdecipher <- Decipherfrequency (decipherpath = decipherpath,
 smap_data = datBNDB, win_indel = 10000,
 perc_similarity = 0.5,returnMethod="dataFrame",
 input_fmt_SV = "dataFrame", EnzymeType = c("SE"))
run_bionano_filter_SE_solo (input_fmt_geneList = c("Text"),
 input_fmt_SV = c("dataFrame"),
run_bionano_filter_SE_Trio

Getting the data from annotated smaps to extract SV information based on type of variants.

Description

Getting the data from annotated smaps to extract SV information based on type of variants.

Usage

run_bionano_filter_SE_Trio(
 primaryGenesPresent = TRUE,
 input_fmt_geneList = c("Text", "dataFrame"),
 input_fmt_SV = c("Text", "dataFrame"),
 smap = NULL,
 svData,
 dat_geneList,
 fileName,
 outpath,
 outputFilename = ",
 RZIPpath,
 outputType = c("Excel", "csv"),
 directoryName,
 fileprefix,
 EnzymeType = c("SVMerge", "SE")
)

Arguments

 primaryGenesPresent
 boolean Checks whether the primary gene List is present or not.

 input_fmt_geneList
 character. Choice of gene list input Text or Dataframe.

 input_fmt_SV
 character. Choice of gene list input Text or Dataframe.

 smap
 character. SV file name.

 svData
 Dataframe Input data containing SV data.

 dat_geneList
 Dataframe Input data containing geneList data.
run_bionano_filter_SE_Trio

fileName Character Name of file containing Gene List data.
outpath Character Directory to the output file.
outputFilename Character Output filename.
RZIPpath Character Path for the Rtools Zip package.
outputType Character. Variants in excel tabs or in different csv files. Options Excel or csv.
directoryName Character. Directory name where individual SV files will be stored.
fileprefix Character. fileprefix to use for each of the files in the directory.
EnzymeType Character. Enzyme type used. Options SVmerge or SE.

Value
Excel file containing the annotated SV map, tabs divided based on type of SVs.

Examples

smapName <- "GM24385_Ason_DLE1_VAP_trio5.smap"
outputFilename <- "GM24385_Ason_DLE1_VAP_trio5_out"
smappath <- system.file("extdata", smapName, package = "nanotatoR")
outpath <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")
directoryName <- system.file("extdata", package="nanotatoR")
datcomp <- overlapnearestgeneSearch(smap = smap,
 bed=bedFile, inputfmtBed = "bed", outpath,
 n = 3, returnMethod_bedcomp = c("dataFrame"),
 input_fmt_SV = "Text",
 EnzymeType = "SE",
 bperrorindel = 3000, bperrorinvtrans = 50000)
hgpath=system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
datDGV <- DGVfrequency (hgpath = hgpath,
 smap_data = datcomp,
 win_indel_DGV = 10000,
 input_fmt_SV = "DataFrame",EnzymeType = "SE",
 perc_similarity_DGV = 0.5,returnMethod="dataFrame")
indelconf = 0.5; invconf = 0.01;transconf = 0.1;
datInf <- internalFrequencyTrio_Duo(smapdata = datDGV,
 buildSVInternalDB=TRUE, win_indel=10000,
 win_inv_trans=50000,
 labelType = c("SE"), EnzymeType = "SE",
 SE_path = system.file("extdata", "SoloFile/", package = "nanotatoR"),
 SE_pattern = "\x_DLE1_x", perc_similarity_paren = 0.9,
 Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR"),
 mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR"),
 mergedKeyoutpath = system.file("extdata", package="nanotatoR"),
 mergedKeyFname = "Sample_index.csv",
 indexFfile = system.file("extdata", mergedKeyFname, package="nanotatoR"),
 perc_similarity = 0.5, indelconf = 0.5, invconf = 0.01,
 transconf = 0.1, limsize = 1000, win_indel_parents = 5000,
run_bionano_filter_SVMerge_duo

Getting the data from annotated smaps to extract SV information based on type of variants.

Description

Getting the data from annotated smaps to extract SV information based on type of variants.

Usage

run_bionano_filter_SVMerge_duo(
 input_fmt_geneList = c("Text", "dataFrame"),
 input_fmt_SV = c("Text", "dataFrame"),
 smap = NULL,
run_bionano_filter_SVMerge_duo

svData,
dat_geneList,
fileName,
outpath,
outputFilename = "",
RZIPpath,
outputType = c("Excel", "csv"),
primaryGenesPresent = TRUE,
fileprefix,
directoryName,
EnzymeType = c("SVMerge","SE")
)

Arguments

input_fmt_geneList
character. Choice of gene list input Text or Dataframe.

input_fmt_SV
character. Choice of gene list input Text or Dataframe.

svData
character. SV file name.

dat_geneList
Dataframe Input data containing geneList data.

fileName
Character Name of file containing Gene List data.

outpath
Character Directory to the output file.

outputFilename
Character Output filename.

RZIPpath
Character Path for the Rtools Zip package.

outputType
Character. Variants in excel tabs or in different csv files. Options Excel or csv.

primaryGenesPresent
boolean Checks whether the primary gene List is present or not.

fileprefix
character. fileprefix to use for each of the files in the directory.

directoryName
Character. Directory name where individual SV files will be stored.

EnzymeType
Character. Enzyme type used. Options SVMerge or SE.

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.

Examples

Not run:
smapName <- "GM24385_DLE-1_P_trio_hg19.smap"
outputFilename <- "GM24385_DLE-1_P_trio_hg19.out"
smappath <- system.file("extdata", smapName, package = "nanotatoR")
outpath <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
run_bionano_filter_SVMerge_duo(inputFmt_geneList = c("Text"),
inputFmt_SV = c("Text"),
run_bionano_filter_SVMerge_solo

Getting the data from annotated smaps to extract SV information based on type of variants.

Description

Getting the data from annotated smaps to extract SV information based on type of variants.

Usage

run_bionano_filter_SVMerge_solo(
 input_fmt_geneList = c("Text", "dataFrame"),
 input_fmt_SV = c("Text", "dataFrame"),
 EnzymeType = c("SE", "SVMerge"),
 smap = NULL,
 svData,
 dat_geneList,
 fileName,
 outputFilename = "",
 outpath,
 RZIPpath,
 primaryGenesPresent = TRUE,
 outputType = c("Excel", "csv"),
 directoryName,
 fileprefix
)

Arguments

input_fmt_geneList
 character. Choice of gene list input Text or Dataframe.
input_fmt_SV
 character. Choice of gene list input Text or Dataframe.
EnzymeType
 Character. Enzyme type used. Options SVMerge or SE.
smap
 character. SV file name.
svData
 Dataframe Input data containing SV data.
data_geneList Dataframe Input data containing geneList data.
fileName Character Name of file containing Gene List data.
outpath Character Directory to the output file.
outputFilename Character Output filename.
RZIPpath Character Path for the Rtools Zip package.
primaryGenesPresent boolean Checks whether the primary gene List is present or not.
outputType Character. Variants in excel tabs or in different csv files. Options Excel or csv.
directoryName Character. Directory name where individual SV files will be stored.
fileprefix Character. fileprefix to use for each of the files in the directory.

Value
Excel file containing the annotated SV map, tabs divided based on type of SVs.

Examples

smapName <- "NA12878_Q.S_VAP_SVmerge_solo5.txt"
outputFilename <- "NA12878_Q.S_VAP_SVmerge_solo5_out"
smappath <- system.file("extdata", smapName, package = "nanotatoR")
outpath <- system.file("extdata", smapName, package = "nanotatoR")
RZIPpath <- system.file("extdata", "zip.exe", package = "nanotatoR")
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")
directoryName <- system.file("extdata", package="nanotatoR")
datcomp<-overlapnearestgeneSearch(smap = smap,
 bed=bedFile, inputfmtBed = "bed", outpath,
 n = 3, returnMethod_bedcomp = c("dataFrame"),
 input_fmt_SV = "Text",
 EnzymeType = "SVMerge",
 bperrorindel = 3000, bperrorinvtrans = 50000)
hgpath=system.file("extdata", "GRCh37_hg19_variants_2016-05-15.txt", package="nanotatoR")
datDGV <- DGVfrequency (hgpath = hgpath,
 datcomp=datcomp,
 buildSVInternalDB=TRUE, win_indel=10000,
 EnzymeType = "SVMerge",
 input_fmt_SV = "dataFrame",
 perc_similarity_DGV = 0.5,returnMethod="dataFrame")
indelconf = 0.5; invconf = 0.01; transconf = 0.1;
datInf <- internalFrequency_solo(smapdata = datDGV,
 buildSVInternalDB=TRUE, win_indel=10000,
 win_inv_trans=50000,
 labelType = c("SE"),
 EnzymeType = "SVMerge",
 SE_path = system.file("extdata", "SoloFile/", package="nanotatoR"),
 SE_pattern = "*_DLE1_*", perc_similarity_parent =0.9,
 Samplecodes = system.file("extdata", "nanotatoR_sample_codes.csv", package="nanotatoR"),
 mergeKey = system.file("extdata", "nanotatoR_control_sample_codes.csv", package="nanotatoR"),
 samplecodes = samplecodes, mergeKey = mergeKey)
run_bionano_filter_SVMerge_Trio

Getting the data from annotated smaps to extract SV information based on type of variants.

Description

Getting the data from annotated smaps to extract SV information based on type of variants.
Usage

```r
run_bionano_filter_SVMerge_Trio(
  input_fmt_geneList = c("Text", "dataFrame"),
  input_fmt_SV = c("Text", "dataFrame"),
  EnzymeType = c("SVMerge", "SE"),
  smap = NULL,
  svData,
  dat_geneList,
  fileName,
  outpath,
  outputFilename = "",
  RZIPpath,
  primaryGenesPresent = TRUE,
  outputType = c("Excel", "csv"),
  directoryName,
  fileprefix
)
```

Arguments

- `input_fmt_geneList`: character. Choice of gene list input Text or Dataframe.
- `input_fmt_SV`: character. Choice of gene list input Text or Dataframe.
- `EnzymeType`: Character. Enzyme type used. Options SVMerge or SE.
- `smap`: character. SV file name.
- `svData`: Dataframe Input data containing SV data.
- `dat_geneList`: Dataframe Input data containing geneList data.
- `fileName`: Character Name of file containing Gene List data.
- `outpath`: Character Directory to the output file.
- `outputFilename`: Character Output filename.
- `RZIPpath`: Character Path for the Rtools Zip package.
- `primaryGenesPresent`: boolean Checks whether the primary gene List is present or not.
- `outputType`: Character. Variants in excel tabs or in different csv files. Options Excel or csv.
- `directoryName`: Character. Directory name where individual SV files will be stored.
- `fileprefix`: Character. fileprefix to use for each of the files in the directory.

Value

Excel file containing the annotated SV map, tabs divided based on type of SVs.
SVexpression_duo_trio

Extract Read counts for genes that are near or overlapping SVs.

Usage

SVexpression_duo_trio(
 input_fmt_SV = c("Text", "dataFrame"),
 input_fmt_RNASeq = c("Text", "dataFrame"),
 smapdata,
 smappath,
 smapdata,
 smappath,
 outputfmt = c("Text", "dataFrame"),
 pattern_Proband = NA,
 pattern_Mother = NA,
 pattern_Father = NA,
 EnzymeType = c("SVMerge", "SE")
)

Arguments

input_fmt_SV character. genes that are upstream and/or downstream of SV.
input_fmt_RNASeq character. genes that are upstream and/or downstream of SV.
smapdata dataframe. smap data in dataframe format.
smappath character. smap path.
SVexpression_solo

Annotating the Overlapping and Non-Overlapping genes with RNAseq expression

Description

Annotating the Overlapping and Non-Overlapping genes with RNAseq expression

input_fmt_RNASeq
character. input format of RNASEQ data. Text or dataframe.

RNASeqData
character. Expression of the genes.

RNASeqPATH
character. RNASEQ path.

outputfmt
character. Output format choice dataframe or text.

pattern_Proband
character. Pattern to identify the proband reads.

pattern_Mother
character. Pattern to identify the mother reads.

pattern_Father
character. Pattern to identify the father reads.

EnzymeType
character. Enzyme used. option “Dual” or “DLE”.

Value

Text or Dataframe containing TPM read counts of genes in the family.

Examples

```r
## Not run:
RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"
datRNASeq <- RNAseqcombine(RNASeqDir = RNASeqDir,
returnMethod = returnMethod)
smapName="NA12878_DLE1_VAP_solo5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
datcomp<-
overlapnearestgeneSearch(smap = smap,
bed=bedFile, inputfmtBed = "BED", outpath,
n = 3, returnMethod_bedcomp = c("dataFrame"),
input_fmt_SV = "Text",
EnzymeType = "SVMerge",
bpperorindel = 3000,
bpperorinvtrans = 50000)
datRNASeq1 <- SVexpression(
input_fmt_SV=c("dataFrame"),
input_fmt_RNASeq=c("dataFrame"),
RNASeqData = datRNASeq,
outputfmt=c("dataFrame"),
pattern_Proband = "*_P_*", EnzymeType = c("SVMerge"))

## End(Not run)
```
SVexpression_solo

Usage

SVexpression_solo(
 input_fmt_SV = c("Text", "dataFrame"),
 smapdata,
 smappath,
 input_fmt_RNASeq = c("Text", "dataFrame"),
 RNASeqData,
 RNASeqPATH,
 outputfmt = c("Text", "dataFrame"),
 pattern_Proband = NA,
 EnzymeType = c("SVMerge", "SE")
)

Arguments

input_fmt_SV character. Input format of the SV data. Options "Text" or "DataFrame".

smapdata dataframe. SV data dataframe.

smappath character. smap path.

input_fmt_RNASeq character. Input format of the RNASeq data. Options "Text" or "DataFrame".

RNASeqData dataframe. RNAseq data with gene names.

RNASeqPATH character. RNAseq dataset path.

outputfmt character. Output format of the result. Options "Text" or "DataFrame".

pattern_Proband character. Pattern for proband.

EnzymeType character. Enzyme used. Option "SVMerge" or "SE".

Value

Dataframe Annotated dataframe with RNASeq data.

Examples

RNASeqDir = system.file("extdata", package="nanotatoR")
returnMethod="dataFrame"
datRNASeq <- RNAseqcombine_solo(RNASeqDir = RNASeqDir,
 returnMethod = returnMethod)
smapName="NA12878_DLE1_VAP_solo5.smap"
smap = system.file("extdata", smapName, package="nanotatoR")
smap = system.file("extdata", smapName, package="nanotatoR")
bedFile <- system.file("extdata", "HomoSapienGRCH19_lift37.bed", package="nanotatoR")
outpath <- system.file("extdata", package="nanotatoR")
datcomp<-overlapnearestgeneSearch(smap = smap,
 bed=bedFile, inputfmtBed = "bed", outpath,
 n = 3, returnMethod_bedcomp = c("dataFrame"),
 input_fmt_SV = "Text",
 EnzymeType = "SE",
 berrorindel = 3000,
berrorinvtrans = 50000)
datRNASeq1 <- SVexpression_solo (input_fmt_SV=c("dataFrame"),
 smapdata = datcomp,
 input_fmt_RNASeq=c("dataFrame"),
 RNASeqData = datRNASeq,
 outputFmt=c("dataFrame"),
 pattern_Proband = "*P_*", EnzymeType = c("SE"))
datRNASeq1[1,]
Index

BNDBfrequency, 3
buildrunBNBedFiles, 5

clinvar_gene, 6

Decipherfrequency, 6
DGVfrequency, 8

extract_clinvar_mod, 9

FamilyInfoPrep, 10

gene_extraction, 11
gene_list_generation, 11
gtr_gene, 13

internalFrequency_solo, 16
internalFrequencyTrio_Duo, 13

makeInternalBNDatabase, 19
merging_SE_SVMerge, 21
mergingSMAP_SE, 20
mergingSMAP_SVMerge, 20

nanotatoR, 22
nanotatoR_Duo_SVmerge, 23
nanotatoR_main_Duo_SE, 28
nanotatoR_main_Solo_SE, 33
nanotatoR_main_Solo_SVmerge, 38
nanotatoR_main_Trio_SE, 43
nanotatoR_SVmerge_Trio, 47
nonOverlapGenes, 52
nonOverlappingDNGenes, 54
nonOverlappingUPGenes, 55
nonOverlapRNAseq, 55
nonOverlapRNAseq_solo, 56

omim_gene, 57
overlapGenes, 58
overlapnearestgeneSearch, 59
overlappingGenes, 60

OverlapRNAseq, 61
OverlapRNAseq_solo, 62

phenoextractHPO_mod, 63

readBNBedFiles, 63
reading_GTR, 64
reading_mim2gene, 65
readSMap, 65
readSMap_DLE, 66
RNaseqcombine, 66
RNaseqcombine_solo, 67
run_bionano_filter_SE_duo, 68
run_bionano_filter_SE_solo, 69
run_bionano_filter_SE_Trio, 72
run_bionano_filter_SVmerge_duo, 74
run_bionano_filter_SVmerge_solo, 76
run_bionano_filter_SVmerge_Trio, 78

SVexpression_duo_trio, 80
SVexpression_solo, 81