Package ‘mnem’

April 2, 2024

Type Package
Title Mixture Nested Effects Models
Version 1.18.0
Description Mixture Nested Effects Models (mnem) is an extension of Nested Effects Models and allows for the analysis of single cell perturbation data provided by methods like Perturb-Seq (Dixit et al., 2016) or Crop-Seq (Datlinger et al., 2017). In those experiments each of many cells is perturbed by a knock-down of a specific gene, i.e. several cells are perturbed by a knock-down of gene A, several by a knock-down of gene B, ... and so forth. The observed read-out has to be multi-trait and in the case of the Perturb-/Crop-Seq gene are expression profiles for each cell. mnem uses a mixture model to simultaneously cluster the cell population into k clusters and and infer k networks causally linking the perturbed genes for each cluster. The mixture components are inferred via an expectation maximization algorithm.

Depends R (>= 4.1)
License GPL-3
Encoding UTF-8
LazyData true
biocViews Pathways, SystemsBiology, NetworkInference, Network, RNASeq, PooledScreens, SingleCell, CRISPR, ATACSeq, DNASeq, GeneExpression
RoxygenNote 7.2.1
Imports cluster, graph, Rgraphviz, flexclust, lattice, naturalsort, snowfall, stats4, tsne, methods, graphics, stats, utils, Linnorm, data.table, Rcpp, RcppEigen, matrixStats, grDevices, e1071, ggplot2, wesanderson
LinkingTo Rcpp, RcppEigen
VignetteBuilder knitr
Suggests knitr, devtools, rmarkdown, BiocGenerics, RUnit, epiNEM, BiocStyle
NeedsCompilation yes
BugReports https://github.com/cbg-ethz/mnem/issues
URL https://github.com/cbg-ethz/mnem/
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>app</td>
<td>3</td>
</tr>
<tr>
<td>bootstrap</td>
<td>3</td>
</tr>
<tr>
<td>clustNEM</td>
<td>4</td>
</tr>
<tr>
<td>createApp</td>
<td>5</td>
</tr>
<tr>
<td>fitacc</td>
<td>7</td>
</tr>
<tr>
<td>fuzzyindex</td>
<td>8</td>
</tr>
<tr>
<td>getAffinity</td>
<td>9</td>
</tr>
<tr>
<td>getIC</td>
<td>10</td>
</tr>
<tr>
<td>hamSim</td>
<td>11</td>
</tr>
<tr>
<td>mnem</td>
<td>12</td>
</tr>
<tr>
<td>mnemh</td>
<td>15</td>
</tr>
<tr>
<td>mnemk</td>
<td>16</td>
</tr>
<tr>
<td>moreboxplot</td>
<td>17</td>
</tr>
<tr>
<td>nem</td>
<td>18</td>
</tr>
<tr>
<td>plot.bootmnem</td>
<td>20</td>
</tr>
<tr>
<td>plot.mnem</td>
<td>21</td>
</tr>
<tr>
<td>plot.mnem_mcmc</td>
<td>23</td>
</tr>
<tr>
<td>plot.mnem_sim</td>
<td>24</td>
</tr>
<tr>
<td>plotConvergence</td>
<td>24</td>
</tr>
<tr>
<td>plotConvergence.mnem</td>
<td>25</td>
</tr>
<tr>
<td>plotDnf</td>
<td>26</td>
</tr>
<tr>
<td>scoreAdj</td>
<td>29</td>
</tr>
<tr>
<td>simData</td>
<td>31</td>
</tr>
<tr>
<td>transitive.closure</td>
<td>32</td>
</tr>
<tr>
<td>transitive.reduction</td>
<td>33</td>
</tr>
</tbody>
</table>

Index

34
Processed scRNAseq from pooled CRISPR screens

Description

Example data: mnem results for the Dixit et al., 2016 and Datlinger et al., pooled CRISPR screens. For details see the vignette or function createApp().

Usage

app

References

Examples

data(app)

Bootstrap.

Description

Run bootstrap simulations on the components (phi) of an object of class mnem.

Usage

bootstrap(x, size = 1000, p = 1, logtype = 2, complete = FALSE, ...)

Arguments

x

mnem object

size

size of the bootstrap simulations

p

percentage of samples (e.g. for 100 E-genes p=0.5 means sampling 50)

logtype

logarithm type of the data (e.g. 2 for log2 data or exp(1) for natural)

complete

if TRUE, complete data log likelihood is considered (for very large data sets, e.g. 1000 cells and 1000 E-genes)

...

additional parameters for the nem function
Value
returns bootstrap support for each edge in each component (phi); list of adjacency matrices

Author(s)
Martin Pirkl

Examples
```
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
boot <- bootstrap(result, size = 2)
```

Description
Cluster NEM.

This function clusters the data and performs standard nem on each cluster.

Usage
```
clustNEM(
data,  
k = 2:10,  
cluster = NULL,  
starts = 1,  
logtype = 2,  
nem = TRUE,  
getprobspars = list(),  
getaffinitypars = list(),  
Rho = NULL,  
...  
)
```

Arguments
- **data** data of log ratios with cells in columns and features in rows
- **k** number of clusters to check
- **cluster** given clustering has to correspond to the columns of data
- **starts** number of random starts for the kmeans algorithm
- **logtype** logarithm type of the data
- **nem** if FALSE only clusters the data
- **getprobspars** list of parameters for the getProbs function
createApp

gtaffinitypars

list of parameters for the getAffinity function

Rho

perturbation matrix with dimensions nx1 with n S-genes and l samples; either as probabilities with the sum of probabilities for a sample less or equal to 1 or discrete with 1s and 0s

... additional arguments for standard nem function

Value

gtfamily of nems; the first k list entries hold full information of the standard nem search

gttcomp

list of all adjacency matrices phi

gt mw

vector of mixture weights

gttprobs

fake cell probabilities (see mw: mixture weights)

Author(s)

Martin Pirkl

Examples

sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- clustNEM(data, k = 2:3)

description

This function is for the reproduction of the application results in the vignette and publication. See the publication Pirkl & Beerenwinkel (2018) on how to download the data files: GSE92872_CROP-seq_Jurkat_TCR.digital_expression.csv k562_both_filt.txt GSM2396861_k562_ccycle_cbc_gbc_dict.csv GSM2396858_k562_tfs_7_cbc_gbc_dict.csv

Usage

createApp(
 sets = seq_len(3),
 m = NULL,
 n = NULL,
 o = NULL,
 maxk = 5,
 parallel = NULL,
 path = "",
 types = c("data", "lods", "mnem"),
)
allcrop = FALSE,
multi = FALSE,
file = NULL,
...
)

Arguments

sets numeric vector with the data sets: 1 (CROPseq), 2, 3 (both PERTURBseq); default is all three
m number of Sgenes (for testing)
n number of most variable E-genes (for testing)
o number of samples per S-gene (for testing)
maxk maximum number of component in mnem inference (default: 5)
parallel number of threads for parallelisation
path path to the data files path/file.csv: "path/"
types types of data/analysis; "data" creates the gene expression matrix, "lods" includes the log odds, "mnem" additionally performs the mixture nem analysis; default c("data", "lods", "mnem")
allcrop if TRUE, does not restrict and uses the full CROPseq dataset
multi if TRUE, includes cells with more than one perturbed gene
file path and filename of the rda file with the raw data from the command "data <- createApp(..., types = "data")"
... additional parameters for the mixture nem function

Value

app data object

Author(s)

Martin Pirkl

Examples

recreate the app data object (takes very long, i.e. days)
Not run:
createApp()

End(Not run)
data(app)
Description
Computes the accuracy of the fit between simulated and inferred mixture.

Usage
fitacc(x, y, strict = FALSE, unique = TRUE, type = "ham")

Arguments
x mnem object
y simulation object or another mnem object
strict if TRUE, accounts for over/underfitting, i.e. the number of components
unique if TRUE, phis of x and y are made unique each (FALSE if strict is TRUE)
type type of accuracy. "ham" for hamming, "sens" for sensitivity and "spec for Specificity"

Value
plot of EM convergence

Author(s)
Martin Pirkl

Examples
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
fitacc(result, sim)
fitacc(result, sim, type = "sens")
fitacc(result, sim, type = "spec")
fitacc(result, sim, strict = TRUE, type = "sens")
fitacc(result, sim, strict = TRUE, type = "spec")
fuzzyindex Calculate fuzzy ground truth.

Description

Calculates responsibilities and mixture weights based on the ground truth and noisy data.

Usage

fuzzyindex(x, data, logtype = 2, complete = FALSE, marginal = FALSE, ...)

Arguments

x mnem_sim object
data noisy data matrix
logtype logarithm type of the data
complete if TRUE, complete data log likelihood is considered (for very large data sets, e.g. 1000 cells and 1000 E-genes)
marginal logical to compute the marginal likelihood (TRUE)
... additional parameters for the function getAffinity

Value

list with cell log odds mixture weights and log likelihood

Author(s)

Martin Pirkl

Examples

sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- sim$data
data[which(sim$data == 1)] <- rnorm(sum(sim$data == 1), 1, 1)
data[which(sim$data == 0)] <- rnorm(sum(sim$data == 0), -1, 1)
fuzzy <- fuzzyindex(sim, data)
getAffinity

Calculate responsibilities.

Description

This function calculates the responsibilities of each component for all cells from the expected log distribution of the hidden data.

Usage

getAffinity(
 x,
 affinity = 0,
 norm = TRUE,
 logtype = 2,
 mw = NULL,
 data = matrix(0, 2, ncol(x)),
 complete = FALSE
)

Arguments

- **x**: log odds for l cells and k components as a kxl matrix
- **affinity**: 0 for standard soft clustering, 1 for hard clustering during inference (not recommended)
- **norm**: if TRUE normalises to probabilities (recommended)
- **logtype**: logarithm type of the data (e.g. 2 for log2 data or exp(1) for natural)
- **mw**: mixture weights of the components
- **data**: data in log odds
- **complete**: if TRUE, complete data log likelihood is considered (for very large data sets, e.g. 1000 cells and 1000 E-genes)

Value

responsibilities as a kxl matrix (k components, l cells)

Author(s)

Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mmem(data, k = 2, starts = 1)
resp <- getAffinity(result$probs, mw = result$mw, data = data)
```
Description

This function calculates a negative penalized log likelihood given an object of class mnem. This penalized likelihood is based on the normal likelihood and penalizes complexity of the mixture components (i.e., the networks).

Usage

getIC(
 x,
 man = FALSE,
 degree = 4,
 logtype = 2,
 pen = 2,
 useF = FALSE,
 Fnorm = FALSE
)

Arguments

x
 mnem object

man
 logical. manual data penalty, e.g., man=TRUE and pen=2 for an approximation of the Akaike Information Criterion

degree
 different degree of penalty for complexity: positive entries of transitively reduced phis or phi^r (degree=0), phi^r and mixture components minus one k-1 (1), phi^t, k-1 and positive entries of thetas (2), positive entries of transitively closed phis or phi^t, k-1 (3), phi^t, theta, k-1 (4, default), all entries of phis, thetas and k-1 (5)

logtype
 logarithm type of the data (e.g., 2 for log2 data or exp(1) for natural)

pen
 penalty weight for the data (e.g., pen=2 for approximate Akaike Information Criterion)

useF
 use F (see publication) as complexity instead of phi and theta

Fnorm
 normalize complexity of F, i.e., if two components have the same entry in F, it is only counted once

Value

penalized log likelihood

Author(s)

Martin Pirkl
Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
pen <- numeric(3)
result <- list()
for (k in seq_len(2)) {
  result[[k]] <- mnem(data, k = k, starts = 1)
  pen[k] <- getIC(result[[k]])
}
print(pen)
```

hamSim

Accuracy for two phis.

Description

This function uses the hamming distance to calculate an accuracy for two networks (phi).

Usage

`hamSim(a, b, diag = 1, symmetric = TRUE)`

Arguments

- `a`: adjacency matrix (phi)
- `b`: adjacency matrix (phi)
- `diag`: if 1 includes diagonal in distance, if 0 not
- `symmetric`: comparing a to b is asymmetrical, if TRUE includes comparison b to a

Value

normalized hamming accuracy for a and b

Author(s)

Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
similarity <- hamSim(sim$Nem[[1]], sim$Nem[[2]])
```
Description

This function simultaneously learns a mixture of causal networks and clusters of a cell population from single cell perturbation data (e.g. log odds of fold change) with a multi-trait readout. E.g. Pooled CRISPR scRNA-Seq data (Perturb-Seq. Dixit et al., 2016, Crop-Seq. Datlinger et al., 2017).

Usage

```r
mnem(
  D,
  inference = "em",
  search = "greedy",
  phi = NULL,
  theta = NULL,
  mw = NULL,
  method = "llr",
  marginal = FALSE,
  parallel = NULL,
  reduce = FALSE,
  runs = 1,
  starts = 3,
  type = "networks",
  complete = FALSE,
  p = NULL,
  k = NULL,
  kmax = 10,
  verbose = FALSE,
  max_iter = 100,
  parallel2 = NULL,
  converged = -Inf,
  redSpace = NULL,
  affinity = 0,
  evolution = FALSE,
  lambda = 1,
  subtopoX = NULL,
  ratio = TRUE,
  logtype = 2,
  domean = TRUE,
  modulesize = 5,
  compress = FALSE,
  increase = TRUE,
  fpfn = c(0.1, 0.1),
  Rho = NULL,
)```
mnem

ksel = c("kmeans", "silhouette", "cor"),
nullcomp = FALSE,
tree = FALSE,
burnin = 10,
hastings = TRUE,
nodeswitch = TRUE,
postgaps = 10,
penalized = FALSE,
accept_range = 1,
...
)

Arguments

D data with cells indexing the columns and features (E-genes) indexing the rows
inference inference method "em" for expectation maximization or "mcmc" for markov chain monte carlo sampling
search search method for single network inference "greedy", "exhaustive" or "modules" (also possible: "small", which is greedy with only one edge change per M-step to make for a smooth convergence)
phi a list of n lists of k networks for n starts of the EM and k components
theta a list of n lists of k attachment vector for the E-genes for n starts of the EM and k components
mw mixture weights; if NULL estimated or uniform
method "llr" for log ratios or foldchanges as input (see ratio)
marginal logical to compute the marginal likelihood (TRUE)
parallel number of threads for parallelization of the number of em runs
reduce logical - reduce search space for exhaustive search to unique networks
runs number of runs for greedy search
starts number of starts for the em or mcmc
type initialize with responsibilities either by "random", "cluster" (each S-gene is clustered and the different S-gene clustered differently combined for several starts), "cluster2" (clustNEM is used to infer reasonable phis, which are then used as a start for one EM run), "cluster3" (global clustering as a start), or "networks" (initialize with random phis), inference='mcmc' only supports 'networks' and 'empty' for unconnected networks phi
complete if TRUE, optimizes the expected complete log likelihood of the model, otherwise the log likelihood of the observed data
p initial probabilities as a k (components) times l (cells) matrix
k number of components
kmax maximum number of components when k=NULL is inferred
verbose verbose output
max_iter maximum iterations (moves for inference='mcmc'. adjust parameter burnin)
parallel2: If `parallel=NULL`, number of threads for single component optimization.

converged: Absolute distance for convergence between new and old log likelihood; if set to -Inf, the EM stops if neither the phis nor thetas were changed in the most recent iteration.

redSpace: Space for "exhaustive" search.

affinity: 0 is default for soft clustering, 1 is for hard clustering.

evolution: Logical. If TRUE components are penalized for being different from each other.

lambda: Smoothness value for the prior put on the components, if evolution set to TRUE.

subtopoX: Hard prior on theta as a vector with entry i equal to j, if E-gene i is attached to S-gene j.

ratio: Logical, if true data is log ratios, if false foldchanges.

logtype: Logarithm type of the data (e.g. 2 for log2 data or exp(1) for natural).

domean: Average the data, when calculating a single NEM (speed improvement).

modulesize: Max number of S-genes per module in module search.

compress: Compress networks after search (warning: penalized likelihood not interpretable).

increase: If set to FALSE, the algorithm will not stop if the likelihood decreases.

fpfn: Numeric vector of length two with false positive and false negative rates for discrete data.

Rho: Perturbation matrix with dimensions nxl with n S-genes and l samples; either as probabilities with the sum of probabilities for a sample less or equal to 1 or discrete with 1s and 0s.

ksel: Character vector of methods for the inference of k; can combine as the first two values "hc" (hierarchical clustering) or "kmeans" with "silhouette", "BIC" or "AIC"; the third value is either "cor" for correlation distance or any method accepted by the function 'dist'.

nullcomp: If TRUE, adds a null component (k+1).

tree: If TRUE, restrict inference on trees (MCMC not included).

burnin: Number of iterations to be discarded prior to analyzing the posterior distribution of the mcmc.

hastings: If set to TRUE, the Hastings ratio is calculated.

nodeswitch: If set to TRUE, node switching is allowed as a move, additional to the edge moves.

postgaps: Can be set to numeric. Determines after how many iterations the next Phi mixture is added to the Phi edge Frequency tracker in the mcmc.

penalized: If set to TRUE, the penalized likelihood will be used for the mcmc. Per default this is FALSE, since no component learning is involved and sparcity is hence not enforced.

accept_range: The random probability the acceptance probability is compared to (default: 1).

... Arguments to function nem.
mnemh

Value

object of class mnem

comp  list of the component with each component being a list of the causal network phi and the E-gene attachment theta
data  input data matrix
limits  list of results for all independent searches
ll  log likelihood of the best model
lls  log likelihood ascent of the best model search
mw  vector with mixture weights
probs  kxl matrix containing the cell log likelihoods of the model

Author(s)

Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
```

---

Description

Hierarchical mixture.

This function does a hierarchical mixture. That means it uses the approximate BIC to check, if there are more than one component. It recursively splits the data if there is evidence for k > 1 components.

Usage

```
mnemh(data, k = 2, logtype = 2, getprobspars = list(), ...)
```

Arguments

data  data matrix either binary or log odds
k  number of maximal components for each hierarchy leaf
logtype  log type of the data
getprobspars  list of parameters for the getProbs function
...  additional parameters for the mnem function

Value

object of class mnem
Author(s)
Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnemh(data, starts = 1, k = 1)
```

mnemk

Learn the number of components K and optimize the mixture.

Description

High level function for learning the number of components k, if unknown.

Usage

```r
mnemk(
 D,
 ks = seq_len(5),
 man = FALSE,
 degree = 4,
 logtype = 2,
 pen = 2,
 useF = FALSE,
 Fnorm = FALSE,
 ...
)
```

Arguments

- **D**: data with cells indexing the columns and features (E-genes) indexing the rows
- **ks**: vector of number of components k to test
- **man**: logical. manual data penalty, e.g. man=TRUE and pen=2 for an approximation of the Akaike Information Criterion
- **degree**: different degree of penalty for complexity: positive entries of transitively reduced phis or phi^r (degree=0), phi^r and mixture components minus one k-1 (1), phi^r, k-1 and positive entries of thetas (2), positive entries of transitively closed phis or phi^t, k-1 (3), phi^t, theta, k-1 (4, default), all entries of phis, thetas and k-1 (5)
- **logtype**: logarithm type of the data (e.g. 2 for log2 data or exp(1) for natural)
- **pen**: penalty weight for the data (e.g. pen=2 for approximate Akaike Information Criterion)
useF

Fnorm

...  

**Value**

list containing the result of the best k as an mnem object and the raw and penalized log likelihoods

**Author(s)**

Martin Pirkl

**Examples**

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnemk(data, ks = seq_len(2), starts = 1)
```

**Description**

Plots a boxplots plus x-axis randomised scatter and mirrored densities to visualise a distribution.

**Usage**

```r
moreboxplot(
x,
 box = TRUE,
 dens = TRUE,
 scatter = "no",
 polygon = TRUE,
 sd = 0.1,
 dcol = NULL,
 scol = NULL,
 dlty = 1,
 dlwd = 1,
 spch = 1,
 gcol = rgb(0, 0, 0, 0.5),
 glty = 2,
 glen = 10,
 gmin = NA,
 gmax = NA,
 ...
)
```
Arguments

- **x**: list, matrix or data.frame
- **box**: if TRUE, draws boxes
- **dens**: if TRUE, draws densities
- **scatter**: if set to "random", draws x-axis randomised scatter points
- **polygon**: if TRUE, fills the densities
- **sd**: standard deviation of the scatter
- **dcol**: color of the densities
- **scol**: color of the scatter points
- **dlty**: line type of the densities
- **dlwd**: line width of the densities
- **spch**: type of scatter points
- **gcol**: color of the grid
- **glty**: line type of the grid
- **glen**: length of the grid
- **gmin**: minimal point of the grid
- **gmax**: maximal point of the grid
- **...**: optional parameters for boxplot or plot

Value

transitively closed matrix or graphNEL

Author(s)

Martin Pirkl

Examples

```r
D <- matrix(rnorm(100*3), 100, 3)
moreboxplot(D)
```

---

nem

Implementation of the original NEM

Description

Infers a signalling pathway from perturbation experiments.
Usage

nem(
D,
search = "greedy",
start = NULL,
method = "llr",
marginal = FALSE,
parallel = NULL,
reduce = FALSE,
weights = NULL,
runs = 1,
verbose = FALSE,
redSpace = NULL,
trans.close = TRUE,
subtopo = NULL,
prior = NULL,
ratio = TRUE,
domean = TRUE,
modulesize = 5,
fpfn = c(0.1, 0.1),
Rho = NULL,
logtype = 2,
modified = FALSE,
tree = FALSE,
learnRates = FALSE,
stepSize = 0.01,
...
)

Arguments

D data matrix with observed genes as rows and knock-down experiments as columns
search either "greedy", "modules" or "exhaustive" (not recommended for more than five S-genes)
start either NULL ("null") or a specific network to start the greedy
method "llr" for log odds or p-values densities or "disc" for binary data
marginal logical to compute the marginal likelihood (TRUE)
parallel NULL for no parallel optimization or an integer for the number of threads
reduce reduce search space (TRUE) for exhaustive search
weights a numeric vector of weights for the columns of D
runs the number of runs for the greedy search
verbose for verbose output (TRUE)
redSpace reduced search space for exhaustive search; see result of exhaustive search with reduce = TRUE
trans.close if TRUE uses the transitive closure of adj
subtopo  optional matrix with the subtopology theta as adjacency matrix
prior    a prior network matrix for adj
ratio    if FALSE uses alternative distance for the model score
domain  if TRUE summarizes duplicate columns
modulesize  the max number of S-genes included in one module for search = "modules"
fpfn    numeric vector of length two with false positive and false negative rates
Rho    optional perturbation matrix
logtype  log base of the log odds
modified  if TRUE, assumes a preprocessed data matrix
tree    if TRUE forces tree; does not allow converging edges
learnRates  if TRUE learns rates for false positives/negatives
stepSize  numerical step size for learning rates
...    optional parameters for future search methods

Value
transitively closed matrix or graphNEL

Author(s)
Martin Pirkl

Examples
D <- matrix(rnorm(100*3), 100, 3)
colnames(D) <- 1:3
rownames(D) <- 1:100
adj <- diag(3)
colnames(adj) <- rownames(adj) <- 1:3
scoreAdj(D, adj)

plot.bootmnem

Plot bootstrap mnem result.

Description
Plot bootstrap mnem result.

Usage

## S3 method for class 'bootmnem'
plot(x, reduce = TRUE, ...)
plot.mnem

Arguments

  x          bootmnem object
reduce       if TRUE transitivity reduces the graphs
...          additional parameters for the plotting function plotDNF

Value

  visualization of bootstrap mnem result with Rgraphviz

Author(s)

  Martin Pirkl

Examples

  sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
boot <- bootstrap(result, size = 2)
plot(boot)

Description

  Plot mnem result.

Usage

  ## S3 method for class 'mnem'
  plot(
    x,
    oma = c(3, 1, 1, 3),
    main = "M&NEM",
    anno = TRUE,
    cexAnno = 1,
    scale = NULL,
    global = TRUE,
    egenes = TRUE,
    sep = FALSE,
    tsne = FALSE,
    affinity = 0,
    logtype = 2,
    cells = TRUE,
    pch = ".",
  )
legend = FALSE,
showdata = FALSE,
bestCell = TRUE,
showprobs = FALSE,
shownull = TRUE,
ratio = TRUE,
method = "llr",
marginal = FALSE,
showweights = TRUE,

Arguments

x mnem object
oma outer margin
main main text
anno annotate cells by their perturbed gene
cexAnno text size of the cell annotations
scale scale cells to show relative and not absolute distances
global if TRUE clusters all cells, if FALSE clusters cells within a component
egenes show egene attachments, i.e. number of E-genes assigned to each S-gene
sep separate clusters and not put them on top of each other for better visualization
tsne if TRUE use tsne instead of pca
affinity use hard clustering if TRUE
logtype logarithm type of the data (e.g. 2 for log2 data or exp(1) for natural)
cells show cell attachments, i.e. how many cells are assigned to each S-gene
pch cell symbol
legend show legend
showdata show data if TRUE
bestCell show probability of best fitting cell for each S-gene
showprobs if TRUE, shows responsibilities for all cells and components
shownull if TRUE, shows the null node
ratio use log ratios (TRUE) or foldchanges (FALSE)
method "llr" for ratios
marginal logical to compute the marginal likelihood (TRUE)
showweights if TRUE, shows mixture weights for all components
...
additional parameters

Value

visualization of mnem result with Rgraphviz
Author(s)

Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4, 0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
plot(result)
```

Description

Plot mnem_mcmc result.

Usage

```r
S3 method for class 'mnem_mcmc'
plot(x, starts = NULL, burnin = 0, ...)
```

Arguments

- `x`: mnem_mcmc object
- `starts`: restarts of mcmc as used in mnem function
- `burnin`: number of iteration to start from
- `...`: parameters for function ggplot2

Value

Visualization of mcmc result with Rgraphviz

Author(s)

Viktoria Brunner

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4, 0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
plot(result)
```
**plotConvergence**

**Description**

Plot convergence of EM

**Usage**

```r
plotConvergence(x, ...)
```

**Arguments**

- `x`: object of class `em_convergence`
- `...`: further arguments passed to `plot`

**Value**

Plot convergence of EM.
plotConvergence.mnem

Arguments

x object with convergence statistics
... additional parameters for the specific object type

Value

plot of EM convergence

Author(s)

Martin Pirkl

Examples

sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
par(mfrow=c(2,2))
plotConvergence(result)

Description

This function plots the convergence of the different EM iterations (four figures, e.g. par(mfrow=(2,2))).

Usage

## S3 method for class 'mnem'
plotConvergence(x, col = NULL, type = "b", convergence = 0.1, ...)

Arguments

x mnem object
col vector of colors for the iterations
type see ?plot.default
convergence difference of when two log likelihoods are considered equal; see also convergence for the function mnem()
... additional parameters for the plots/lines functions

Value

plot of EM convergence
plotDnf

Author(s)

Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- (sim$data - 0.5)/0.5
data <- data + rnorm(length(data), 0, 1)
result <- mnem(data, k = 2, starts = 1)
par(mfrow=c(2,2))
plotConvergence(result)
```

Description

This function visualizes a graph encoded as a disjunctive normal form. See the graphviz documentation for possible input arguments, like edgehead/tail: https://graphviz.org/docs/attr-types/arrowType/

Usage

```r
plotDnf(
dnf = NULL,
freq = NULL,
stimuli = c(),
signals = c(),
inhibitors = c(),
connected = TRUE,
CNOlist = NULL,
cex = NULL,
fontsize = NULL,
labelsize = NULL,
type = 2,
lwd = 1,
edgelwd = 1,
legend = 0,
x = 0,
y = 0,
xjust = 0,
yjust = 0,
width = 1,
height = 1,
layout = "dot",
main = "",
sub = "",
cex.main = 1.5,
)```
cex.sub = 1,
col.sub = "grey",
fontcolor = NULL,
nodestates = NULL,
simulate = NULL,
edgecol = NULL,
lables = NULL,
labelcol = "blue",
nodelabel = NULL,
nodelcol = NULL,
bordercol = NULL,
nodeshape = NULL,
verbose = FALSE,
edgestyle = NULL,
nodeheight = NULL,
nodewidth = NULL,
edgewidth = NULL,
lty = NULL,
hierarchy = NULL,
showall = FALSE,
edgehead = NULL,
edgelabel = NULL,
edgetail = NULL,
bool = TRUE,
draw = TRUE,
...}

Arguments

dnf Hyper-graph in disjunctive normal form, e.g. c("A=B", "A=C+D", "E=!B") with the child on the left and the parents on the right of the equation with "A=C+D" for A = C AND D. Alternatively, dnf can be an adjacency matrix, which is converted on the fly to a disjunctive normal form.

dfreq Frequency of hyper-edges which are placed on the edges.

stimuli Highlights vertices which can be stimulated.
signals Highlights vertices which regulate E-genes.
inhibitors Highlights vertices which can be inhibited.
connected If TRUE, only includes vertices which are connected to other vertices.
CNOlist CNOlist object. Optional instead of stimuli, inhibitors or signals. See package CellNOptR.
cex Global font size.
fontsize Vertex label size.
labelsizes Edge label size.
type Different plot types. 2 for Rgraphviz and 1 for graph.
lwd Line width of nodeborder.
edgelwd Global edgeline width.

legend 0 shows no legend. 1 shows legend as a graph. 2 shows legend in a standard box.

x x coordinate of box legend.

y y coordinate of box legend.

xjust Justification of legend box left, right or center (-1,1,0).

yjust Justification of legend box top, bottom or middle (-1,1,0).

width Vertex width.

height Vertex height.

layout Graph layout. See graphvizCapabilities()$layoutTypes.

main Main title.

sub Subtitle.

cex.main Main title font size.

cex.sub Subtitle font size.

col.sub Font color of subtitle.

fontcolor Global font color.

nodestates Binary state of each vertice.

simulate Simulate stimulation and inhibition of a list of vertices. E.g. simulate = list(stimuli = c("A", "B"), inhibitors = c("C", "D")).

egecol Vector with colors for every edge of the graph (not hyper-graph). E.g. an AND gate consists of three distinct edges.

labels Vector with labels for the edges.

labelcol Vector with label colors for the edges.

nodelabel List of vertices with labels as input. E.g. labels = list(A="test", B="label for B").

nodecol List of vertices with colors as input.

bordercol List of vertices with colors as input.

nodeshape List of vertices with shapes (diamond, box, square,...).

verbose Verbose output.

edgestyle set the edge style like dashed, can be numerical

nodeheight List of vertices with height as input.

nodewidth List of vertices with width as input.

edgewidth Vector with edge widths for individual edges.

lty Vector with edge styles (line, dotted,...).

hierarchy List with the hierarchy of the vertices. E.g. list(top = c("A", "B"), bottom = c("C", "D")).

showall See "connected" above.

edgehead Vector with edge heads.
scoreAdj

edgelabel Vector with edge labels.
edgetail Vector with edge tails.
bool If TRUE, only shows normal graph and no AND gates.
draw Do not plot the graph and only output the graphNEL object.
...
additional arguments

Value

Rgraphviz object

Author(s)

Martin Pirkl

Examples

g <- c("!A&B+C=G", "C=G", "!D=G")
plotDnf(g)

Description

Computes the fit (score of a network) of the data given a network matrix

Usage

scoreAdj(
 D,
 adj,
 method = "llr",
 marginal = FALSE,
 logtype = 2,
 weights = NULL,
 trans.close = TRUE,
 subtopo = NULL,
 prior = NULL,
 ratio = TRUE,
 fpfn = c(0.1, 0.1),
 Rho = NULL,
 dotopo = FALSE,
 P = NULL,
 oldadj = NULL,
 modified = TRUE
)
Arguments

D data matrix; use modified = FALSE
adj adjacency matrix of the network phi
method either llr if D consists of log odds or disc, if D is binary
marginal logical to compute the marginal likelihood (TRUE)
logtype log base of the log odds
weights a numeric vector of weights for the columns of D
trans.close if TRUE uses the transitive closure of adj
subtopo optional matrix with the subtopology theta as adjacency matrix
prior a prior network matrix for adj
ratio if FALSE uses alternative distance for the model score
fpfn numeric vector of length two with false positive and false negative rates
Rho optional perturbation matrix
dotopo if TRUE computes and returns the subtopology theta (optional)
P previous score matrix (only used internally)
oldadj previous adjacency matrix (only used internally)
modified if TRUE, assumes a preprocessed data matrix

Value

transitively closed matrix or graphNEL

Author(s)

Martin Pirkl

Examples

D <- matrix(rnorm(100*3), 100, 3)
colnames(D) <- 1:3
rownames(D) <- 1:100
adj <- diag(3)
colnames(adj) <- rownames(adj) <- 1:3
scoreAdj(D, adj)

Description

This function simulates single cell data from a random mixture of networks.

Usage

```r
simData(
  Sgenes = 5,
  Egenes = 1,
  Nems = 2,
  reps = NULL,
  mw = NULL,
  evolution = FALSE,
  nCells = 1000,
  uninorm = 0,
  unitheta = FALSE,
  edgeprob = c(0, 1),
  multi = FALSE,
  subsample = 1,
  scalefree = FALSE,
  badCells = 0,
  exactProb = TRUE,
  tree = FALSE,
  ...
)
```

Arguments

- **Sgenes**: number of Sgenes
- **Egenes**: number of Egenes
- **Nems**: number of components
- **reps**: number of replicates, if set (not realistic for cells)
- **mw**: mixture weights (has to be vector of length Nems)
- **evolution**: evolving and not purely random network, if set to TRUE
- **nCells**: number of cells
- **uninorm**: number of uninformative Egenes
- **unitheta**: uniform theta, if TRUE
- **edgeprob**: edge probability, value between 0 and 1 for sparse or dense networks or a range `c(l,u)` with lower and upper bound
- **multi**: a vector with the percentages of cell with multiple perturbations, e.g. `c(0.2,0.1,0)` for 20 no quadruple knock-downs
transitive.closure

subsamp

range to subsample data. 1 means the full simulated data is used

scalefree

if TRUE, graph is scale free

badCells

number of cells, which are just noise and not connected to the ground truth network

exactProb

logical; if TRUE generates random network with exact fraction of edges provided by edgeprob

tree

if TRUE, restricts dag to a tree

... additional parameters for the scale free network sampler (see 'nem' package)

Value

simulation object with meta information and data

Nem list of adjacency matrixes generating the data

theta E-gene attachments

data data matrix

index index for which Nem generated which cell (data column)

mw vector of input mixture weights

Author(s)

Martin Pirkl

Examples

```r
sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
```

Description

Computes the transitive closure of a dag or only of a deletion/addition of an edge

Usage

```r
transitive.closure(g, u = NULL, v = NULL)
```

Arguments

g graph as matrix or graphNEL object

u index of the parent of an edge (optional)

v index of the child of an edge (optional)
Value
transitively closed matrix or graphNEL

Author(s)
Martin Pirkl

Examples
```r
g <- matrix(c(0,0,0,1,0,0,0,1,0), 3)
transitive.closure(g)
```

transitive.reduction Transitive reduction

Description
Computes the transitive reduction of an adjacency matrix or graphNEL object. Originally imported from the package 'nem'.

Usage
```r
transitive.reduction(g)
```

Arguments

- `g`: adjacency matrix or graphNEL object

Value
transitively reduced adjacency matrix

Author(s)
Holger Froehlich

References

Examples
```r
g <- matrix(c(0,0,0,1,0,0,0,1,0), 3)
rownames(g) <- colnames(g) <- seq_len(3)
g.tr <- transitive.reduction(g)
```
Index

app, 3
bootstrap, 3
clustNEM, 4
createApp, 5
fitacc, 7
fuzzyindex, 8
getAffinity, 9
getIC, 10
hamSim, 11
mnem, 12
mnemh, 15
mnemk, 16
moreboxplot, 17
nem, 18
plot.bootmnem, 20
plot.mnem, 21
plot.mnem_mcmc, 23
plot.mnem_sim, 24
plotConvergence, 24
plotConvergence.mnem, 25
plotDnf, 26
scoreAdj, 29
simData, 31
transitive_closure, 32
transitive.reduction, 33