Package ‘microRNA’

June 19, 2022

Version 1.54.0
Author R. Gentleman, S. Falcon
Title Data and functions for dealing with microRNAs
Description Different data resources for microRNAs and some functions
for manipulating them.
License Artistic-2.0
Maintainer ``James F. Reid" <james.reid@ifom-ieo-campus.it>
Imports Biostrings (>= 2.11.32)
Depends R (>= 2.10)
biocViews Infrastructure, GenomeAnnotation, SequenceMatching
git_url https://git.bioconductor.org/packages/microRNA
git_branch RELEASE_3_15
git_last_commit c50a4e9
git_last_commit_date 2022-04-26
Date/Publication 2022-06-19

R topics documented:

get_selfhyb_subseq .. 2
hsSeqs ... 3
hsTargets ... 4
matchSeeds ... 5
mmSeqs ... 6
mmTargets ... 6
RNA2DNA ... 7
s3utr ... 8
seedRegions .. 9

Index 10
get_selfhyb_subseq
Get Self-Hybridizing Subsequences

Description

This function finds the longest self-hybridizing subsequences present in RNA or DNA sequences.

Usage

```r
get_selfhyb_subseq(seq, minlen, type = c("RNA", "DNA"))
show_selfhyb_counts(L)
show_selfhyb_lengths(L)
```

Arguments

- `seq` character vector of RNA or DNA sequences
- `minlen` an integer specifying the minimum length in bases of the self-hybridizing subsequences. Subsequences with length less than `minlen` will be ignored.
- `type` one of "RNA" or "DNA" depending on the type of sequences provided in `seq`. Note that you cannot mix RNA and DNA sequences.
- `L` The output of `get_selfhyp_subseq`.

Details

`get_selfhyb_subseq` finds the longest self-hybridizing subsequences of the specified minimum length.

These are defined to be the longest string that is found in both the input sequence, `seq`, and in its reverse complement.

Value

A list with an element for each sequence in `seq`. The list will be named using `names(seq)`.

Each element is itself a list with an element for each longest self-hybridizing subsequence (there can be more than one). Each such element is yet another list with components:

- `starts` integer vector giving the character start positions for the self-hybridizing subsequence in the sequence.
- `rcstarts` integer vector giving the character start positions for the reverse complement of the self-hybridizing subsequence in the sequence.

Author(s)

Seth Falcon
Examples

```r
seqs = c(a="UGAGGUAGGUAGGUUGUAUAGUU", b="UGAGGUAGGUAGGUUGUGUGGUU", c="UGAGGUAGGUAGGUUGUAUGGUU")
ans = get_selfhyb_subseq(seqs, minlen=3, type="RNA")
length(ans)
ans[["a"]]
show_selfhyb_counts(ans)
show_selfhyb_lengths(ans)
```

hsSeqs
Human Mature microRNA Sequences

Description
A set of human microRNA sequences.

Usage
data(hsSeqs)

Format
A character vector.

Details
Each sequence represents a different mature human microRNA.

Source
http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples
data(hsSeqs)
Description
A set of human microRNA names and their corresponding known targets given as ensembl Transcript IDs.

Usage
data(hsTargets)

Format
A data frame of microRNAs and their target ensembl IDs as recovered from miRBase. Additional columns are also provided to give the Chromosome as well as the start and end position of the microRNA binding site, and the strand orientation (plus or minus).

Details
Each mapping represents a different human microRNA, paired with one viable target. Other information about where the microRNA binds is also included. Some microRNAs have multiple targets and so some microRNAs may be represented more than once.

Source
http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples
data(hsTargets)
matchSeeds

matchSeeds \hspace{1cm} \textit{A function to match seed regions to sequences.}

Description

Given an input set of seed regions and a set of sequences all locations of the seed regions (exact
matches) within the sequences are found.

Usage

matchSeeds(seeds, seqs)

Arguments

- \textit{seeds} The seeds, or short sequences, to match.
- \textit{seqs} The sequences to find matches in.

Details

We presume that the problem is an exact matching problem and that all sequences are in the correct
orientation for that. If, for example, you start with seed regions from a microRNA (for \textit{seeds}) and
3'UTR sequences (for \textit{seqs}), then you would want to reverse complement one of the two sequences.
And make sure all sequences are either DNA or RNA.

Names from either \textit{seeds} or \textit{seqs} are propagated, as much as is possible.

Value

A list containing one entry for each element of \textit{seeds} that had at least one match in one entry
of \textit{seqs}. Each element of this list is a named vector containing the elements of \textit{seqs} that the
corresponding seed has an exact match in.

Author(s)

R. Gentleman

See Also

\texttt{seedRegions}

Examples

\begin{verbatim}
library(Biostrings)
data(hsSeqs)
data(s3utr)
hSeedReg = seedRegions(hsSeqs)
comphSeed = as.character(reverseComplement(RNAStringSet(hSeedReg)))
comph = RNA2DNA(comphSeed)
mx = matchSeeds(comph, s3utr)
\end{verbatim}
Description

A set of mouse microRNA sequences.

Usage

`data(mmSeqs)`

Format

A character vector.

Details

Each sequence represents a different mature mouse microRNA.

Source

http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples

`data(mmSeqs)`

mmTargets
Mouse microRNAs and their target IDs

Description

A set of mouse microRNA names and their corresponding known targets given as ensembl Transcript IDs.

Usage

`data(mmTargets)`
RNA2DNA

Format

A data frame of microRNAs and their target ensembl IDs as recovered from miRBase. Additional columns are also provided to give the Chromosome as well as the start and end position of the microRNA binding site, and the strand orientation (plus or minus).

Details

Each mapping represents a different mouse microRNA, paired with one viable target. Other information about where the microRNA binds is also included. Some microRNAs have multiple targets and so some microRNAs may be represented more than once.

Source

http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples

data(mmTargets)

RNA2DNA(x)

Description

RNA and DNA differ in that RNA uses uracil (U) and DNA uses thiamine (T), this function translates an RNA sequence into a DNA sequence by translating the characters.

Usage

RNA2DNA(x)

Arguments

x

A valid RNA sequence.

Details

No checking for validity of sequence is made, and the input sequence is translated to upper case.
Value
A character vector, of the same length as x where all characters are in upper case, and any instance of U in x is replaced by a T.

Author(s)
R. Gentleman

See Also
catr

Examples
input = c("AUCG", "uuac")
RNA2DNA(input)

data(s3utr) Test sequence data

Description
A vector of 3’ UTR sequence data, the names correspond to Entrez Gene IDs and the data were extracted using biomaRt.

Usage
data(s3utr)

Format
A character vector, the values are the 3’ UTR for a set of genes, the names are Entrez Gene Identifiers.

Details
The data were downloaded using the get5Sequence function in the biomaRt package and duplicate strings removed. There remain some duplicated Entrez IDs but the reported 3’ UTRs are different.

Examples
data(s3utr)
seedRegions

A function to retrieve the seed regions from microRNA sequences

Description
The seed region of a microRNA consists of a set of nucleotides at the 5’ end of the microRNA, typically bases 2 through 7, although some times 8 is used.

Usage
seedRegions(x, start = 2, stop = 7)

Arguments
- x: A vector of microRNA sequences.
- start: The start locations, can be a vector.
- stop: The stop locations, can be a vector.

Details
We use `substr` to extract these sequences.

Value
A vector of the same length as x with the substrings.

Author(s)
R. Gentleman

See Also
`substr`

Examples
```r
data(hsSeqs)
seedRegions(hsSeqs[1:5])
seedRegions(hsSeqs[1:3], start=c(2,1,2), stop=c(8,7,9))
```
Index

* datasets
 - hsSeqs, 3
 - hsTargets, 4
 - mmSeqs, 6
 - mmTargets, 6
 - s3utr, 8

* manip
 - get_selfhyb_subseq, 2
 - matchSeeds, 5
 - RNA2DNA, 7
 - seedRegions, 9

 chartr, 8
 - get_selfhyb_subseq, 2

 hsSeqs, 3
 - hsTargets, 4

 - matchSeeds, 5
 - mmSeqs, 6
 - mmTargets, 6

 RNA2DNA, 7

 s3utr, 8
 - seedRegions, 5, 9
 - show_selfhyb_counts
 (get_selfhyb_subseq), 2
 - show_selfhyb_lengths
 (get_selfhyb_subseq), 2
 - substr, 9