Package ‘microbiome’

March 28, 2024

Type Package
Title Microbiome Analytics
Description Utilities for microbiome analysis.
Encoding UTF-8
Version 1.24.0
Date 2022-04-22
biocViews Metagenomics,Microbiome,Sequencing,SystemsBiology
License BSD_2_clause + file LICENSE
Depends R (>= 3.6.0), phyloseq, ggplot2
Imports Biostrings, compositions, dplyr, reshape2, Rtsne, scales,
stats, tibble, tidyr, utils, vegan
Suggests BiocGenerics, BiocStyle, Cairo, knitr, rmarkdown, testthat
URL http://microbiome.github.io/microbiome
MailingList microbiome <microbiome-devel@googlegroups.com>
BugReports https://github.com/microbiome/microbiome/issues
VignetteBuilder knitr
RoxygenNote 7.2.1
git_url https://git.bioconductor.org/packages/microbiome
git_branch RELEASE_3_18
git_last_commit 4e08c43
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-27
Author Leo Lahti [aut, cre] (<https://orcid.org/0000-0001-5537-637X>),
Sudarshan Shetty [aut] (<https://orcid.org/0000-0001-7280-9915>)
Maintainer Leo Lahti <leo.lahti@iki.fi>
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>microbiome-package</td>
<td>4</td>
</tr>
<tr>
<td>abundances</td>
<td>4</td>
</tr>
<tr>
<td>add_bestsit</td>
<td>5</td>
</tr>
<tr>
<td>add_refseq</td>
<td>6</td>
</tr>
<tr>
<td>aggregate_rare</td>
<td>7</td>
</tr>
<tr>
<td>aggregate_taxa</td>
<td>8</td>
</tr>
<tr>
<td>alpha</td>
<td>9</td>
</tr>
<tr>
<td>associate</td>
<td>10</td>
</tr>
<tr>
<td>atlas1006</td>
<td>11</td>
</tr>
<tr>
<td>baseline</td>
<td>12</td>
</tr>
<tr>
<td>bimodality</td>
<td>13</td>
</tr>
<tr>
<td>bimodality_sarle</td>
<td>15</td>
</tr>
<tr>
<td>boxplot_abundance</td>
<td>16</td>
</tr>
<tr>
<td>boxplot_alpha</td>
<td>17</td>
</tr>
<tr>
<td>chunk_reorder</td>
<td>18</td>
</tr>
<tr>
<td>cmat2table</td>
<td>19</td>
</tr>
<tr>
<td>collapse_replicates</td>
<td>20</td>
</tr>
<tr>
<td>core</td>
<td>21</td>
</tr>
<tr>
<td>core_abundance</td>
<td>22</td>
</tr>
<tr>
<td>core_heatmap</td>
<td>23</td>
</tr>
<tr>
<td>core_matrix</td>
<td>24</td>
</tr>
<tr>
<td>core_members</td>
<td>25</td>
</tr>
<tr>
<td>coverage</td>
<td>26</td>
</tr>
<tr>
<td>default_colors</td>
<td>27</td>
</tr>
<tr>
<td>densityplot</td>
<td>27</td>
</tr>
<tr>
<td>dietswap</td>
<td>29</td>
</tr>
<tr>
<td>divergence</td>
<td>30</td>
</tr>
<tr>
<td>diversity</td>
<td>31</td>
</tr>
<tr>
<td>dominance</td>
<td>32</td>
</tr>
<tr>
<td>dominant</td>
<td>34</td>
</tr>
<tr>
<td>estimate_stability</td>
<td>35</td>
</tr>
<tr>
<td>evenness</td>
<td>36</td>
</tr>
<tr>
<td>find_optima</td>
<td>37</td>
</tr>
<tr>
<td>gktau</td>
<td>38</td>
</tr>
<tr>
<td>group_age</td>
<td>39</td>
</tr>
<tr>
<td>group_bmi</td>
<td>41</td>
</tr>
<tr>
<td>heat</td>
<td>42</td>
</tr>
<tr>
<td>hitchip.taxonomy</td>
<td>44</td>
</tr>
<tr>
<td>hotplot</td>
<td>45</td>
</tr>
<tr>
<td>inequality</td>
<td>46</td>
</tr>
<tr>
<td>intermediate_stability</td>
<td>47</td>
</tr>
<tr>
<td>is_compositional</td>
<td>48</td>
</tr>
<tr>
<td>log_modulo_skewness</td>
<td>49</td>
</tr>
<tr>
<td>low_abundance</td>
<td>50</td>
</tr>
<tr>
<td>map_levels</td>
<td>51</td>
</tr>
<tr>
<td>merge_taxa2</td>
<td>52</td>
</tr>
</tbody>
</table>
R topics documented:

- meta ... 53
- multimodality .. 53
- neat ... 55
- neat_sort ... 56
- overlap ... 57
- peerj32 ... 58
- plot_atlas ... 59
- plot_composition ... 60
- plot_core .. 61
- plot_density ... 62
- plot_frequencies .. 63
- plot_landscape ... 64
- plot_regression ... 66
- plot_taxa_prevalence .. 68
- plot_tipping ... 69
- potential_analysis ... 70
- potential_univariate .. 71
- prevalence ... 73
- psmelt2 ... 74
- quiet ... 75
- radial_theta .. 75
- rare ... 76
- rare_abundance .. 77
- rare_members ... 78
- rarity ... 79
- readcount ... 80
- read_biom2phyloseq .. 81
- read_csv2phyloseq .. 82
- read_mothur2phyloseq 83
- read_phyloseq .. 84
- remove_samples ... 85
- remove_taxa ... 86
- richness .. 87
- spreadplot ... 88
- summarize_phyloseq .. 89
- taxa ... 89
- TibbleUtilities ... 90
- timesplit .. 91
- time_normalize .. 92
- time_sort .. 92
- top ... 93
- top_taxa .. 94
- transform .. 95
- ztransform .. 96

Index ... 98
Description

Brief summary of the microbiome package

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>microbiome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>See sessionInfo() or DESCRIPTION file</td>
</tr>
<tr>
<td>Date:</td>
<td>2014-2017</td>
</tr>
<tr>
<td>License:</td>
<td>FreeBSD</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

R package for microbiome studies

Author(s)

Leo Lahti et al. <microbiome-admin@googlegroups.com>

References

See citation('microbiome') http://microbiome.github.io

Examples

citation('microbiome')

abundances Abundance Matrix from Phyloseq

Description

Retrieves the taxon abundance table from phyloseq-class object and ensures it is systematically returned as taxa x samples matrix.

Usage

abundances(x, transform = "identity")
add_besthit

Arguments

- `x` *phyloseq-class* object
- `transform` Transformation to apply. The options include: 'compositional' (ie relative abundance), 'Z', 'log10', 'log10p', 'hellinger', 'identity', 'clr', 'alr', or any method from the vegan::decostand function.

Value

Abundance matrix (OTU x samples).

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

```r
data(dietswap)
a <- abundances(dietswap)
# b <- abundances(dietswap, transform='compositional')
```

Description

Add the lowest classification for an OTU or ASV.

Usage

```r
add_besthit(x, sep = ":")
```

Arguments

- `x` *phyloseq-class* object
- `sep` separator e.g. ASV161:Roseburia

Details

Most commonly it is observed that taxa names are either OTU ids or ASV ids. In such cases it is useful to know the taxonomic identity. For this purpose, best_hist identifies the best available taxonomic identity and adds it to the OTU ids or ASV ids. If genus and species columns are present in input the function internally combines the names.
Value

phyloseq-class object phyloseq-class

Author(s)

Contact: Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples

```r
## Not run:
# Example data
library(microbiome)
data(dietswap)
p0.f <- add_besthit(atlas1006, sep=":")
## End(Not run)
```

add_refseq

Add refseq Slot for dada2 based phyloseq Object

Description

Utility to add refseq slot for dada2 based phyloseq Object. Here, the taxa_names which are unique sequences, are stored in refseq slot of phyloseq. Sequence ids are converted to ids using tag option.

Usage

```r
add_refseq(x, tag = "ASV")
```

Arguments

- **x**
 phyloseq-class object with sequences as rownames.
- **tag**
 Provide name for Ids, Default="ASV".

Value

phyloseq-class object

Author(s)

Contact: Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples

```r
# ps <- add_refseq(p0,tag="ASV")
# ps
```
aggregate_rare

Aggregate Rare Groups

Description

Combining rare taxa.

Usage

aggregate_rare(x, level, detection, prevalence, include.lowest = FALSE, ...)

Arguments

x phyloseq-class object
level Summarization level (from rank_names(pseq))
detection Detection threshold for absence/presence (strictly greater by default).
prevalence Prevalence threshold (in \([0, 1]\)). The required prevalence is strictly greater by default. To include the limit, set include.lowest to TRUE.
include.lowest Include the lower boundary of the detection and prevalence cutoffs. FALSE by default.
... Arguments to pass.

Value

phyloseq-class object

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

data(dietswap)
s <- aggregate_rare(dietswap, level = 'Phylum',
 detection = 0.1/100, prevalence = 5/100)
aggregate_taxa

Description
Summarize phyloseq data into a higher phylogenetic level.

Usage
aggregate_taxa(x, level, verbose = FALSE)

Arguments
- x: phyloseq-class object
- level: Summarization level (from rank_names(pseq))
- verbose: verbose

Details
This provides a convenient way to aggregate phyloseq OTUs (or other taxa) when the phylogenetic tree is missing. Calculates the sum of OTU abundances over all OTUs that map to the same higher-level group. Removes ambiguous levels from the taxonomy table. Returns a phyloseq object with the summarized abundances.

Value
Summarized phyloseq object

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
See citation('microbiome')

Examples
data(dietswap)
s <- aggregate_taxa(dietswap, 'Phylum')
Description

Global indicators of the ecosystem state, including richness, evenness, diversity, and other indicators.

Usage

`alpha(x, index = "all", zeroes = TRUE)`

Arguments

- `x`: A species abundance vector, or matrix (taxa/features x samples) with the absolute count data (no relative abundances), or `phyloseq-class` object.
- `index`: Default is ‘NULL’, meaning that all available indices will be included. For specific options, see details.
- `zeroes`: Include zero counts in the diversity estimation.

Details

This function returns various indices of the ecosystem state. The function is named `alpha` (global in some previous versions of this package) as these indices can be viewed as measures of alpha diversity. The function uses default choices for detection, prevalence and other parameters for simplicity and standardization. See the individual functions for more options. All indicators from the richness, diversity, evenness, dominance, and rarity functions are available. Some additional measures, such as Chao1 and ACE are available via `estimate_richness` function in the `phyloseq` package but not included here. The index names are given the prefix richness_, evenness_, diversity_, dominance_, or rarity_ in the output table to avoid confusion between similarly named but different indices (e.g. Simpson diversity and Simpson dominance). All parameters are set to their default. To experiment with different parameterizations, see the more specific index functions (richness, diversity, evenness, dominance, rarity).

Value

A data.frame of samples x alpha diversity indicators.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

See Also

dominance, rarity, phyloseq::estimate_richness
Examples

```r
data(dietswap)
d <- alpha(dietswap, index='shannon')
# d <- alpha(dietswap, index='all')
```

associate
Cross Correlation Wrapper

Description

Cross-correlate columns of the input matrices.

Usage

```r
associate(
  x,
  y = NULL,
  method = "spearman",
  p.adj.threshold = Inf,
  cth = NULL,
  order = FALSE,
  n.signif = 0,
  mode = "table",
  p.adj.method = "fdr",
  verbose = FALSE,
  filter.self.correlations = FALSE
)
```

Arguments

- `x`: matrix (samples x features if annotation matrix)
- `y`: matrix (samples x features if cross-correlated with annotations)
- `method`: association method (‘pearson’, or ‘spearman’ for continuous)
- `p.adj.threshold`: q-value threshold to include features
- `cth`: correlation threshold to include features
- `order`: order the results
- `n.signif`: minimum number of significant correlations for each element
- `mode`: Specify output format (‘table’ or ‘matrix’)
- `p.adj.method`: p-value multiple testing correction method. One of the methods in p.adjust function (‘BH’ and others; see help(p.adjust)). Default: ‘fdr’
- `verbose`: verbose
- `filter.self.correlations`: Filter out correlations between identical items.
Details

The p-values in the output table depend on the method. For the spearman and pearson correlation values, the p-values are provided by the default method in the cor.test function.

Value

List with cor, pval, pval.adjusted

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

data(peerj32)
d1 <- peerj32$microbes[1:20, 1:10]
d2 <- peerj32$lipids[1:20,1:10]
cc <- associate(d1, d2, method='pearson')

atlas1006

HITChip Atlas with 1006 Western Adults

Description

This data set contains genus-level microbiota profiling with HITChip for 1006 western adults with no reported health complications, reported in Lahti et al. (2014) https://doi.org/10.1038/ncomms5344.

Usage

data(atlas1006)

Format

The data set in phylseq-class format.

Details

The data is also available for download from the Data Dryad http://doi.org/10.5061/dryad.pk75d.

Value

Loads the data set in R.
baseline

Author(s)
Leo Lahti <microbiome-admin@googlegroups.com>

References
Lahti et al. Tipping elements of the human intestinal ecosystem. Nature Communications 5:4344, 2014. To cite the microbiome R package, see citation('microbiome')

Pick Baseline Timepoint Samples

Description
Identify and select the baseline timepoint samples in a `phyloseq` object.

Usage
```r
baseline(x, na.omit = TRUE)
```

Arguments
- `x`: `phyloseq` object. Assuming that the `sample_data(x)` has the fields `time`, `sample` and `subject`
- `na.omit`: Logical. Ignore samples with no time point information. If this is FALSE, the first sample for each subject is selected even when there is no time information.

Details
Arranges the samples by time and picks the first sample for each subject. Compared to simple subsetting at time point zero, this checks NAs and possibility for multiple samples at the baseline, and guarantees that a single sample per subject is selected.

Value
Phyloseq object with only baseline time point samples selected.

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
See citation('microbiome')

Examples
```r
data(peerj32)
a <- baseline(peerj32$phyloseq)
```
Description

Estimate bimodality scores.

Usage

```r
bimodality(
  x,
  method = "potential_analysis",
  peak.threshold = 1,
  bw.adjust = 1,
  bs.iter = 100,
  min.density = 1,
  verbose = TRUE
)
```

Arguments

- `x`: A vector, matrix, or a phyloseq object
- `method`: bimodality quantification method (`"potential_analysis"`, `"Sarle.finite.sample"`, or `"Sarle.asymptotic"`). If method='all', then a data.frame with all scores is returned.
- `peak.threshold`: Mode detection threshold
- `bw.adjust`: Bandwidth adjustment
- `bs.iter`: Bootstrap iterations
- `min.density`: minimum accepted density for a maximum; as a multiple of kernel height
- `verbose`: Verbose

Details

- `Sarle.finite.sample` Coefficient of bimodality for finite sample. See SAS 2012.
- `Sarle.asymptotic` Coefficient of bimodality, used and described in Shade et al. (2014) and Ellison AM (1987).
- `potential_analysis` Repeats potential analysis (Livina et al. 2010) multiple times with bootstrap sampling for each row of the input data (as in Lahti et al. 2014) and returns the bootstrap score.

The coefficient lies in (0, 1).

The ‘Sarle.asymptotic’ version is defined as

\[b = (\gamma^2 + 1)/k \]
This is coefficient of bimodality from Ellison AM Am. J. Bot. 1987, for microbiome analysis it has been used for instance in Shade et al. 2014. The formula for 'Sarle.finite.sample' (SAS 2012):

\[b = \frac{g^2 + 1}{k + (3(n - 1)^2)/((n - 2)(n - 3))} \]

where \(n \) is sample size and \(g \) is sample skewness and \(k \) is the \(k \)th standardized moment (also called the sample kurtosis, or excess kurtosis).

Value

A list with following elements:

- scoreFraction of bootstrap samples where multiple modes are observed
- nmodesThe most frequently observed number of modes in bootstrap sampling results.
- resultsFull results of potential_analysis for each row of the input matrix.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

- Livina et al. (2010). Potential analysis reveals changing number of climate states during the last 60 kyr. *Climate of the Past*, 6, 77-82.
- To cite the microbiome R package, see citation(‘microbiome’)

See Also

A classical test of multimodality is provided by dip.test in the DIP package.

Examples

```r
# In practice, use more bootstrap iterations
b <- bimodality(c(rnorm(100, mean=0), rnorm(100, mean=5)),
    method = "Sarle.finite.sample", bs.iter=5)
# The classical DIP test:
# quantifies unimodality. Values range between 0 to 1.
# dip.test(x, simulate.p.value=TRUE, B=200)$statistic
# Values less than 0.05 indicate significant deviation from unimodality.
# Therefore, to obtain an increasing multimodality score, use
# library(diptest)
# multimodality.dip <- apply(abundances(pseq), 1,
#     function (x) {1 - unname(dip.test(x)$p.value)})
```
Description

Sarle’s bimodality coefficient.

Usage

bimodality_sarle(x, bs.iter = 1, type = "Sarle.finite.sample")

Arguments

x
Data vector for which bimodality will be quantified

bs.iter
Bootstrap iterations

type
Score type (‘Sarle.finite.sample’ or ‘Sarle.asymptotic’)

Details

The coefficient lies in (0, 1).

The ‘Sarle.asymptotic’ version is defined as

\[b = \frac{g^2 + 1}{k} \]

. This is coefficient of bimodality from Ellison AM Am. J. Bot. 1987, for microbiome analysis it has been used for instance in Shade et al. 2014.

The formula for ‘Sarle.finite.sample’ (SAS 2012):

\[b = \frac{g^2 + 1}{k + \frac{3(n-1)^2}{(n-2)(n-3)} + 1} \]

where n is sample size and

In both formulas, \(g \) is sample skewness and \(k \) is the kth standardized moment (also called the sample kurtosis, or excess kurtosis).

Value

Bimodality score

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>
References

- To cite the microbiome R package, see citation("microbiome")

See Also

Check the dip.test from the DIP package for a classical test of multimodality.

Examples

```r
# b <- bimodality_sarle(rnorm(50), type='Sarle.finite.sample')
```

Description

Plot phyloseq abundances.

Usage

```r
boxplot_abundance(
  d,
  x,
  y,
  line = NULL,
  violin = FALSE,
  na.rm = FALSE,
  show.points = TRUE
)
```

Arguments

d: phyloseq-class object
x: Metadata variable to map to the horizontal axis.
y: OTU to map on the vertical axis
line: The variable to map on lines
violin: Use violin version of the boxplot
na.rm: Remove NAs
show.points: Include data points in the figure
boxplot_alpha

Details

The directionality of change in paired boxplot is indicated by the colors of the connecting lines.

Value

A ggplot plot object

Examples

data(peerj32)
p <- boxplot_abundance(peerj32$phyloseq, x='time', y='Akkermansia', line='subject')

boxplot_alpha Alpha Boxplot

Description

Plot alpha index.

Usage

boxplot_alpha(
 x,
 x_var = NULL,
 index = NULL,
 violin = FALSE,
 na.rm = FALSE,
 show.points = TRUE,
 zeroes = TRUE,
 element.alpha = 0.5,
 element.width = 0.2,
 fill.colors = NA,
 outlier.fill = "grey50"
)

Arguments

x phyloseq-class object

x_var Metadata variable to map to the horizontal axis.

index Alpha index to plot. See function alpha.

violin Use violin version of the boxplot

na.rm Remove NAs

show.points Include data points in the figure

zeroes Include zero counts in diversity estimation. Default is TRUE
element.alpha Alpha value for plot elements. Controls the transparency of plots elements.

element.width Width value for plot elements. Controls the transparency of plots elements.

fill.colors Specify a list of colors passed on to ggplot2 scale_fill_manual

outlier.fill If using boxplot and and points together how to deal with outliers. See ggplot2 outlier.fill argument in geom_elements.

Details
A simple wrapper to visualize alpha diversity index.

Value
A ggplot plot object

Examples

data("dietswap")
p <- boxplot_alpha(dietswap, x_var = "sex", index="observed", violin=FALSE,
 na.rm=FALSE, show.points=TRUE, zeroes=TRUE,
 element.alpha=0.5, element.width=0.2,
 fill.colors= c("steelblue", "firebrick"),
 outlier.fill="white")
p

chunk_reorder Chunk Reorder

Description
Chunk re-order a vector so that specified newstart is first. Different than relevel.

Usage
chunk_reorder(x, newstart = x[[1]])

Details
Borrowed from phyloseq package as needed here and not exported there. Rewritten.

Value
Reordered x
Examples

Typical use-case
chunk_reorder(1:10, 5)
Default is to not modify the vector
chunk_reorder(1:10)
Another example not starting at 1
chunk_reorder(10:25, 22)
Should silently ignore the second element of `newstart`
chunk_reorder(10:25, c(22, 11))
Should be able to handle `newstart` being the first argument already
without duplicating the first element at the end of `x`
chunk_reorder(10:25, 10)
all(chunk_reorder(10:25, 10) == 10:25)
This is also the default
all(chunk_reorder(10:25) == 10:25)
An example with characters
chunk_reorder(LETTERS, 'G')
chunk_reorder(LETTERS, 'B')
chunk_reorder(LETTERS, 'Z')
What about when `newstart` is not in `x`? Return x as-is, throw warning.
chunk_reorder(LETTERS, 'g')

cmat2table

Convert Correlation Matrix into a Table

Description

Arrange correlation matrices from associate into a table format.

Usage

cmat2table(res, verbose = FALSE)

Arguments

res Output from associate
verbose verbose

Value

Correlation table

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')
collapse_replicates

Examples

```r
data(peerj32)
d1 <- peerj32$microbes[1:20, 1:10]
d2 <- peerj32$lipids[1:20,1:10]
cc <- associate(d1, d2, mode='matrix', method='pearson')
cmat <- associate(d1, d2, mode='table', method='spearman')
```

collapse_replicates

Collapse Replicate Samples

Description

Collapse samples, mostly meant for technical replicates.

Usage

```r
collapse_replicates(
x, 
method = "sample", 
replicate_id = NULL, 
replicate_fields = NULL
)
```

Arguments

- `x`
 phyloseq-class object
- `method`
 Collapsing method. Only random sampling ("sample") implemented.
- `replicate_id`
 Replicate identifier. A character vector.
- `replicate_fields`
 Metadata fields used to determine replicates.

Value

Collapsed phyloseq object.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

To cite the microbiome R package, see citation('microbiome')

Examples

```r
data(atlas1006)
pseq <- collapse_replicates(atlas1006, 
method = "sample", 
replicate_fields = c("subject", "time"))
```
Description

Filter the phyloseq object to include only prevalent taxa.

Usage

core(x, detection, prevalence, include.lowest = FALSE, ...)

Arguments

x phyloseq-class object

detection Detection threshold for absence/presence (strictly greater by default).

prevalence Prevalence threshold (in [0, 1]). The required prevalence is strictly greater by default. To include the limit, set include.lowest to TRUE.

include.lowest Include the lower boundary of the detection and prevalence cutoffs. FALSE by default.

... Arguments to pass.

Value

Filtered phyloseq object including only prevalent taxa

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

Salonen A, Salojarvi J, Lahti L, de Vos WM. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16-20, 2012 To cite the microbiome R package, see citation('microbiome')

See Also

core_members, rare_members

Examples

data(dietswap)
Detection threshold 0 (strictly greater by default);
Prevalence threshold 50 percent (strictly greater by default)
pseq <- core(dietswap, 0, 50/100)
Detection threshold 0 (strictly greater by default);
Prevalence threshold exactly 100 percent; for this set
include.lowest=TRUE, otherwise the required prevalence is
strictly greater than 100
pseq <- core(dietswap, 0, 100/100, include.lowest = TRUE)

core_abundance Core Abundance

Description
Calculates the community core abundance index.

Usage
```r
core_abundance(
  x,
  detection = 0.1/100,
  prevalence = 50/100,
  include.lowest = FALSE
)
```

Arguments
- `x`
 phyloseq-class object
- `detection`
 Detection threshold for absence/presence (strictly greater by default).
- `prevalence`
 Prevalence threshold (in [0, 1]). The required prevalence is strictly greater by default. To include the limit, set include.lowest to TRUE.
- `include.lowest`
 Include the lower boundary of the detection and prevalence cutoffs. FALSE by default.

Details
The core abundance index gives the relative proportion of the core species (in [0,1]). The core taxa are defined as those that exceed the given population prevalence threshold at the given detection level.

Value
A vector of core abundance indices

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

See Also
rarity
Examples

data(dietswap)
d <- core_abundance(dietswap, detection=0.1/100, prevalence=50/100)

core_heatmap
Core Heatmap

Description
Core heatmap.

Usage
core_heatmap(x, dets, cols, min.prev, taxa.order)

Arguments
- **x**: OTU matrix
- **dets**: A vector or a scalar indicating the number of intervals in (0, log10(max(data))). The dets are calculated for relative abundancies.
- **cols**: colours for the heatmap
- **min.prev**: If minimum prevalence is set, then filter out those rows (taxa) and columns (dets) that never exceed this prevalence. This helps to zoom in on the actual core region of the heatmap.
- **taxa.order**: Ordering of the taxa.

Value
Used for its side effects

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the microbiome R package, see citation('microbiome')
core_matrix

Description

Creates the core matrix.

Usage

core_matrix(x, prevalences = seq(0.1, 1, , 1), detections = NULL)

Arguments

 x phyloseq object or a taxa x samples abundance matrix
 prevalences a vector of prevalence percentages in [0,1]
 detections a vector of intensities around the data range

Value

Estimated core microbiota

Author(s)

Contact: Jarkko Salojarvi <microbiome-admin@googlegroups.com>

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the microbiome R package, see citation('microbiome')

Examples

Not exported
#data(peerj32)
#core <- core_matrix(peerj32$phyloseq)
core_members

Core Taxa

Description

Determine members of the core microbiota with given abundance and prevalences

Usage

```r
core_members(x, detection = 1/100, prevalence = 50/100, include.lowest = FALSE)
```

Arguments

- `x` (phyloseq-class object)
- `detection` Detection threshold for absence/presence (strictly greater by default).
- `prevalence` Prevalence threshold (in \([0, 1]\)). The required prevalence is strictly greater by default. To include the limit, set `include.lowest` to TRUE.
- `include.lowest` Include the lower boundary of the detection and prevalence cutoffs. FALSE by default.

Details

For phyloseq object, lists taxa that are more prevalent with the given detection threshold. For matrix, lists columns that satisfy these criteria.

Value

Vector of core members

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the microbiome R package, see citation('microbiome')

Examples

```r
data(dietswap)
# Detection threshold 1 (strictly greater by default);
# Note that the data (dietswap) is here in absolute counts
# (and not compositional, relative abundances)
# Prevalence threshold 50 percent (strictly greater by default)
a <- core_members(dietswap, 1, 50/100)
```
coverage

Coverage Index

Description
Community coverage index.

Usage
coverage(x, threshold = 0.5)

Arguments
- **x**: A species abundance vector, or matrix (taxa/features x samples) with the absolute count data (no relative abundances), or phyloseq-class object
- **threshold**: Indicates the fraction of the ecosystem to be occupied by the N most abundant species (N is returned by this function). If the detection argument is a vector, then a data.frame is returned, one column for each detection threshold.

Details
The coverage index gives the number of groups needed to have a given proportion of the ecosystem occupied (by default 0.5 i.e. 50

Value
A vector of coverage indices

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

See Also
dominance, alpha

Examples
data(dietswap)
d <- coverage(dietswap, threshold=0.5)
default_colors

Default Colors

Description
Default colors for different variables.

Usage
default_colors(x, v = NULL)

Arguments
- **x** Name of the variable type ("Phylum")
- **v** Optional. Vector of elements to color.

Value
Named character vector of default colors

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation("microbiome")

Examples
col <- default_colors("Phylum")

densityplot **Density Plot**

Description
Density visualization for data points overlaid on cross-plot.
Usage

densityplot(
 x,
 main = NULL,
 x.ticks = 10,
 rounding = 0,
 add.points = TRUE,
 col = "black",
 adjust = 1,
 size = 1,
 legend = FALSE,
 shading = TRUE,
 shading.low = "white",
 shading.high = "black",
 point.opacity = 0.75
)

Arguments

x Data matrix to plot. The first two columns will be visualized as a cross-plot.
main title text
x.ticks Number of ticks on the X axis
rounding Rounding for X axis tick values
add.points Plot the data points as well
col Color of the data points. NAs are marked with darkgray.
adjust Kernel width adjustment
size point size
legend plot legend TRUE/FALSE
shading Shading
shading.low Color for shading low density regions
shading.high Color for shading high density regions
point.opacity Transparency-level for points

Value

ggplot2 object

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')
Examples

```r
# p <- densityplot(cbind(rnorm(100), rnorm(100)))
```

dietswap

Diet Swap Data

Description

The diet swap data set represents a study with African and African American groups undergoing a two-week diet swap. For details, see dx.doi.org/10.1038/ncomms7342.

Usage

```r
data(dietswap)
```

Format

The data set in *phyloseq-class* format.

Details

The data is also available for download from the Data Dryad repository http://datadryad.org/resource/doi:10.5061/dryad.1mm1n.

Value

Loads the data set in R.

Author(s)

Leo Lahti <microbiome-admin@googlegroups.com>

References

O’Keefe et al. Nature Communications 6:6342, 2015. dx.doi.org/10.1038/ncomms7342 To cite the microbiome R package, see citation(‘microbiome’).
divergence

Divergence within a Sample Group

Description

Quantify microbiota divergence (heterogeneity) within a given sample set with respect to a reference.

Usage

divergence(x, y, method = "bray")

Arguments

x
phyloseq object or a vector

y
Reference sample. A vector.

method
dissimilarity method: any method available via phyloseq::distance function. Note that some methods ("jsd" and 'unifrac' for instance) do not work with the group divergence.

Details

Microbiota divergence (heterogeneity / spread) within a given sample set can be quantified by the average sample dissimilarity or beta diversity with respect to a given reference sample.

This measure is sensitive to sample size. Subsampling or bootstrapping can be applied to equalize sample sizes between comparisons.

Value

Vector with dissimilarities; one for each sample, quantifying the dissimilarity of the sample from the reference sample.

Author(s)

Leo Lahti <microbiome-admin@googlegroups.com>

References

To cite this R package, see citation('microbiome')

See Also

the vegdist function from the vegan package provides many standard beta diversity measures
diversity

Examples

Assess beta diversity among the African samples
in a diet swap study (see \code{help(dietswap)}) for references
data(dietswap)
pseq <- subset_samples(dietswap, nationality == 'AFR')
reference <- apply(abundances(pseq), 1, median)
b <- divergence(pseq, reference, method = "bray")

<table>
<thead>
<tr>
<th>diversity</th>
<th>Diversity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Various community diversity indices.

Usage

diversity(x, index = "all", zeroes = TRUE)

Arguments

x : A species abundance vector, or matrix (taxa/features x samples) with the absolute count data (no relative abundances), or \code{phyloseq-class} object

index : Diversity index. See details for options.

zeroes : Include zero counts in the diversity estimation.

Details

By default, returns all diversity indices. The available diversity indices include the following:

- inverse_simpson Inverse Simpson diversity: $1/\lambda$ where $\lambda=\sum(p^2)$ and p are relative abundances.
- gini_simpson Gini-Simpson diversity $1 - \lambda$. This is also called Gibbs–Martin, or Blau index in sociology, psychology and management studies.
- shannon Shannon diversity ie entropy
- fisher Fisher alpha; as implemented in the \code{vegan} package
- coverage Number of species needed to cover 50% of the ecosystem. For other quantiles, apply the function coverage directly.

Value

A vector of diversity indices

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>
References

Bulla L. An index of diversity and its associated diversity measure. Oikos 70:167–171, 1994

See Also
dominance, richness, evenness, rarity, alpha

Examples

data(dietswap)
d <- alpha(dietswap, 'shannon')

dominance	Dominance Index

Description

Calculates the community dominance index.

Usage

dominance(x, index = "all", rank = 1, relative = TRUE, aggregate = TRUE)

Arguments

- x: A species abundance vector, or matrix (taxa/features x samples) with the absolute count data (no relative abundances), or phyloseq-class object
- index: If the index is given, it will override the other parameters. See the details below for description and references of the standard dominance indices. By default, this function returns the Berger-Parker index, i.e., relative dominance at rank 1.
- rank: Optional. The rank of the dominant taxa to consider.
- relative: Use relative abundances (default: TRUE)
- aggregate: Aggregate (TRUE; default) the top members or not. If aggregate=TRUE, then the sum of relative abundances is returned. Otherwise the relative abundance is returned for the single taxa with the indicated rank.
Details

The dominance index gives the abundance of the most abundant species. This has been used also in microbiomics context (Locey & Lennon (2016)). The following indices are provided:

- 'absolute' This is the most simple variant, giving the absolute abundance of the most abundant species (Magurran & McGill 2011). By default, this refers to the single most dominant species (rank=1) but it is possible to calculate the absolute dominance with rank n based on the abundances of top-n species by tuning the rank argument.

- 'relative' Relative abundance of the most abundant species. This is with rank=1 by default but can be calculated for other ranks.

- 'DBP' Berger–Parker index, a special case of relative dominance with rank 1; This also equals the inverse of true diversity of the infinite order.

- 'DMN' McNaughton’s dominance. This is the sum of the relative abundance of the two most abundant taxa, or a special case of relative dominance with rank 2

- 'simpson' Simpson’s index ($\sum(p^2)$) where p are relative abundances has an interpretation as a dominance measure. Also the version ($\sum(q * (q-1)) / S(S-1)$) based on absolute abundances q has been proposed by Simpson (1949) but not included here as it is not within [0,1] range, and it is highly correlated with the simpler Simpson dominance. Finally, it is also possible to calculated dominances up to an arbitrary rank by setting the rank argument

- 'core_abundance' Relative proportion of the core species that exceed detection level 0.2% in over 50% of the samples

- 'gini' Gini index is calculated with the function inequality.

By setting aggregate=FALSE, the abundance for the single n’th most dominant taxa (n=rank) is returned instead the sum of abundances up to that rank (the default).

Value

A vector of dominance indices

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See Also

core_abundance, rarity, alpha
Examples

```r
data(dietswap)
# vector
d <- dominance(abundances(dietswap)[,1], rank=1, relative=TRUE)
# matrix
# d <- dominance(abundances(dietswap), rank=1, relative=TRUE)
# Phyloseq object
# d <- dominance(dietswap, rank=1, relative=TRUE)
```

dominant

Dominant taxa

Description

Returns the dominant taxonomic group for each sample.

Usage

```r
dominant(x, level = NULL)
```

Arguments

- `x`: A *phyloseq-class* object
- `level`: Optional. Taxonomic level.

Value

A vector of dominance indices

Author(s)

Leo Lahti <microbiome-admin@googlegroups.com>

Examples

```r
data(dietswap)
# vector
d <- dominant(dietswap)
```
Description

Quantify intermediate stability with respect to a given reference point.

Usage

```r
estimate_stability(df, reference.point = NULL, method = "lm", spl.list)
```

Arguments

- `df`: Combined input data vector (samples x variables) and metadata data.frame (samples x features) with the 'data', 'subject' and 'time' field for each sample
- `reference.point`: Optional. Calculate stability of the data w.r.t. this point. By default the intermediate range is used (min + (max - min)/2)
- `method`: 'lm' (linear model) or 'correlation'; the linear model takes time into account as a covariate
- `spl`: split object to speed up

Details

Decomposes each column in x into differences between consecutive time points. For each variable and time point we calculate for the data values: (i) the distance from reference point; (ii) distance from the data value at the consecutive time point. The 'correlation' method calculates correlation between these two variables. Negative correlations indicate that values closer to reference point tend to have larger shifts in the consecutive time point. The 'lm' method takes the time lag between the consecutive time points into account as this may affect the comparison and is not taken into account by the straightforward correlation. Here the coefficients of the following linear model are used to assess stability: abs(change) ~ time + abs(start.reference.distance). Samples with missing data, and subjects with less than two time point are excluded.

Value

A list with following elements: stability: estimated stability data; processed data set used in calculations

Author(s)

Leo Lahti <leo.lahti@iki.fi>
Examples

```r
# df <- data.frame(list(
#     subject=rep(paste('subject', 1:50, sep='-'), each=2),
#     time=rep(1:2, 50),
#     data=rnorm(100)))
# s <- estimate_stability_single(df, reference.point=NULL, method='lm')
```

evenness

Evenness Index

<table>
<thead>
<tr>
<th>evenness</th>
<th>Evenness Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Various community evenness indices.

Usage

`evenness(x, index = "all", zeroes = TRUE, detection = 0)`

Arguments

- `x` A species abundance vector, or matrix (taxa/features x samples) with the absolute count data (no relative abundances), or `phyloseq-class` object
- `index` Evenness index. See details for options.
- `zeroes` Include zero counts in the evenness estimation.
- `detection` Detection threshold

Details

By default, Pielou’s evenness is returned.

Desirable statistical evenness metrics avoid strong bias towards very large or very small abundances; are independent of richness; and range within [0,1] with increasing evenness (Smith & Wilson 1996). Evenness metrics that fulfill these criteria include at least camargo, simpson, smith-wilson, and bulla. Also see Magurran & McGill (2011) and Beisel et al. (2003) for further details.

Value

A vector of evenness indices
find_optima

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See Also
coverage, core_abundance, rarity, alpha

Examples

```
data(dietswap)
# phyloseq object
#d <- evenness(dietswap, 'pielou')
# matrix
#d <- evenness(abundances(dietswap), 'pielou')
# vector
d <- evenness(abundances(dietswap)[,1], 'pielou')
```

find_optima |

| Find Optima |

Description
Detect optima, excluding local optima below peak.threshold.

Usage

```
find_optima(f, peak.threshold = 0, bw = 1, min.density = 1)
```
Arguments

- \(f \) : density
- peak.threshold : Mode detection threshold
- bw : bandwidth
- min.density : Minimum accepted density for a maximum; as a multiple of kernel height

Value

A list with min (minima), max (maxima), and peak.threshold (minimum detection density)

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation('microbiome')

Examples

```r
# Not exported
# o <- find_optima(rnorm(100), bw=1)
```

Description

Measure association between nominal (no order for levels) variables

Usage

gktau(x, y)

Arguments

- \(x \) : first variable
- \(y \) : second variable
Details

Measure association between nominal (no order for levels) variables using Goodman and Kruskal tau. Code modified from the original source: r-bloggers.com/measuring-associations-between-non-numeric-variables/ An important feature of this procedure is that it allows missing values in either of the variables x or y, treating 'missing' as an additional level. In practice, this is sometimes very important since missing values in one variable may be strongly associated with either missing values in another variable or specific non-missing levels of that variable. An important characteristic of Goodman and Kruskal’s tau measure is its asymmetry: because the variables x and y enter this expression differently, the value of a(y,x) is not the same as the value of a(x,y), in general. This stands in marked contrast to either the product-moment correlation coefficient or the Spearman rank correlation coefficient, which are both symmetric, giving the same association between x and y as that between y and x. The fundamental reason for the asymmetry of the general class of measures defined above is that they quantify the extent to which the variable x is useful in predicting y, which may be very different than the extent to which the variable y is useful in predicting x.

Value

Dependency measure

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

Code modified from the original source: http://r-bloggers.com/measuring-associations-between-non-numeric-variables/

To cite the microbiome R package, see citation('microbiome')

Examples

data(peerj32)
v1 <- factor(peerj32$microbes[,1])v2 <- factor(peerj32$meta$gender)tc <- gktau(v1, v2)

<table>
<thead>
<tr>
<th>group_age</th>
<th>Age Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Cut age information to discrete factors.
Usage

group_age(
 x,
 breaks = "decades",
 n = 10,
 labels = NULL,
 include.lowest = TRUE,
 right = FALSE,
 dig.lab = 3,
 ordered_result = FALSE
)

Arguments

x Numeric vector (age in years)
breaks Class break points. Either a vector of breakpoints, or one of the predefined
 options ("years", "decades", "even").
n Number of groups for the breaks = "even" option.
labels labels for the levels of the resulting category. By default, labels are constructed
 using "(a,b]" interval notation. If labels = FALSE, simple integer codes are
 returned instead of a factor.
include.lowest logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right = FALSE)
 ‘breaks’ value should be included.
right logical, indicating if the intervals should be closed on the right (and open on the
 left) or vice versa.
dig.lab integer which is used when labels are not given. It determines the number of
 digits used in formatting the break numbers.
ordered_result logical: should the result be an ordered factor?

Details

Regarding the breaks arguments, the "even" option aims to cut the samples in groups with approxi-
mately the same size (by quantiles). The "years" and "decades" options are self-explanatory.

Value

Factor of age groups.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')
See Also

base::cut

Examples

data(atlas1006)
age.numeric <- meta(atlas1006)$age
age.factor <- group_age(age.numeric)

Arguments

x Numeric vector (BMI)

breaks Class break points. Either a vector of breakpoints, or one of the predefined options ("standard", "standard_truncated", "even").
n Number of groups for the breaks = "even" option.

labels labels for the levels of the resulting category. By default, labels are constructed using ",(a,b]," interval notation. If labels = FALSE, simple integer codes are returned instead of a factor.

include.lowest logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right = FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of digits used in formatting the break numbers.

ordered_result logical: should the result be an ordered factor?
Details

Regarding the breaks arguments, the "even" option aims to cut the samples in groups with approximately the same size (by quantiles). The "standard" option corresponds to standard obesity categories defined by the cutoffs <18.5 (underweight); <25 (lean); <30 (obese); <35 (severe obese); <40 (morbid obese); <45 (super obese). The standard_truncated combines the severe, morbid and super obese into a single group.

Value

Factor of BMI groups.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

See Also

base::cut

Examples

```r
bmi.numeric <- range(rnorm(100, mean = 25, sd = 3))
bmi.factor <- group_bmi(bmi.numeric)
```

heat

Association Heatmap

Description

Visualizes n x m association table as heatmap.

Usage

```r
heat(
  df,
  Xvar = names(df)[[1]],
  Yvar = names(df)[[2]],
  fill = names(df)[[3]],
  star = NULL,
  p.adj.threshold = 1,
  association.threshold = 0,
  step = 0.2,
  colours = c("darkblue", "blue", "white", "red", "darkred"),
  limits = NULL,
)```
**heat**

```r
legend.text = "",
order.rows = TRUE,
order.cols = TRUE,
filter.significant = TRUE,
star.size = NULL,
plot.values = FALSE)
```

### Arguments

- **df**
  - Data frame. Each row corresponds to a pair of associated variables. The columns give variable names, association scores and significance estimates.

- **Xvar**
  - X axis variable column name. For instance 'X'.

- **Yvar**
  - Y axis variable column name. For instance 'Y'.

- **fill**
  - Column to be used for heatmap coloring. For instance 'association'.

- **star**
  - Column to be used for cell highlighting. For instance 'p.adj'.

- **p.adj.threshold**
  - Significance threshold for the stars.

- **association.threshold**
  - Include only elements that have absolute association higher than this value.

- **step**
  - color interval

- **colours**
  - heatmap colours

- **limits**
  - colour scale limits

- **legend.text**
  - legend text

- **order.rows**
  - Order rows to enhance visualization interpretability. If this is logical, then hclust is applied. If this is a vector then the rows are ordered using this index.

- **order.cols**
  - Order columns to enhance visualization interpretability. If this is logical, then hclust is applied. If this is a vector then the rows are ordered using this index.

- **filter.significant**
  - Keep only the elements with at least one significant entry

- **star.size**
  - NULL Determine size of the highlight symbols

- **plot.values**
  - Show values as text

### Value

- ggplot2 object

### Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

### References

See citation('microbiome')
Examples

data(peerj32)
d1 <- peerj32$lipids[, 1:10]
d2 <- peerj32$microbes[, 1:10]
c <- associate(d1, d2, method='pearson')
p <- heat(cc, 'X1', 'X2', 'Correlation', star='p.adj')

Description

HITChip taxonomy table.

Usage

data(hitchip.taxonomy)

Format

List with the element 'filtered', including a simplified version of the HITChip taxonomy.

Value

Loads the data set in R.

Author(s)

Leo Lahti <microbiome-admin@googlegroups.com>

References

Lahti et al. Tipping elements of the human intestinal ecosystem. Nature Communications 5:4344, 2014. To cite the microbiome R package, see citation('microbiome')
**Description**

Coloured bimodality plot.

**Usage**

```r
hotplot(
 x,
 taxon,
 tipping.point = NULL,
 lims = NULL,
 shift = 0.001,
 log10 = TRUE
)
```

**Arguments**

- `x`: `phyloseq-class` object
- `taxon`: Taxonomic group to visualize.
- `tipping.point`: Indicate critical point for abundance variations to be highlighted.
- `lims`: Optional. Figure X axis limits.
- `shift`: Small constant to avoid problems with zeroes in log10
- `log10`: Use log10 abundances for the OTU table and tipping point

**Value**

`ggplot` object

**Author(s)**

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

**References**

See citation('microbiome')

**Examples**

```r
data(atlas1006)
pseq <- subset_samples(atlas1006, DNA_extraction_method == 'r')
pseq <- transform(pseq, 'compositional')
 # Set a tipping point manually
 tipp <- .3/100 # .3 percent relative abundance
 # Bimodality is often best visible at log10 relative abundances
 p <- hotplot(pseq, 'Dialister', tipping.point=tipp, log10=TRUE)
```
inequality

Description
Calculate Gini indices for a phyloseq object.

Usage
inequality(x)

Arguments
x phyloseq-class object

Details
Gini index is a common measure for relative inequality in economical income, but can also be used as a community diversity measure. Gini index is between [0,1], and increasing gini index implies increasing inequality.

Value
A vector of Gini indices

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See Also
diversity, reldist::gini (inspired by that implementation but independently written here to avoid external dependencies)

Examples
data(dietswap)
d <- inequality(dietswap)
**intermediate_stability**

**Intermediate Stability**

**Description**

Quantify intermediate stability with respect to a given reference point.

**Usage**

```r
intermediate_stability(
 x,
 reference.point = NULL,
 method = "correlation",
 output = "scores"
)
```

**Arguments**

- `x` **phyloseq** object. Includes abundances (variables x samples) and sample_data
  data.frame (samples x features) with 'subject' and 'time' field for each sample.
- `reference.point` Calculate stability of the data w.r.t. this point. By default the
  intermediate range is used (min + (max - min)/2). If a vector of points is
  provided, then the scores will be calculated for every point and a data.frame is
  returned.
- `method` 'lm' (linear model) or 'correlation'; the linear model takes time into
  account as a covariate
- `output` Specify the return mode. Either the 'full' set of stability analysis outputs, or the
  'scores' of intermediate stability.

**Details**

Decomposes each column in `x` into differences between consecutive time points. For each variable
and time point we calculate for the data values: (i) the distance from reference point; (ii) distance
from the data value at the consecutive time point. The 'correlation' method calculates correlation
between these two variables. Negative correlations indicate that values closer to reference point tend
to have larger shifts in the consecutive time point. The 'lm' method takes the time lag between
the consecutive time points into account as this may affect the comparison and is not taken into account
by the straightforward correlation. Here the coefficients of the following linear model are used to
assess stability: abs(change) ~ time + abs(start.reference.distance). Samples with missing data, and
subjects with less than two time point are excluded. The absolute count data `x` is logarithmized
before the analysis with the log10(1 + x) trick to circumvent logarithmization of zeroes.

**Value**

A list with following elements: stability: estimated stability data: processed data set used in calculations
Author(s)
Leo Lahti <leo.lahti@iki.fi>

Examples

data(atlas1006)
x <- subset_samples(atlas1006, DNA_extraction_method == 'r')
x <- prune_taxa(c('Akkermansia', 'Dialister'), x)
res <- intermediate_stability(x, reference.point=NULL)

is_compositional Test Compositionality

Description
Test if phyloseq object is compositional.

Usage
is_compositional(x, tolerance = 1e-06)

Arguments
x phyloseq-class object
tolerance Tolerance for detecting compositionality.

Details
This function tests that the sum of abundances within each sample is almost zero, within the toler-ance of 1e-6 by default.

Value
Logical TRUE/FALSE

See Also
transform

Examples

data(dietswap)
a <- is_compositional(dietswap)
b <- is_compositional(transform(dietswap, "identity"))
c <- is_compositional(transform(dietswap, "compositional"))
Description

Calculates the community rarity index by log-modulo skewness.

Usage

log_modulo_skewness(x, q = 0.5, n = 50)

Arguments

- **x**: Abundance matrix (taxa x samples) with counts
- **q**: Arithmetic abundance classes are evenly cut up to to this quantile of the data. The assumption is that abundances higher than this are not common, and they are classified in their own group.
- **n**: The number of arithmetic abundance classes from zero to the quantile cutoff indicated by q.

Details

The rarity index characterizes the concentration of species at low abundance. Here, we use the skewness of the frequency distribution of arithmetic abundance classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo transformation that adds a value of one to each measure of skewness to allow logarithmization.

Value

A vector of rarity indices

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References


See Also

core_abundance, low_abundance, alpha
Examples

\begin{verbatim}
data(dietswap)
d <- log_modulo_skewness(dietswap)
\end{verbatim}

---

### low_abundance

#### Low Abundance Index

**Description**

Calculates the concentration of low-abundance taxa below the indicated detection threshold.

**Usage**

```r
low_abundance(x, detection = 0.2/100)
```

**Arguments**

- `x` : phyloseq-class object
- `detection` : Detection threshold for absence/presence (strictly greater by default).

**Details**

The `low_abundance` index gives the concentration of species at low abundance, or the relative proportion of rare species in \([0,1]\). The species that are below the indicated detection threshold are considered rare. Note that population prevalence is not considered. If the detection argument is a vector, then a data.frame is returned, one column for each detection threshold.

**Value**

A vector of indicators.

**Author(s)**

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

**See Also**

- core_abundance, rarity, global

**Examples**

```r
data(dietswap)
d <- low_abundance(dietswap, detection=0.2/100)
```
Description

Map taxa between hierarchy levels.

Usage

```r
map_levels(taxa = NULL, from, to, data)
```

Arguments

- `taxa`: taxa to convert; if NULL then considering all taxa in the tax.table
- `from`: convert from taxonomic level
- `to`: convert to taxonomic level
- `data`: Either a `phyloseq` object or its `taxonomyTable-class`, see the `phyloseq` package.

Value

`mappings`

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

```r
data(dietswap)
m <- map_levels('Akkermansia', from='Genus', to='Phylum',
tax_table(dietswap))
m <- map_levels('Verrucomicrobia', from='Phylum', to='Genus',
tax_table(dietswap))
```
merge_taxa2  

*Merge Taxa*

**Description**

Merge taxonomic groups into a single group.

**Usage**

```r
merge_taxa2(x, taxa = NULL, pattern = NULL, name = "Merged")
```

**Arguments**

- `x`
  - phyloseq-class object
- `taxa`
  - A vector of taxa names to merge.
- `pattern`
  - Taxa that match this pattern will be merged.
- `name`
  - Name of the merged group.

**Details**

In some cases it is necessary to place certain OTUs or other groups into an "other" category. For instance, unclassified groups. This wrapper makes this easy. This function differs from phyloseq::merge_taxa by the last two arguments. Here, in merge_taxa2 the user can specify the name of the new merged group. And the merging can be done based on common pattern in the name.

**Value**

Modified phyloseq object

**Author(s)**

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

**References**

See citation('microbiome')

**Examples**

```r
data(dietswap)
s <- merge_taxa(dietswap, c())
```
**meta**

*Retrieve Phyloseq Metadata as Data Frame*

**Description**

The output of the phyloseq::sample_data() function does not return data.frame, which is needed for many applications. This function retrieves the sample data as a data.frame.

**Usage**

```r
meta(x)
```

**Arguments**

- `x` a phyloseq object

**Value**

Sample metadata as a data.frame

**Author(s)**

Leo Lahti <leo.lahti@iki.fi>

**See Also**

- `sample_data` in the phyloseq package

**Examples**

```r
data(dietswap); df <- meta(dietswap)
```

---

**multimodality**

*Multimodality Score*

**Description**

Multimodality score based on bootstrapped potential analysis.

**Usage**

```r
multimodality(
 x,
 peak.threshold = 1,
 bw.adjust = 1,
 bs.iter = 100,
 min.density = 1,
 verbose = TRUE
)
```
Arguments

x A vector, or data matrix (variables x samples)
peak.threshold Mode detection threshold
bw.adjust Bandwidth adjustment
bs.iter Bootstrap iterations
min.density minimum accepted density for a maximum; as a multiple of kernel height
verbose Verbose

Details

Repeats potential analysis (Livina et al. 2010) multiple times with bootstrap sampling for each row of the input data (as in Lahti et al. 2014) and returns the specified results.

Value

A list with following elements:

• scoreFraction of bootstrap samples with multiple observed modes
• nmodesThe most frequently observed number of modes in bootstrap
• resultsFull results of potential_analysis for each row of the input matrix.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

• Livina et al. (2010). Potential analysis reveals changing number of climate states during the last 60 kyr. Climate of the Past, 6, 77-82.

Examples

#data(peerj32)
#s <- multimodality(t(peerj32$microbes[, c('Akkermansia', 'Dialister')]))
Description

Order matrix or phyloseq OTU table based on the neatmap approach.

Usage

```r
neat(
 x,
 arrange = "both",
 method = "NMDS",
 distance = "bray",
 first.feature = NULL,
 first.sample = NULL,
 ...
)
```

Arguments

- `x` A matrix or phyloseq object.
- `arrange` Order 'features', 'samples' or 'both' (for matrices). For matrices, it is assumed that the samples are on the columns and features are on the rows. For phyloseq objects, features are the taxa of the OTU table.
- `method` Ordination method. Only NMDS implemented for now.
- `distance` Distance method. See `vegdist` function from the `vegan` package.
- `first.feature` Optionally provide the name of the first feature to start the ordering
- `first.sample` Optionally provide the name of the first sample to start the ordering
- `...` Arguments to pass.

Details

Borrows elements from the heatmap implementation in the `phyloseq` package. The row/column sorting is not available there as a separate function. Therefore I implemented this function to provide an independent method for easy sample/taxon reordering for phyloseq objects. The ordering is cyclic so we can start at any point. The choice of the first sample may somewhat affect the overall ordering.

Value

Sorted matrix
References

This function is partially based on code derived from the phyloseq package. However for the original neatmap approach for heatmap sorting, see (and cite): Rajaram, S., & Oono, Y. (2010). NeatMap–non-clustering heat map alternatives in R. BMC Bioinformatics, 11, 45.

Examples

data(peerj32)
# Take subset to speed up example
x <- peerj32$microbes[1:10,1:10]
xo <- neat(x, 'both', method='NMDS', distance='bray')

---

neatsort  Neatmap Sorting

Description

Sort samples or features based on the neatmap approach.

Usage

neatsort(x, target, method = "NMDS", distance = "bray", first = NULL, ...)

Arguments

x  
phyloseq-class object or a matrix

target  
For phyloseq-class input, the target is either 'sites' (samples) or 'species' (features) (taxa/OTUs); for matrices, the target is 'rows' or 'cols'.

method  
Ordination method. See ordinate from phyloseq package. For matrices, only the NMDS method is available.

distance  
Distance method. See ordinate from phyloseq package.

first  
Optionally provide the name of the first sample/taxon to start the ordering (the ordering is cyclic so we can start at any point). The choice of the first sample may somewhat affect the overall ordering.

...  
Arguments to be passed.

Details

This function borrows elements from the heatmap implementation in the phyloseq package. The row/column sorting is there not available as a separate function at present, however, hindering reuse in other tools. Implemented in the microbiome package to provide an independent method for easy sample/taxon reordering for phyloseq objects.

Value

Vector of ordered elements
References

This function is partially based on code derived from the phyloseq package. For the original neatmap approach for heatmap sorting, see (and cite): Rajaram, S., & Oono, Y. (2010). NeatMap—non-clustering heat map alternatives in R. BMC Bioinformatics, 11, 45.

Examples

data(peerj32)
pseq <- peerj32$phyloseq
# For Phyloseq
sort.otu <- neatsort(pseq, target='species')
# For matrix
# sort.rows <- neatsort(abundances(pseq), target='rows')

overlap

Overlap Measure

Description

Quantify microbiota 'overlap' between samples.

Usage

overlap(x, detection = 0)

Arguments

x

phyloseq-class object
detection

Detection threshold.

Value

Overlap matrix

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References


Examples

data(atlas1006)
o <- overlap(atlas1006, detection = 0.1/100)
Probiotics Intervention Data

Description

The peerj32 data set contains high-through profiling data from 389 human blood serum lipids and 130 intestinal genus-level bacteria from 44 samples (22 subjects from 2 time points; before and after probiotic/placebo intervention). The data set can be used to investigate associations between intestinal bacteria and host lipid metabolism. For details, see http://dx.doi.org/10.7717/peerj.32.

Usage

data(peerj32)

Format

List of the following data matrices as described in detail in Lahti et al. (2013):

- lipids: Quantification of 389 blood serum lipids across 44 samples
- microbes: Quantification of 130 genus-like taxa across 44 samples
- meta: Sample metadata including time point, sex, subjectID, sampleID and treatment group (probiotic LGG / Placebo)
- phyloseq The microbiome data set converted into a phylseq-class object.

Value

Loads the data set in R.

Author(s)

Leo Lahti <microbiome-admin@googlegroups.com>

References

Lahti et al. (2013) PeerJ 1:e32 http://dx.doi.org/10.7717/peerj.32
plot_atlas  Visualize Samples of a Microbiota Atlas

Description

Show all samples of a microbiota collection, colored by specific factor levels (x axis) and signal (y axis).

Usage

plot_atlas(pseq, x, y, ncol = 2)

Arguments

pseq: phyloseq object
x: Sorting variable for X axis and sample coloring
y: Signal variable for Y axis
ncol: Number of legend columns.

Details

Arranges the samples based on the given grouping factor (x), and plots the signal (y) on the Y axis. The samples are randomly ordered within each factor level. The factor levels are ordered by standard deviation of the signal (y axis).

Value

ggplot object

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation('microbiome'); Visualization inspired by Kilpinen et al. 2008, Genome Biology 9:R139. DOI: 10.1186/gb-2008-9-9-r139

Examples

data(atlas1006)
p <- plot_atlas(atlas1006, 'DNA_extraction_method', 'diversity')
p <- plot_atlas(atlas1006, 'DNA_extraction_method', 'Bifidobacterium')
plot_composition  Taxonomic Composition Plot

Description

Plot taxon abundance for samples.

Usage

plot_composition(
  x,
  sample.sort = NULL,
  otu.sort = NULL,
  x.label = "sample",
  plot.type = "barplot",
  verbose = FALSE,
  average_by = NULL,
  group_by = NULL,
  ...
)

Arguments

x  phyloseq-class object

sample.sort  Order samples. Various criteria are available:
  • NULL or 'none': No sorting
  • A single character string: indicate the metadata field to be used for ordering.
    Or: if this string is found from the tax_table, then sort by the corresponding
    taxonomic group.
  • A character vector: sample IDs indicating the sample ordering.
  • 'neatmap' Order samples based on the neatmap approach. See neatsort.
    By default, 'NMDS' method with 'bray' distance is used. For other options,
    arrange the samples manually with the function.

otu.sort  Order taxa. Same options as for the sample.sort argument but instead of meta-
  data, taxonomic table is used. Also possible to sort by 'abundance'.

x.label  Specify how to label the x axis. This should be one of the variables in sam-
  ple_variables(x).

plot.type  Plot type: 'barplot' or 'heatmap'

verbose  verbose (but not in sample/taxon ordering). The options are 'Z-OTU', 'Z-Sample',
  'log10' and 'compositional'. See the transform function.

average_by  Average the samples by the average_by variable

group_by  Group by this variable (in plot.type "barplot")

...  Arguments to be passed (for neatsort function)
Value

A **ggplot** plot object.

Examples

```r
library(dplyr)
data(atlas1006)
pseq <- atlas1006 %>%
 subset_samples(DNA_extraction_method == "r") %>%
 aggregate_taxa(level = "Phylum") %>%
 transform(transform = "compositional")
p <- plot_composition(pseq, sample.sort = "Firmicutes",
 otu.sort = "abundance", verbose = TRUE) +
 scale_fill_manual(values = default_colors("Phylum")[taxa(pseq)])
```

---

**plot_core**

**Visualize OTU Core**

Description

Core visualization (2D).

Usage

```r
plot_core(
 x,
 prevalences = seq(0.1, 1, 0.1),
 detections = 20,
 plot.type = "lineplot",
 colours = NULL,
 min.prevalence = NULL,
 taxa.order = NULL,
 horizontal = FALSE
)
```

Arguments

- **x** A **phyloseq** object or a core matrix
- **prevalences** a vector of prevalence percentages in [0,1]
- **detections** a vector of intensities around the data range, or a scalar indicating the number of intervals in the data range.
- **plot.type** Plot type ('lineplot' or 'heatmap')
- **colours** colours for the heatmap
- **min.prevalence** If minimum prevalence is set, then filter out those rows (taxa) and columns (detections) that never exceed this prevalence. This helps to zoom in on the actual core region of the heatmap. Only affects the plot.type='heatmap'.
- **taxa.order** Ordering of the taxa: a vector of names.
- **horizontal** Logical. Horizontal figure.
Value

A list with three elements: the ggplot object and the data. The data has a different form for the lineplot and heatmap. Finally, the applied parameters are returned.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the microbiome R package, see citation('microbiome')

Examples

data(dietswap)
p <- plot_core(transform(dietswap, "compositional"),
               prevalences=seq(0.1, 1, .1), detections=seq(0.01, 1, length = 10))

plot_density

Description

Plot abundance density across samples for a given taxon.

Usage

plot_density(
  x,
  variable = NULL,
  log10 = FALSE,
  adjust = 1,
  kernel = "gaussian",
  trim = FALSE,
  na.rm = FALSE,
  fill = "gray",
  tipping.point = NULL,
  xlim = NULL
)
**plot_frequencies**

**Plot Frequencies**

Plot relative frequencies within each Group for the levels of the given factor.

**Usage**

```r
plot_frequencies(x, Groups, Factor)
```

**Arguments**

- `x` : data.frame
- `Groups` : Name of the grouping variable
- `Factor` : Name of the frequency variable

---

**Arguments**

- `x` : phyloseq-class object or an OTU matrix (samples x phylotypes)
- `variable` : OTU or metadata variable to visualize
- `log10` : Logical. Show log10 abundances or not.
- `adjust` : see stat_density
- `kernel` : see stat_density
- `trim` : see stat_density
- `na.rm` : see stat_density
- `fill` : Fill color
- `tipping.point` : Optional. Indicate critical point for abundance variations to be highlighted.
- `x` : X axis limits

**Value**

A `ggplot` plot object.

**Examples**

```r
Load gut microbiota data on 1006 western adults
(see help(atlas1006) for references and details)
data(dietswap)
Use compositional abundances instead of absolute signal
pseq.rel <- transform(dietswap, 'compositional')
Population density for Dialister spp.; with log10 on the abundance (X)
axis
library(ggplot2)
p <- plot_density(pseq.rel, variable='Dialister') + scale_x_log10()
```
Details

For table with the indicated frequencies, see the returned phyloseq object.

Value

A `ggplot` plot object.

Examples

data(dietswap)
p <- plot_frequencies(meta(dietswap), 'group', 'sex')

---

plot_landscape  

Landscape Plot

Description

Wrapper for visualizing sample similarity landscape ie. sample density in various 2D projections.

Usage

```r
plot_landscape(
x,
method = "PCoA",
distance = "bray",
transformation = "identity",
col = NULL,
main = NULL,
x.ticks = 10,
rounding = 0,
add.points = TRUE,
adjust = 1,
size = 1,
legend = FALSE,
shading = TRUE,
shading.low = "#ebf4f5",
shading.high = "#e9b7ce",
point.opacity = 0.75
)
```

Arguments

- **x**  
  phyloseq-class object or a data matrix (samples x features; eg. samples vs. OTUs). If the input x is a 2D matrix then it is plotted as is.

- **method**  
  Ordination method, see phyloseq::plotordination; or "PCA", or "t-SNE" (from the Rtsne package)
plot_landscape

**distance**  Ordination distance, see phyloseq::plot ordination; for method = "PCA", only euclidean distance is implemented now.

**transformation**  Transformation applied on the input object x

**col**  Variable name to highlight samples (points) with colors

**main**  title text

**x.ticks**  Number of ticks on the X axis

**rounding**  Rounding for X axis tick values

**add.points**  Plot the data points as well

**adjust**  Kernel width adjustment

**size**  point size

**legend**  plot legend TRUE/FALSE

**shading**  Add shading in the background.

**shading.low**  Color for shading low density regions

**shading.high**  Color for shading high density regions

**point.opacity**  Transparency-level for points

**Details**

For consistent results, set random set (set.seed) before function call. Note that the distance and transformation arguments may have a drastic effect on the outputs.

**Value**

A ggplot plot object.

**Examples**

```r
data(dietswap)

PCoA
p <- plot_landscape(transform(dietswap, "compositional"),
 distance = "bray", method = "PCoA")

p <- plot_landscape(dietswap, method = "t-SNE", distance = "bray",
 transformation = "compositional")

PCA
p <- plot_landscape(dietswap, method = "PCA", transformation = "clr")
```
Description


Usage

plot_regression(
  formula,
  data,
  B = 1000,
  shade = TRUE,
  shade.alpha = 0.1,
  spag = FALSE,
  mweight = TRUE,
  show.lm = FALSE,
  show.median = TRUE,
  median.col = "white",
  show.CI = FALSE,
  method = loess,
  slices = 200,
  ylim = NULL,
  quantize = "continuous",
  show.points = TRUE,
  color = NULL,
  pointsize = NULL,
  ...
)

Arguments

formula formula
  data data
B number bootstrapped smoothers
shade plot the shaded confidence region?
shade.alpha shade.alpha: should the CI shading fade out at the edges? (by reducing alpha; 0=no alpha decrease, 0.1=medium alpha decrease, 0.5=strong alpha decrease)
spag plot spaghetti lines?
mweight visually weight the median smoother
show.lm plot the linear regression line
show.median  show median smoother
median.col    median color
show.CI       should the 95% CI limits be plotted?
method        the fitting function for the spaghettis; default: loess
slices        number of slices in x and y direction for the shaded region. Higher numbers
               make a smoother plot, but takes longer to draw. I wouldn’t go beyond 500
ylim          restrict range of the watercoloring
quantize      either ’continuous’, or ’SD’. In the latter case, we get three color regions for 1,
               2, and 3 SD (an idea of John Mashey)
show.points   Show points.
color         Point colors
pointsize     Point sizes
...           further parameters passed to the fitting function, in the case of loess, for example,’span=.9’, or ’family=symmetric’

Value

ggplot2 object

Author(s)

Based on the original version from F. Schonbrodt. Modified by Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation(’microbiome’)

Examples

data(atlas1006)
pseq <- subset_samples(atlas1006,
   DNA_extraction_method == ’r’ &
   sex == ”female” &
   nationality == ”UKIE”,
   B=10, slices=10 # non-default used here to speed up examples )
p <- plot_regression(diversity ~ age, meta(pseq)[1:20,], slices=10, B=10)
plot_taxa_prevalence  Visualize Prevalence Distributions for Taxa

Description
Create taxa prevalence plots at various taxonomic levels.

Usage
plot_taxa_prevalence(x, level, detection = 0)

Arguments
x  phyloseq-class object, OTU data must be counts and not relative abundance or other transformed data.
level  Phylum/Order/Class/Family
detection  Detection threshold for presence (prevalence)

Details
This helps to obtain first insights into how is the taxa distribution in the data. It also gives an idea about the taxonomic affiliation of rare and abundant taxa in the data. This may be helpful for data filtering or other downstream analysis.

Value
A ggplot plot object.

Author(s)
Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples
data(atlas1006)
# Pick data subset just to speed up example
p0 <- subset_samples(atlas1006, DNA_extraction_method == "r")
p0 <- prune_taxa(taxa(p0)[grep("Bacteroides", taxa(p0))], p0)
# Detection threshold (0 by default; higher especially with HITChip)
p <- plot_taxa_prevalence(p0, 'Phylum', detection = 1)
print(p)
plot_tipping

Variation Line Plot

Description
Plot variation in taxon abundance for many subjects.

Usage
plot_tipping(
  x,
  taxon,
  tipping.point = NULL,
  lims = NULL,
  shift = 0.001,
  xlim = NULL
)

Arguments
- x phyloseq-class object
- taxon Taxonomic group to visualize.
- tipping.point Optional. Indicate critical point for abundance variations to be highlighted.
- lims Optional. Figure X axis limits.
- shift Small constant to avoid problems with zeroes in log10
- xlim Horizontal axis limits

Details
Assuming the sample_data(x) has 'subject' field and some subjects have multiple time points.

Value
ggplot object

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
See citation('microbiome')
Examples

data(atlas1006)
pseq <- subset_samples(atlas1006, DNA_extraction_method == 'r')
pseq <- transform(pseq, 'compositional')
p <- plot_tipping(pseq, 'Dialister', tipping.point=1)

potential_analysis

Bootstrapped Potential Analysis

Description

Analysis of multimodality based on bootstrapped potential analysis of Livina et al. (2010) as described in Lahti et al. (2014).

Usage

potential_analysis(
x,
peak.threshold = 0,
bw.adjust = 1,
bs.iter = 100,
min.density = 1
)

Arguments

x Input data vector
peak.threshold Mode detection threshold
bw.adjust Bandwidth adjustment
bs.iter Bootstrap iterations
min.density minimum accepted density for a maximum; as a multiple of kernel height

Value

List with following elements:

- modes Number of modes for the input data vector (the most frequent number of modes from bootstrap)
- minima Average of potential minima across the bootstrap samples (for the most frequent number of modes)
- maxima Average of potential maxima across the bootstrap samples (for the most frequent number of modes)
- unimodality.support Fraction of bootstrap samples exhibiting unimodality
- bws Bandwidths
References

- Livina et al. (2010). Potential analysis reveals changing number of climate states during the last 60 kyr. *Climate of the Past*, 6, 77-82.

See Also

plot_potential

Examples

```r
Example data; see help(peerj32) for details
data(peerj32)

Log10 abundance of Dialister
x <- abundances(transform(peerj32$phyloseq, "clr"))['Dialister',]

Bootstrapped potential analysis
In practice, use more bootstrap iterations
res <- potential_analysis(x, peak.threshold=0, bw.adjust=1,
bs.iter=9, min.density=1)
```

---

potential_univariate  Potential Analysis for Univariate Data

Description

One-dimensional potential estimation for univariate timeseries.

Usage

```r
potential_univariate(
 x,
 std = 1,
 bw = "nrd",
 weights = c(),
 grid.size = NULL,
 peak.threshold = 1,
 bw.adjust = 1,
 density.smoothing = 0,
 min.density = 1
)
```
potential_univariate

Arguments

- **x**: Univariate data (vector) for which the potentials shall be estimated
- **std**: Standard deviation of the noise (defaults to 1; this will set scaled potentials)
- **bw**: Kernel bandwidth estimation method
- **weights**: Optional weights in ksdensity (used by potential_slidingaverages).
- **grid.size**: Grid size for potential estimation. of density kernel height \(dnorm(0, \text{sd}=\text{bandwidth})/N\)
- **peak.threshold**: Mode detection threshold
- **bw.adjust**: The real bandwidth will be \(\text{bw.adjust}*\text{bw}\); defaults to 1
- **density.smoothing**: Add a small constant density across the whole observation range to regularize density estimation (and to avoid zero probabilities within the observation range). This parameter adds uniform density across the observation range, scaled by \(\text{density.smoothing}\).
- **min.density**: Minimum accepted density for a maximum; as a multiple of kernel height

Value

potential_univariate returns a list with the following elements:

- **xi**: The grid of points on which the potential is estimated
- **pot**: The estimated potential: \(-\log(f)*\text{std}^2/2\), where \(f\) is the density.
- **density**: Density estimate corresponding to the potential.
- **min.inds**: Indices of the grid points at which the density has minimum values; \((-\text{potentials}; \text{neglecting local optima})\)
- **max.inds**: Indices the grid points at which the density has maximum values; \((-\text{potentials}; \text{neglecting local optima})\)
- **bw**: Bandwidth of kernel used
- **min.points**: Grid point values at which the density has minimum values; \((-\text{potentials}; \text{neglecting local optima})\)
- **max.points**: Grid point values at which the density has maximum values; \((-\text{potentials}; \text{neglecting local optima})\)

Author(s)

Based on Matlab code from Egbert van Nes modified by Leo Lahti. Extended from the initial version in the earlywarnings R package.

References

- Livina et al. (2010). Potential analysis reveals changing number of climate states during the last 60 kyr. Climate of the Past, 6, 77-82.
**prevalence**

**Examples**

```r
res <- potential_univariate(x)
```

<table>
<thead>
<tr>
<th>prevalence</th>
<th>OTU Prevalence</th>
</tr>
</thead>
</table>

**Description**

Simple prevalence measure.

**Usage**

```r
prevalence(
 x,
 detection = 0,
 sort = FALSE,
 count = FALSE,
 include.lowest = FALSE
)
```

**Arguments**

- `x`: A vector, data matrix or `phyloseq` object
- `detection`: Detection threshold for absence/presence (strictly greater by default).
- `sort`: Sort the groups by prevalence
- `count`: Logical. Indicate prevalence as fraction of samples (in percentage \([0, 1]\); default); or in absolute counts indicating the number of samples where the OTU is detected (strictly) above the given abundance threshold.
- `include.lowest`: Include the lower boundary of the detection and prevalence cutoffs. FALSE by default.

**Details**

For vectors, calculates the fraction (count=FALSE) or number (count=TRUE) of samples that exceed the detection. For matrices, calculates this for each matrix column. For phyloseq objects, calculates this for each OTU. The relative prevalence (count=FALSE) is simply the absolute prevalence (count=TRUE) divided by the number of samples.

**Value**

For each OTU, the fraction of samples where a given OTU is detected. The output is readily given as a percentage.

**Author(s)**

Contact: Leo Lahti <microbiome-admin@googlegroups.com>
References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the microbiome R package, see citation('microbiome')

Examples

data(peerj32)
pr <- prevalence(peerj32$phyloseq, detection=0, sort=TRUE, count=TRUE)

```
psmelt2
```

Convert phyloseq-class object to long data format

Description

An alternative to psmelt function from phyloseq-class object.

Usage

```
psmelt2(x, sample.column = NULL, feature.column = NULL)
```

Arguments

- **x** phyloseq-class object
- **sample.column** A single character string specifying name of the column to hold sample names.
- **feature.column** A single character string specifying name of the column to hold OTU or ASV names.

Value

A tibble in long format

Author(s)

Contact: Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples

```
data("dietswap")
ps.melt <- psmelt2(dietswap, sample.column="SampleID",
 feature.column="Feature")
head(ps.melt)
```
**quiet**  
*Quiet Output*

**Description**
Suppress all output from an expression. Works cross-platform.

**Usage**
quiet(expr, all = TRUE)

**Arguments**
- **expr**: Expression to run.
- **all**: If TRUE then suppress warnings and messages as well; otherwise, only suppress printed output (such as from print or cat).

**Value**
Used for its side effects.

**Author(s)**
Adapted from https://gist.github.com/daattali/6ab55aee6b50e8929d89

**Examples**
quiet(1 + 1)

---

**radial_theta**  
*Radial Theta Function*

**Description**
Adapted from **NeatMap** and **phyloseq** packages but not exported and hence not available via phyloseq. Completely rewritten to avoid license conflicts. Vectorized to gain efficiency; only calculates theta and omits r.

**Usage**
radial_theta(x)

**Arguments**
- **x**: position parameter
rare

Description
Filter the phyloseq object to include only rare (non-core) taxa.

Usage
rare(x, detection, prevalence, include.lowest = FALSE, ...)

Arguments
- x: phyloseq-class object
- detection: Detection threshold for absence/presence (strictly greater by default).
- prevalence: Prevalence threshold (in [0, 1]; strictly greater by default)
- include.lowest: Include the lower boundary of the detection and prevalence cutoffs in core calculation. FALSE by default.
- ...: Arguments to pass.

Value
Filtered phyloseq object including only rare taxa

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
Salonen A, Salojarvi J, Lahti L, de Vos WM. The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection 18(S4):16-20, 2012. To cite the microbiome R package, see citation('microbiome')

See Also
core_members

Examples
data(dietswap)
# Detection threshold 0 (strictly greater by default);
# Prevalence threshold 50 percent (strictly greater by default)
pseq <- rare(dietswap, 0, 50/100)
rare_abundance

Rare (Non-Core) Abundance Index

Description

Calculates the rare abundance community index.

Usage

rare_abundance(
  x,
  detection = 0.1/100,
  prevalence = 50/100,
  include.lowest = FALSE
)

Arguments

x phyloseq-class object
detection Detection threshold for absence/presence (strictly greater by default).
prevalence Prevalence threshold (in [0, 1]). The required prevalence is strictly greater by
default. To include the limit, set include.lowest to TRUE.
include.lowest Include the lower boundary of the detection and prevalence cutoffs. FALSE by
default.

Details

This index gives the relative proportion of rare species (ie. those that are not part of the core
microbiota) in the interval [0,1]. This is the complement (1-x) of the core abundance. The rarity
function provides the abundance of the least abundant taxa within each sample, regardless of the
population prevalence.

Value

A vector of indices

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

See Also

core_abundance, rarity, diversity

Examples

data(dietswap)
d <- rare_abundance(dietswap, detection=0.1/100, prevalence=50/100)
rare_members

**Rare Taxa**

**Description**

Determine members of the rare microbiota with given abundance and prevalence threshold.

**Usage**

```
rare_members(x, detection = 1/100, prevalence = 50/100, include.lowest = FALSE)
```

**Arguments**

- `x` : phyloseq-class object
- `detection` : Detection threshold for absence/presence (strictly greater by default).
- `prevalence` : Prevalence threshold (in \([0, 1]\)). The required prevalence is strictly greater by default. To include the limit, set `include.lowest` to TRUE.
- `include.lowest` : Include the lower boundary of the detection and prevalence cutoffs. FALSE by default.

**Details**

For phyloseq object, lists taxa that are less prevalent than the given prevalence threshold. Optionally, never exceeds the given abundance threshold (by default, all abundances accepted). For matrix, lists columns that satisfy these criteria.

**Value**

Vector of rare taxa

**Author(s)**

Leo Lahti <microbiome-admin@googlegroups.com>

**References**

To cite the microbiome R package, see citation('microbiome')

**See Also**

core_members

**Examples**

```
data(dietswap)
Detection threshold: the taxa never exceed the given detection threshold
Prevalence threshold 20 percent (strictly greater by default)
a <- rare_members(dietswap, detection=100/100, prevalence=20/100)
```
rarity

rarity  Rarity Index

Description

Calculates the community rarity index.

Usage

rarity(x, index = "all", detection = 0.2/100, prevalence = 20/100)

Arguments

x  phyloseq-class object
index  If the index is given, it will override the other parameters. See the details below for description and references of the standard rarity indices.
detection  Detection threshold for absence/presence (strictly greater by default).
prevalence  Prevalence threshold (in [0, 1]). The required prevalence is strictly greater by default. To include the limit, set include.lowest to TRUE.

Details

The rarity index characterizes the concentration of species at low abundance.

The following rarity indices are provided:

- log_modulo_skewness Quantifies the concentration of the least abundant species by the log-modulo skewness of the arithmetic abundance classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo transformation that adds a value of one to each measure of skewness to allow logarithmization. The values q=0.5 and n=50 are used here.
- low_abundance Relative proportion of the least abundant species, below the detection level of 0.2%. The least abundant species are determined separately for each sample regardless of their prevalence.
- rare_abundance Relative proportion of the non-core species, exceed the given detection level (default 20 at the given prevalence (default 20 This is complement of the core with the same thresholds.

Value

A vector of rarity indices

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>
References


See Also

alpha, log_modulo_skewness, rare_abundance, low_abundance

Examples

data(dietswap)
d <- rarity(dietswap, index='low_abundance')
# d <- rarity(dietswap, index='all')

table(readcount, Total Read Count)

Description

Total Read Count

Usage

readcount(x)

Arguments

x phylloseq-class object

Value

Vector of read counts.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

data(dietswap)
d <- readcount(dietswap)
**read_biom2phyloseq**  
*Read BIOM File into a Phyloseq Object*

**Description**

Read biom and mapping files into a `phyloseq-class` object.

**Usage**

```r
read_biom2phyloseq(
 biom.file = NULL,
 taxonomy.file = NULL,
 metadata.file = NULL,
 ...
)
```

**Arguments**

- `biom.file`: A biom file with `.biom` extension
- `taxonomy.file`: `NULL` the latest version has taxonomic information within the biom
- `metadata.file`: A simple metadata/mapping file with `.csv` extension
- `...`: Arguments to pass for `import_biom`

**Details**

Biom file and mapping files will be converted to `phyloseq-class`.

**Value**

`phyloseq-class` object.

**Author(s)**

Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

**Examples**

```r
p0 <- read_biom2phyloseq()
#biom.file <- qiita1629.biom"
#meta.file <- qiita1629_mapping.csv"
#p0 <- read_biom2phyloseq(biom.file = biom.file,
metadata.file = meta.file,
taxonomy.file = NULL)
```
read_csv2phyloseq

Read Simple OTU Tables into a Phyloseq Object

Description

Read simple OTU tables, mapping and taxonomy files into a phyloseq-class object.

Usage

```r
read_csv2phyloseq(
 otu.file = NULL,
 taxonomy.file = NULL,
 metadata.file = NULL,
 sep = "",
)
```

Arguments

- `otu.file`: A simple otu_table with `.csv` extension
- `taxonomy.file`: A simple taxonomy file with `.csv` extension
- `metadata.file`: A simple metadata/mapping file with .csv extension
- `sep`: CSV file separator

Details

Simple OTU tables, mapping and taxonomy files will be converted to phyloseq-class.

Value

phyloseq-class object.

Author(s)

Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples

```r
NOTE: the system.file command reads these example files from the
microbiome R package. To use your own local files, simply write
otu.file <- "/path/to/my/file.csv" etc.

#otu.file <-
system.file("extdata/qiita1629_otu_table.csv",
package='microbiome')

#tax.file <- system.file("extdata/qiita1629_taxonomy_table.csv",
package='microbiome')
```
read_mothur2phyloseq

Description
Read mothur shared and consensus taxonomy files into a phyloseq-class object.

Usage
read_mothur2phyloseq(shared.file, consensus.taxonomy.file, mapping.file = NULL)

Arguments
- shared.file: A shared file produced by mothur. Identified from the .shared extension.
- mapping.file: Metadata/mapping file with .csv extension.

Details
Mothur shared and consensus taxonomy files will be converted to phyloseq-class.

Value
phyloseq-class object.

Author(s)
Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples
#shared.file <- system.file("extdata/Baxter_FITs_Microbiome_2016_fit.final.tx.1.subsample.shared",
    # package='microbiome')

#tax.file <- system.file(
    #"extdata/Baxter_FITs_Microbiome_2016_fit.final.tx.1.cons.taxonomy",
    # package='microbiome')
# meta.file <- system.file(
# "extdata/Baxter_FITs_Microbiome_2016_mapping.csv",
# package='microbiome')

# p0 <- read_mothur2phyloseq(
# shared.file=otu.file,
# consensus.taxonomy.file=tax.file,
# mapping.file=meta.file)

---

read_phyloseq  

**Import phyloseq Data**

**Description**

Read the otu, taxonomy and metadata from various formats.

**Usage**

```r
read_phyloseq(
 otu.file = NULL,
 taxonomy.file = NULL,
 metadata.file = NULL,
 type = c("simple", "mothur", "biom"),
 sep = ",",
)
```

**Arguments**

- **otu.file**  
  File containing the OTU table (for mothur this is the file with the .shared extension)
- **taxonomy.file**  
  (for mothur this is typically the consensus taxonomy file with the .taxonomy extension)
- **metadata.file**  
  File containing samples x variables metadata.
- **type**  
  Input data type: 'mothur' or 'simple' or 'biom' type.
- **sep**  
  CSV file separator

**Details**

See help(read_mothur2phyloseq) for details on the Mothur input format; and help(read_biom2phyloseq) for details on the biom format. The simple format refers to the set of CSV files.

**Value**

*phyloseq-class* object
remove_samples

Author(s)

Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples

```r
pseq <- read_phyloseq(otu.file,
taxonomy.file,
metadata.file,
type=c('mothur', 'simple', 'biom'))
```

---

**Description**

Filter out selected samples from a phyloseq object.

**Usage**

```r
remove_samples(samples = NULL, x)
```

**Arguments**

- `samples` Names of samples to be removed.
- `x` `phyloseq-class` object

**Details**

This complements the phyloseq function `prune_samples` by providing a way to exclude given groups from a phyloseq object.

**Value**

Filtered phyloseq object.

**Author(s)**

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

**References**

To cite the microbiome R package, see citation('microbiome')

**See Also**

`phyloseq::prune_samples`, `phyloseq::subset_samples`
Examples

```r
data(dietswap)
pseq <- remove_samples(c("Sample-182", "Sample-222"), dietswap)
```

---

remove_taxa | Exclude Taxa

Description

Filter out selected taxa from a phyloseq object.

Usage

```r
remove_taxa(taxa = NULL, x)
```

Arguments

- `taxa` Names of taxa to be removed.
- `x` `phyloseq-class` object

Details

This complements the phyloseq function prune_taxa by providing a way to exclude given groups from a phyloseq object.

Value

Filtered phyloseq object.

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

To cite the microbiome R package, see citation('microbiome')

See Also

`phyloseq::prune_taxa, phyloseq::subset_taxa`

Examples

```r
data(dietswap)
pseq <- remove_taxa(c("Akkermansia", "Dialister"), dietswap)
```
richness

richness Index

Description

Community richness index.

Usage

richness(x, index = c("observed", "chao1"), detection = 0)

Arguments

x A species abundance vector, or matrix (taxa/features x samples) with the absolute count data (no relative abundances), or phyloseq-class object

index "observed" or "chao1"

detection Detection threshold. Used for the "observed" index.

Details

By default, returns the richness for multiple detection thresholds defined by the data quantiles. If the detection argument is provided, returns richness with that detection threshold. The "observed" richness corresponds to index="observed", detection=0.

Value

A vector of richness indices

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

See Also

alpha

Examples

data(dietswap)
d <- richness(dietswap, detection=0)
spreadplot

Abundance Spread Plot

Description
Visualize abundance spread for OTUs

Usage
```
spreadplot(x, trunc = 0.001/100, alpha = 0.15, width = 0.35)
```

Arguments
- `x` `phyloseq-class` object; or a data.frame with fields "otu" (otu name); "sample" (sample name); and "abundance" (otu abundance in the given sample)
- `trunc` Truncate abundances lower than this to zero
- `alpha` Alpha level for point transparency
- `width` Width for point spread

Value
ggplot2 object

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
See citation('microbiome')

Examples
```
data(dietswap)
p <- spreadplot(transform(dietswap, "compositional"))
```
summarize_phyloseq

Summarize phyloseq object

Description
Prints basic information of data.

Usage
summarize_phyloseq(x)

Arguments
x
Input is a phyloseq-class object.

Details
The summarize_phyloseq function will give information on whether data is compositional or not, reads (min. max, median, average), sparsity, presence of singletons and sample variables.

Value
Prints basic information of phyloseq-class object.

Author(s)
Contact: Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

Examples
data(dietswap)
summarize_phyloseq(dietswap)

taxa

Description
List the names of taxonomic groups in a phyloseq object.

Usage
taxa(x)

Arguments
x
phyloseq-class object
TibbleUtilities

Details
A handy shortcut for phyloseq::taxa_names, with a potential to add to add some extra tweaks later.

Value
A vector with taxon names.

Author(s)
Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References
To cite the microbiome R package, see citation('microbiome')

Examples
```r
data(dietswap)
x <- taxa(dietswap)
```

---

TibbleUtilities  Utilities For phyloseq-class Slots to Tibbles

Description
Utility to convert phyloseq slots to tibbles.

Usage
```
otu_tibble(x, column.id = "FeatureID")
tax_tibble(x, column.id = "FeatureID")
sample_tibble(x, column.id = "SampleID")
combine_otu_tax(x, column.id = "FeatureID")
```

Arguments
- `x`  phyluseq-class object.
- `column.id`  Provide name for the column which will hold the rownames. of slot.

Details
Convert different phyloseq slots into tibbles. `otu_tibble` gets the `otu_table` in tibble format. `tax_tibble` gets the `taxa_table` in tibble format. `combine_otu_tax` combines `otu_table` and `taxa_table` into one tibble.
**timesplit**

**Value**

A tibble

**Author(s)**

Contact: Sudarshan A. Shetty <sudarshanshetty9@gmail.com>

**Examples**

```r
library(microbiome)
data("dietswap")
otu_tib <- otu_tibble(dietswap,column.id="FeatureID")
tax_tib <- tax_tibble(dietswap,column.id="FeatureID")
sample_tib <- sample_tibble(dietswap,column.id="SampleID")
otu_tax <- combine_otu_tax(dietswap,column.id = "FeatureID")
head(otu_tax)
```

---

**Description**

For each subject, return temporally consecutive sample pairs together with the corresponding time difference.

**Usage**

```r
timesplit(x)
```

**Arguments**

- `x` : phylseq object.

**Value**

data.frame

**Author(s)**

Leo Lahti <leo.lahti@iki.fi>

**Examples**

```r
data(atlas1006)
x <- timesplit(subset_samples(atlas1006, DNA_extraction_method == 'r' & sex == "male"))
```
### time_normalize

**Normalize Phyloseq Metadata Time Field**

#### Description
Shift the time field in phyloseq sample_data such that the first time point of each subject is always 0.

#### Usage
\[
time\_normalize(x)
\]

#### Arguments
- \( x \) phyloseq object. The sample_data(x) should contain the following fields: subject, time

#### Value
Phyloseq object with a normalized time field

#### Examples
```
data(peerj32)
pseq <- time_normalize(peerj32$phyloseq)
```

---

### time_sort

**Temporal Sorting Within Subjects**

#### Description
Within each subject, sort samples by time and calculate distance from the baseline point (minimum time).

#### Usage
\[
time\_sort(x)
\]

#### Arguments
- \( x \) A metadata data.frame including the following columns: time, subject, sample, signal. Or a phyloseq object.

#### Value
A list with sorted metadata (data.frame) for each subject.
top

Author(s)
Leo Lahti <leo.lahti@iki.fi>

References
See citation('microbiome')

Examples
data(atlas1006)
pseq <- subset_samples(atlas1006, DNA_extraction_method == "r")
ts <- time_sort(meta(pseq))

Identify Top Entries

Description
Identify top entries in a vector or given field in data frame.

Usage
top(
  x,
  field = NULL,
  n = NULL,
  output = "vector",
  round = NULL,
  na.rm = FALSE,
  include.rank = FALSE
)

Arguments
x data.frame, matrix, or vector
field Field or column to check for a data.frame or matrix
n Number of top entries to show
output Output format: vector or data.frame
round Optional rounding
na.rm Logical. Remove NA before calculating the statistics.
include.rank Include ranking if the output is data.frame. Logical.

Value
Vector of top counts, named by the corresponding entries
**top_taxa**

*Author(s)*

Leo Lahti <leo.lahti@iki.fi>

*References*

See citation("bibliographica")

*Examples*

```r
data(dietswap)
p <- top(meta(dietswap), "group", 10)
```

---

### top_taxa  

**Top Taxa**

**Description**

Return n most abundant taxa (based on total abundance over all samples), sorted by abundance

**Usage**

```r
top_taxa(x, n = ntaxa(x))
```

**Arguments**

- `x` : phyloseq object
- `n` : Number of top taxa to return (default: all)

**Value**

Character vector listing the top taxa

**Examples**

```r
data(dietswap)
topx <- top_taxa(dietswap, n=10)
```
transform

Data Transformations for phyloseq Objects

Description

Standard transforms for phyloseq-class.

Usage

transform(
  x,
  transform = "identity",
  target = "OTU",
  shift = 0,
  scale = 1,
  log10 = TRUE,
  reference = 1,
  ...
)

Arguments

x phyloseq-class object
transform Transformation to apply. The options include: 'compositional' (ie relative abundance), 'Z', 'log10', 'log10p', 'hellinger', 'identity', 'clr', 'alr', or any method from the vegan::decostand function.
target Apply the transform for 'sample' or 'OTU'. Does not affect the log transform.
shift A constant indicating how much to shift the baseline abundance (in transform='shift')
scale Scaling constant for the abundance values when transform = "scale".
log10 Used only for Z transformation. Apply log10 before Z.
reference Reference feature for the alr transformation.
... arguments to be passed

Details

In transformation typ, the 'compositional' abundances are returned as relative abundances in [0, 1] (convert to percentages by multiplying with a factor of 100). The Hellinger transform is square root of the relative abundance but instead given at the scale [0,1]. The log10p transformation refers to log10(1 + x). The log10 transformation is applied as log10(1 + x) if the data contains zeroes. CLR transform applies a pseudocount of min(relative abundance)/2 to exact zero relative abundance entries in OTU table before taking logs.

Value

Transformed phyloseq object
Examples

```r
data(dietswap)
x <- dietswap

No transformation
xt <- transform(x, 'identity')

OTU relative abundances
xt <- transform(x, 'compositional')

Z-transform for OTUs
xt <- transform(x, 'Z', 'OTU')

Z-transform for samples
xt <- transform(x, 'Z', 'sample')

Log10 transform (log10(1+x) if the data contains zeroes)
xt <- transform(x, 'log10')

Log10p transform (log10(1+x) always)
xt <- transform(x, 'log10p')

CLR transform
Note that small pseudocount is added if data contains zeroes
xt <- microbiome::transform(x, 'clr')

ALR transform
The pseudocount must be specified explicitly
The reference feature is 1 by default
xt <- microbiome::transform(x, 'alr', shift=1, reference=1)

Shift the baseline
xt <- transform(x, 'shift', shift=1)

Scale
xt <- transform(x, 'scale', scale=1)
```

---

### ztransform

#### Z Transformation

**Description**

Z transform for matrices

**Usage**

```r
ztransform(x, which, log10 = TRUE)
```
Arguments

- `x`: a matrix which margin

- `log10`: apply log10 transformation before Z

Details

Performs centering (to zero) and scaling (to unit variance) across samples for each taxa.

Value

Z-transformed matrix

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

```r
#data(peerj32)
#pseqz <- ztransform(abundances(peerj32$phyloseq))
```
Index

* data
  atlas1006, 11
  dietswap, 29
  hitchip.taxonomy, 44
  peerj32, 58
* early-warning
  potential_univariate, 71
* internal
  chunk_reorder, 18
  estimate_stability, 35
  quiet, 75
  radial_theta, 75
  ztransform, 96
* package
  microbiome-package, 4
* utilities
  abundances, 4
  add_besthit, 5
  add_refseq, 6
  aggregate_rare, 7
  aggregate_taxa, 8
  alpha, 9
  associate, 10
  baseline, 12
  bimodality, 13
  bimodality_sarle, 15
  boxplot_abundance, 16
  boxplot_alpha, 17
  cmat2table, 19
  collapse_replicates, 20
  core, 21
  core_abundance, 22
  core_heatmap, 23
  core_matrix, 24
  core_members, 25
  coverage, 26
  default_colors, 27
  densityplot, 27
  divergence, 30
  diversity, 31
  dominance, 32
  dominant, 34
  evenness, 36
  find_optima, 37
  gktau, 38
  group_age, 39
  group_bmi, 41
  heat, 42
  hotplot, 45
  inequality, 46
  intermediate_stability, 47
  is_compositional, 48
  log_modulo_skewness, 49
  low_abundance, 50
  map_levels, 51
  merge_taxa2, 52
  meta, 53
  multimodality, 53
  neat, 55
  neatsort, 56
  overlap, 57
  plot_atlas, 59
  plot_composition, 60
  plot_core, 61
  plot_density, 62
  plot_frequencies, 63
  plot_landscape, 64
  plot_regression, 66
  plot_taxa_prevalence, 68
  plot_tipping, 69
  prevalence, 73
  psmelt2, 74
  rare, 76
  rare_abundance, 77
  rare_members, 78
  rarity, 79
  read_biom2phyloseq, 81
  read_csv2phyloseq, 82
INDEX

read_mothur2phyloseq, 83
read_phyloseq, 84
readcount, 80
remove_samples, 85
remove_taxa, 86
richness, 87
spreadplot, 88
summarize_phyloseq, 89
taxa, 89
time_sort, 92
timesplit, 91
top, 93
transform, 95
dominant, 34
estimate_richness, 9
estimate_stability, 35
evenness, 36
filter_prevalent (core), 21
find_optima, 37
ggplot, 17, 18, 45, 61, 63–65, 68, 69
gktau, 38
group_age, 39
group_bmi, 41
heat, 42
hitchip.taxonomy, 44
hotplot, 45
inequality, 46
intermediate_stability, 47
is_compositional, 48
log_modulo skewness, 49
low_abundance, 50
map_levels, 51
merge_taxa2, 52
meta, 53
microbiome (microbiome-package), 4
microbiome-package, 4
multimodality, 53
neat, 55
neatsort, 56, 60
ordinate, 56
overlap, 57
peerj32, 58
phyloseq, 12, 24, 51, 61, 73, 95
phyloseq-class, 5, 74, 90
plot_atlas, 59
plot_composition, 60
plot_core, 61
plot_density, 62
plot_frequencies, 63
plot_landscape, 64
plot_regression, 66
plot_taxa_prevalence, 68
plot_tipping, 69
potential_analysis, 70
potential_univariate, 71
prevalence, 73
prevalent_taxa (core_members), 25
psmelt2, 74
quiet, 75
radial_theta, 75
rare, 76
rare_abundance, 77
rare_members, 78
rarity, 79
read_biom2phyloseq, 81
read_csv2phyloseq, 82
read_mothur2phyloseq, 83
read_phyloseq, 84
readcount, 80
remove_samples, 85
remove_taxa, 86
richness, 87
sample_data, 53
sample_tibble (TibbleUtilities), 90
spreadplot, 88
summarize_phyloseq, 89
taxa, 89
TibbleUtilities, 90
time_normalize, 92
time_sort, 92
timesplit, 91
top, 93
top_taxa, 94
transform, 60, 95
vegdist, 55
ztransform, 96