Package ‘multiWGCNA’

January 31, 2024

Type Package
Title multiWGCNA
Version 1.0.0
Description An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
License GPL-3
Encoding UTF-8
LazyData true
Suggests BiocStyle, doParallel, ExperimentHub, knitr, markdown, rmarkdown, testthat (>= 3.0.0), vegan
VignetteBuilder knitr
RoxygenNote 7.2.3
biocViews Sequencing, RNASeq, GeneExpression, DifferentialExpression, Regression, Clustering
Imports stringr, readr, WGCNA, dplyr, reshape2, data.table, patchwork, scales, igraph, flashClust, ggplot2, dcanr, cowplot, ggrepel, methods, SummarizedExperiment
Depends R (>= 4.3.0), ggalluvial
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/multiWGCNA
git_branch RELEASE_3_18
git_last_commit cf07247
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-30
multiWGCNA-package

Author Dario Tommasini [aut, cre] (<https://orcid.org/0000-0002-1214-6547>), Brent Fogel [aut, ctb]

Maintainer Dario Tommasini <dtommasini0@gmail.com>

R topics documented:

- multiWGCNA-package .. 2
- bidirectionalBestMatches .. 3
- cleanDatExpr .. 4
- coexpressionLineGraph .. 4
- computeOverlapsFromWGCNA ... 5
- constructNetworks ... 6
- diffCoexpression ... 7
- diffModuleExpression .. 9
- drawMultiWGCNAnetwork ... 10
- GetDatExpr .. 11
- getPreservation ... 12
- iterate ... 13
- makeTraitTable .. 13
- moduleComparisonPlot ... 14
- moduleExpressionPlot ... 15
- moduleToModuleHeatmap ... 16
- name ... 17
- overlapComparisons .. 17
- performANOVA .. 19
- preservationComparisonPlot .. 19
- preservationComparisons .. 20
- runDME ... 22
- summarizeResults ... 23
- topNGenes ... 24
- WGCNA-class .. 24

Index 26

multiWGCNA-package multiWGCNA: multiWGCNA

Description

An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
bidirectionalBestMatches

Description

Find all the modules from dataset1 that have a best match to a module in dataset2 if that module in dataset2 is also a best match to the module in dataset1.

Usage

bidirectionalBestMatches(comparisonList, plot = TRUE)

Arguments

- comparisonList: a list with an element "overlap", which is a data.frame resulting from a call to computeOverlapsFromWGCNA
- plot: whether to generate a heatmap; default is TRUE

Value

A ggplot object

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
comparisonList = list()
comparisonList$overlaps = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
bidirectionalBestMatches(comparisonList)
cleanDatExpr

Description

A function that converts a data.frame where row 1 is gene symbols to a numeric matrix where columns are genes and rows are samples for compatibility with most WGCNA functions.

Usage

```r
cleanDatExpr(datExpr, checkGenesSamples = FALSE)
```

Arguments

- `datExpr`: a data.frame were columns are samples and rows are samples and the gene symbols are in the first row
- `checkGenesSamples`: call the WGCNA function checkGenesSamples?

Value

Returns a datExpr with rows as samples and columns as genes

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
datExpr = data.frame(X = rownames(assays(astrocyte_se)[[1]]), assays(astrocyte_se)[[1]])
cleanDatExpr(datExpr)
```

coexpressionLineGraph
Coexpression Line Graph

Description

Plots a line graph showing the co-expression of selected genes across samples

Usage

```r
coexpressionLineGraph(datExpr, splitBy = 1, fontSize = 2.15, colors = NULL)
```
computeOverlapsFromWGCNA

Arguments
- `datExpr` a data.frame with genes as rows and samples as columns
- `splitBy` how much to split genes by on line graph
- `fontSize` the font size of the gene labels
- `colors` a vector of colors; default is random colors generated by `colors` function

Value
a ggplot object

Author(s)
Dario Tommasini

Examples
```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
genesis = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
geom_vline(xintercept = 20.5, linetype='dashed')
```

computeOverlapsFromWGCNA

Description
Computes overlap between the modules of two objects of class WGCNA

Usage
```r
computeOverlapsFromWGCNA(dataset1, dataset2)
```

Arguments
- `dataset1` an object of class WGCNA to compare with `dataset2`
- `dataset2` an object of class WGCNA to compare with `dataset1`

Value
Returns a data.frame showing the overlap results for modules from `dataset1` with `dataset2`
Author(s)
Dario Tommasini

Examples
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)

constructNetworks

constructNetworks: Construct all the weighted gene correlation networks

Description
A high level function that returns all networks possible for a given experimental design

Usage
constructNetworks(
 datExpr,
 sampleTable,
 conditions1,
 conditions2,
 write = FALSE,
 alphaLevel = 0.05,
 plot = FALSE,
 ...
)

Arguments
 datExpr either a SummarizedExperiment object or data.frame with genes are rows and samples as columns
 sampleTable data.frame with sample names in first column and sample traits in the second and third column. First column should be called "Sample"
 conditions1 first design conditions, ie healthy/disease
 conditions2 second design conditions, ie frontal lobe/temporal lobe
 write write results out to files?
 alphaLevel significance value passed to findBestTrait function, default is 0.05
 plot plot modules? Default is false
 ... Arguments to pass to blockwiseModules function
Value
A list of WGCNA objects, ie level one, two, and three networks.

Author(s)
Dario Tommasini

Examples
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
autism_se = eh_query[["EH8219"]]
set.seed(1)
autism_se = autism_se[sample(rownames(autism_se), 500),]
sampleTable = colData(autism_se)
conditions1 = unique(sampleTable[,2])
conditions2 = unique(sampleTable[,3])
autism_networks = constructNetworks(autism_se, sampleTable, conditions1[[1]], conditions2[[1]],
 networkType = "signed", TOMType = "unsigned",
 power = 10, minModuleSize = 100, maxBlockSize = 25000,
 reassignThreshold = 0, minKMEtoStay = 0, mergeCutHeight = 0,
 numericLabels = TRUE, pamRespectsDendro = FALSE,
 deepSplit = 4, verbose = 3)
autism_networks[["combined"]]

diffCoexpression Differential co-expression analysis

Description
Performs a differential co-expression analysis given an expression data.frame and a conditions vector

Usage
diffCoexpression(
 datExpr,
 conditions,
 geneList = NULL,
 plot = FALSE,
 method = c("pearson", "spearman"),
 removeFreeNodes = TRUE,
 labelSize = 0.5,
 labelDist = 0,
 shape = "circle",
 degreeForSize = FALSE,


```r
label = FALSE,
onlyPositive = FALSE,
z.threshold = NULL,
FDR.threshold = 0.05,
nodeSize = 3
)

Arguments

datExpr a data.frame containing expression values
conditions a vector containing conditions for the samples
geneList vector of genes, will use all genes if NULL (default)
plot plot a network?
method either "pearson" or "spearman"
removeFreeNodes remove free nodes from network?
labelSize label size
labelDist distance from labels to nodes
shape shape of nodes
degreeForSize should node size correspond to degree?
label label nodes?
onlyPositive only draw positive correlations?
z.threshold z-score threshold
FDR.threshold FDR threshold
nodeSize size of node

Value

A list including a matrix of z-scores, a matrix of raw p-values, a matrix of adjusted p-values, and a summary data.frame

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
datExpr = assays(astrocyte_se)[[1]]
diffCoexpression(datExpr, c(rep(1,20), rep(2,16)),
"Cxcl10", "Hspb1", "Timp1", "S1pr3", "Steap4", "Lcn2"))
**diffModuleExpression**  
* Differential module expression

**Description**

Runs (and plots) the differential module expression analysis

**Usage**

\[
diffModuleExpression(
  WGCNAobject,
  geneList,
  design,
  plotTitle = NULL,
  mode = c("PC1", "Zscore"),
  testColumn = 2,
  refColumn = 3,
  test = c("ANOVA", "PERMANOVA"),
  plot = TRUE
)
\]

**Arguments**

- `WGCNAobject`  
  WGCNA object
- `geneList`  
  vector of genes in WGCNAobject
- `design`  
  the sampleTable
- `plotTitle`  
  title for the plot
- `mode`  
  either PC1 or Zscore, default is PC1
- `testColumn`  
  the column of the sampleTable to be resolved
- `refColumn`  
  the column of the sampleTable to be used as biological variation
- `test`  
  statistical test to perform, either "ANOVA" or "PERMANOVA"
- `plot`  
  generate a plot?

**Value**

a data.frame with the resulting p-values

**Examples**

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
```
diffModuleExpression(astrocyte_networks[["combined"]],
    topNGenes(astrocyte_networks$combined, "combined_013"),
    sampleTable,
    test = "ANOVA",
    plotTitle = "combined_013",
    plot = TRUE)

drawMultiWGCNANetwork

Description

Draw a network where nodes are modules and edges represent significant gene overlap. Modules
are sorted by levels 1, 2, and 3.

Usage

drawMultiWGCNANetwork(
    WGCNAlist,
    comparisonList,
    moduleOfInterest,
    design,
    overlapCutoff = 0,
    padjCutoff = 1,
    removeOutliers = TRUE,
    alpha = 1e-50,
    layout = NULL,
    hjust = 0.4,
    vjust = 0.3,
    width = 0.5,
    colors = NULL
)

Arguments

- **WGCNAlist**: list of WGCNA objects
- **comparisonList**: the list of overlap comparisons ie from iterate(myNetworks, overlapCompar-
  isons, ...)
- **moduleOfInterest**: module of interest, ie "combined_001"
- **design**: the sampleTable design matrix
- **overlapCutoff**: cutoff to remove module correspondences with less than this number of genes
- **padjCutoff**: cutoff to remove module correspondences above this significance value
- **removeOutliers**: remove outlier modules?
- **alpha**: alpha level of significance
GetDatExpr

layout
  layout of network to be passed to plot function of igraph object, defaults to multiWGCNA custom layout
hjust
  horizontal justification of labels
vjust
  vertical justification of labels
width
  width of labels
colors
  colors to use for modules, should be the same length as the number of WGCNA objects in the WGCNAlist. Defaults to random colors for each condition.

Value
  an igraph plot

Author(s)
  Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
 eh_query = query(eh, c("multiWGCNAdata"))
 astrocyte_se = eh_query[["EH8223"]]
 sampleTable = colData(astrocyte_se)
 astrocyte_networks = eh_query[["EH8222"]]
 results = list()
 results$overlaps = iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
 drawMultiWGCNAnetwork(astrocyte_networks,
 results$overlaps,
 "combined_013",
 sampleTable)
```

GetDatExpr

Get expression data

Description
  Returns the expression data frame a WGCNA object as a data.frame

Usage
  GetDatExpr(object, genes = NULL)

Arguments
  object
    An object of class WGCNA
  genes
    a list of genes to subset to; default is NULL
getPreservation

Value

a data.frame

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdataset"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
gen = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
geom_vline(xintercept = 20.5, linetype='dashed')

getPreservation

Description

Performs a network preservation analysis

Usage

getPreservation(reference, test, nPermutations = 100, write = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>reference network of class WGCNA</td>
</tr>
<tr>
<td>test</td>
<td>test network of class WGCNA</td>
</tr>
<tr>
<td>nPermutations</td>
<td>number of permutations to perform</td>
</tr>
<tr>
<td>write</td>
<td>write to file?</td>
</tr>
</tbody>
</table>

Value

a data.frame summarizing results of preservation analysis

Author(s)

Dario Tommasini
iterate

iterate: Iterate function across networks

Description

A high level function that iterates functions across a list of WGCNA objects

Usage

iterate(WGCNAlis, FUN, ...)

Arguments

WGCNAlis a vector of objects of type WGCNAobject
FUN function to iterate, either overlapComparisons or preservationComparisons
... arguments to be passed on to overlapComparisons or preservationComparisons

Value

a comparison list from overlapComparisons or preservationComparisons

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))astrocyte_networks = eh_query["EH8222"]results = list()iterate(astrocyte_networks, overlapComparisons, plot=FALSE)

makeTraitTable

Generate a trait table from a sample table

Description

Generates a WGCNA-compatible trait table from a sampleTable dataframe

Usage

makeTraitTable(inputTable, column, detectNumbers = FALSE)
Arguments

inputTable  the sampleTable data.frame
column      the column from the sampleTable to use as traits
detectNumbers whether to consider traits with numbers as numerical rather than categorical variables

Value

a data.frame with integer values denoting the categorical sample traits

Examples

sampleTable = data.frame(Sample = c(paste0("EAE", 1:10), paste0("WT", 1:10)),
                      Disease = c(rep("EAE", 10), rep("WT", 10)),
                      Region = c(rep("Cbl", "Sc"), 5))
makeTraitTable(sampleTable, 2)

moduleComparisonPlot  Module comparison plot

Description

A plotting function that returns a heatmap and barplot for a module

Usage

moduleComparisonPlot(overlapDf, dataset1, dataset2)

Arguments

overlapDf  a data.frame resulting from a call to computeOverlapsFromWGCNA
dataset1   an object of class WGCNA to compare with dataset2
dataset2   an object of class WGCNA to compare with dataset1

Value

Returns a ggplot object (flowplot and heatmap) showing the module correspondence between two objects of class WGCNA

Author(s)

Dario Tommasini
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[['EH8222']]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleComparisonPlot(overlapDf, astrocyte_networks$EAE, astrocyte_networks$WT)
```

---

**moduleExpressionPlot**  
*Plots an expression profile for a module*

**Description**

A plotting function that returns a heatmap and barplot for a module

**Usage**

```r
moduleExpressionPlot(
 WGCNAobject,
 geneList,
 mode = c("PC1", "averageZscore"),
 legend = FALSE,
 title = NULL,
 clusterGenes = FALSE
)
```

**Arguments**

- `WGCNAobject` an object of class WGCNAobject
- `geneList` a vector of gene names to be extracted from WGCNAobject
- `mode` use first principal component or averageZscore?
- `legend` plot legend?
- `title` title of the plot
- `clusterGenes` cluster heatmap genes by hierarchical clustering?

**Value**

a patchworked ggplot object

**Author(s)**

Dario Tommasini
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
moduleExpressionPlot(astrocyte_networks[["combined"]],
 geneList = topNGenes(astrocyte_networks$combined, "combined_013"))
```

---

**moduleToModuleHeatmap**

**Module to module heatmap**

**Description**

Returns a heatmap where color corresponds to FDR-adjusted overlap (hypergeometric test) and the label corresponds to the number of overlapping genes.

**Usage**

```r
moduleToModuleHeatmap(
 comparisonDf,
 dataset1 = NULL,
 dataset2 = NULL,
 trait1 = NULL,
 trait2 = NULL,
 list1 = NULL,
 list2 = NULL,
 filterByTrait = FALSE,
 alphaLevel = 0.05
)
```

**Arguments**

- `comparisonDf`: the data.frame output of computeOverlapFromWGCNA
- `dataset1`: optional; WGCNA object for dataset 1
- `dataset2`: optional; WGCNA object for dataset 2
- `trait1`: optional; subset to modules correlated to this trait for dataset 1
- `trait2`: optional; subset to modules correlated to this trait for dataset 2
- `list1`: subset to this list of modules for dataset 1
- `list2`: subset to this list of modules for dataset 2
- `filterByTrait`: only plot for modules that correlate with some trait?
- `alphaLevel`: the alpha level of significance for module-trait correlation, defaults to 0.05

**Value**

A ggplot object
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[['EH8222']]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleToModuleHeatmap(overlapDf)
```

<table>
<thead>
<tr>
<th>name</th>
<th>name: Name of WGCNAobject</th>
</tr>
</thead>
</table>

Description

Returns the name of a WGCNA object.

Usage

```r
name(WGCNAobject)
```

Arguments

- **WGCNAobject**: an object of class WGCNA

Value

Returns the name of the WGCNA object, i.e. "EAE" for astrocyte_networks$EAE.

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[['EH8222']] name(astrocyte_networks$EAE)
```

<table>
<thead>
<tr>
<th>overlapComparisons</th>
<th>Overlap comparisons</th>
</tr>
</thead>
</table>

Description

Compares modules between two objects of type WGCNA objects within a WGCNA object list given the indices. Recommended to be used in conjunction with the iterate function.
overlapComparisons

Usage

overlapComparisons(
  comparisonList,
  WGCNAlist,
  first,
  second,
  element,
  plot = TRUE,
  write = FALSE
)

Arguments

  comparisonList  a list passed by the iterate function
  WGCNAlist       list of objects of class WGCNA
  first           index of first WGCNA object
  second          index of second WGCNA object
  element         element position in the comparison list (passed by iterate function)
  plot            generate plots?
  write           write results to file?

Value

  A list, in which the first element is a data.frame showing the overlap results and the second element
  is a data.frame showing the best matching modules between the two WGCNA objects.

Author(s)

  Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
results$overlaps = iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
performANOVA  

**Perform ANOVA**

**Description**

Test association between module expression to traits using ANOVA

**Usage**

```r
performANOVA(datExpr, design, testCondition, refCondition, alphaLevel = 0.05)
```

**Arguments**

- `datExpr`: expression data.frame
- `design`: the sampleTable
- `testCondition`: test column in sampleTable
- `refCondition`: reference column in sampleTable
- `alphaLevel`: the significance level

**Value**

A data.frame with p-values for each association

preservationComparisonPlot  

**Preservation Comparison Scatterplot**

**Description**

A plotting function that draws a scatterplot of preservation scores between two WGCNA objects

**Usage**

```r
preservationComparisonPlot(
 preservationList,
 dataset1,
 dataset2,
 alphaLevel = 0.05,
 outliers = FALSE
)
```
preservationComparisons

**Arguments**

- **preservationList**
  a list resulting from a call to preservationComparisons
- **dataset1**
  an object of class WGCNAobject to compare with dataset2
- **dataset2**
  an object of class WGCNAobject to compare with dataset1
- **alphaLevel**
  alpha level of significance, default is 0.05
- **outliers**
  leave outlier modules? By default these are removed

**Value**

a ggplot object

**Author(s)**

Dario Tommasini

**Examples**

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
results$preservation=iterate(astrocyte_networks[c("EAE", "WT")],
 preservationComparisons,
 write=FALSE,
 plot=FALSE,
 nPermutations=2)
preservationComparisonPlot(results$preservation$EAE_vs_WT,
 astrocyte_networks$EAE,
 astrocyte_networks$WT)
```

**Description**

A high level function that performs a preservation comparison between two WGCNAobjects in a WGCNAList, usually supplied by iterate function
preservationComparisons

Usage

preservationComparisons(
  comparisonList,
  WGCNAlist,
  first,
  second,
  element,
  plot = FALSE,
  write = FALSE,
  alphaLevel = 0.05,
  nPermutations = 100
)

Arguments

  comparisonList  a list passed by the iterate function
  WGCNAlist       list of objects of type WGCNAobject
  first           index of first WGCNAobject
  second          index of second WGCNAobject
  element         element position in the comparison list (passed by iterate function)
  plot            generate plots?
  write           write results to file?
  alphaLevel      alpha level of significance for module-trait correlation
  nPermutations   number of permutations, defaults to 100

Value

  a list of preservation comparisons results across levels 1, 2, 3

Author(s)

  Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
iterate(astrocyte_networks[c("EAE", "WT")],
  preservationComparisons,
  write=FALSE,
  plot=FALSE,
  nPermutations=2)
runDME

Run differential module expression

Description

A wrapper to run `diffModuleExpression` on all the modules in a network

Usage

```r
runDME(
 WGCNAobject,
 design,
 alphaLevel = 0.05,
 testCondition = NULL,
 refCondition = NULL,
 p.adjust = "fdr",
 plot = FALSE,
 test = c("ANOVA", "PERMANOVA"),
 write = FALSE,
 out = NULL
)
```

Arguments

- `WGCNAobject`: object of class WGCNA with the modules to run DME on
- `design`: the `sampleTable`
- `alphaLevel`: level of significance
- `testCondition`: the column of the `sampleTable` to be resolved
- `refCondition`: the column of the `sampleTable` to be used as biological variation
- `p.adjust`: adjust for multiple comparisons, argument to pass to `p.adjust` function
- `plot`: generate a plot?
- `test`: statistical test to perform, either "ANOVA" or "PERMANOVA"
- `write`: write results to a file?
- `out`: file name for DME plots, only used if `write` is TRUE

Value

a data.frame summarizing the results of the analysis

Author(s)

Dario Tommasini
summarizeResults

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
runDME(astrocyte_networks[["combined"]],
design = sampleTable,
p.adjust = "fdr",
refCondition = "Region",
testCondition = "Disease")

summarizeResults

summarizeResults: Summarize results from a results list object

Description

Prints (or writes) a summary of the results from a results list object

Usage

summarizeResults(
  myNetworks,
  results,
  alphaLevel = 0.05,
  write = FALSE,
  outputFile = "results.txt"
)

Arguments

myNetworks a list of WGCNAobjects
results results list
alphaLevel alpha level of significance
write write to file?
outputFile name of output file, defaults to results.txt

Value

prints a summary of results from the multiWGCNA analysis
topNGenes

Description

Returns the top N number of genes of a module. All genes returned if no number is specified. Genes are in order of intramodular connectivity.

Usage

topNGenes(WGCNAobject, module, nGenes = NULL)

Arguments

WGCNAobject an object of class WGCNA
module the name of the module in WGCNAobject
nGenes an integer from 1 to module size; returns all genes if left NULL

Value

a character vector of the genes/probes in the module

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[['EH8222']]  
topNGenes(astrocyte_networks$EAE, "EAE_015", nGenes = 10)

WGCNA-class

The WGCNA Class

Description

The WGCNA class is the main class used in multiWGCNA to store results from a weighted gene co-expression network analysis. These include the original unaltered expression data used as input, connectivity metrics, module assignment, input sample conditions, trait

Value

NA
WGCNA-class

**Slots**

- `datExpr` The expression data, connectivity data, and module assignment conditions
- `trait` A data.frame showing Pearson correlation values to traits
- `moduleEigengenes` A data.frame of module eigengenes for each module across samples
- `outlierModules` A vector of modules classified by our algorithm as being driven by sample outliers
Index

* internal
  multiWGCNA-package, 2

bidirectionalBestMatches, 3

cleanDatExpr, 4
coexpressionLineGraph, 4
computeOverlapsFromWGCNA, 5
constructNetworks, 6
diffCoexpression, 7
diffModuleExpression, 9
drawMultiWGCNAnetwork, 10

GetDatExpr, 11
getPreservation, 12

iterate, 13

makeTraitTable, 13
moduleComparisonPlot, 14
moduleExpressionPlot, 15
moduleToModuleHeatmap, 16
multiWGCNA (multiWGCNA-package), 2
multiWGCNA-package, 2

name, 17

overlapComparisons, 17

performANOVA, 19
preservationComparisonPlot, 19
preservationComparisons, 20

runDME, 22

summarizeResults, 23
topNGenes, 24

WGCNA-class, 24