Package ‘microRNA’

May 3, 2024

Version 1.62.0

Author R. Gentleman, S. Falcon

Title Data and functions for dealing with microRNAs

Description Different data resources for microRNAs and some functions for manipulating them.

License Artistic-2.0

Maintainer ``James F. Reid'' <james.reid@ifom-ieo-campus.it>

Imports Biostrings (>= 2.11.32)

Depends R (>= 2.10)

biocViews Infrastructure, GenomeAnnotation, SequenceMatching

git_url https://git.bioconductor.org/packages/microRNA

git_branch RELEASE_3_19

git_last_commit f5b4283

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-02

Contents

get_selfhyb_subseq .. 2
hsSeqs ... 3
hsTargets ... 4
matchSeeds .. 5
mmSeqs ... 6
mmTargets .. 6
RNA2DNA .. 7
s3utr ... 8
seedRegions .. 9

Index 10
get_selfhyb_subseq Get Self-Hybridizing Subsequences

Description
This function finds the longest self-hybridizing subsequences present in RNA or DNA sequences.

Usage
get_selfhyb_subseq(seq, minlen, type = c("RNA", "DNA"))
show_selfhyb_counts(L)
show_selfhyb_lengths(L)

Arguments
seq character vector of RNA or DNA sequences
minlen an integer specifying the minimum length in bases of the self-hybridizing subsequences. Subsequences with length less than minlen will be ignored.
type one of "RNA" or "DNA" depending on the type of sequences provided in seq. Note that you cannot mix RNA and DNA sequences.
L The output of get_selfhyb_subseq.

Details
get_selfhyb_subseq finds the longest self-hybridizing subsequences of the specified minimum length.
These are defined to be the longest string that is found in both the input sequence, seq, and in its reverse complement.

Value
A list with an element for each sequence in seq. The list will be named using names(seq).
Each element is itself a list with an element for each longest self-hybridizing subsequence (there can be more than one). Each such element is yet another list with components:

starts integer vector giving the character start positions for the self-hybridizing subsequence in the sequence.
rcstarts integer vector giving the character start positions for the reverse complement of the self-hybridizing subsequence in the sequence.

Author(s)
Seth Falcon
Examples

```r
seqs = c(a="UGAGGUAGGUUGUAUGUU", b="UGAGGUAGGUUGUGUGGUUU", c="UGAGGUAGGUUGUAUGGUUU")
ans = get_selfhyb_subseq(seqs, minlen=3, type="RNA")
length(ans)
ans[["a"]]
show_selfhyb_counts(ans)
show_selfhyb_lengths(ans)
```

hsSeqs
Human Mature microRNA Sequences

Description

A set of human microRNA sequences.

Usage

```r
data(hsSeqs)
```

Format

A character vector.

Details

Each sequence represents a different mature human microRNA.

Source

http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples

```r
data(hsSeqs)
```
hsTargets

Human microRNAs and their target IDs

Description

A set of human microRNA names and their corresponding known targets given as ensembl Transcript IDs.

Usage

```r
data(hsTargets)
```

Format

A data frame of microRNAs and their target ensembl IDs as recovered from miRBase. Additional columns are also provided to give the Chromosome as well as the start and end position of the microRNA binding site, and the strand orientation (plus or minus).

Details

Each mapping represents a different human microRNA, paired with one viable target. Other information about where the microRNA binds is also included. Some microRNAs have multiple targets and so some microRNAs may be represented more than once.

Source

http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples

```r
data(hsTargets)
```
matchSeeds

A function to match seed regions to sequences.

Description

Given an input set of seed regions and a set of sequences all locations of the seed regions (exact matches) within the sequences are found.

Usage

matchSeeds(seeds, seqs)

Arguments

- **seeds**: The seeds, or short sequences, to match.
- **seqs**: The sequences to find matches in.

Details

We presume that the problem is an exact matching problem and that all sequences are in the correct orientation for that. If, for example, you start with seed regions from a microRNA (for seeds) and 3' UTR sequences (for seqs), then you would want to reverse complement one of the two sequences. And make sure all sequences are either DNA or RNA.

Names from either seeds or seqs are propagated, as much as is possible.

Value

A list containing one entry for each element of seeds that had at least one match in one entry of seqs. Each element of this list is a named vector containing the elements of seqs that the corresponding seed has an exact match in.

Author(s)

R. Gentleman

See Also

seedRegions

Examples

library(Biostrings)
data(hsSeqs)
data(s3utr)
hSeedReg = seedRegions(hsSeqs)
comphSeed = as.character(reverseComplement(RNAStringSet(hSeedReg)))
comph = RNA2DNA(comphSeed)
mx = matchSeeds(comph, s3utr)
mmSeqs

Mouse Mature microRNA Sequences

Description
A set of mouse microRNA sequences.

Usage
`data(mmSeqs)`

Format
A character vector.

Details
Each sequence represents a different mature mouse microRNA.

Source
http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples
`data(mmSeqs)`

mmTargets

Mouse microRNAs and their target IDs

Description
A set of mouse microRNA names and their corresponding known targets given as ensembl Transcript IDs.

Usage
`data(mmTargets)`
RNA2DNA

Format

A data frame of microRNAs and their target ensembl IDs as recovered from miRBase. Additional columns are also provided to give the Chromosome as well as the start and end position of the microRNA binding site, and the strand orientation (plus or minus).

Details

Each mapping represents a different mouse microRNA, paired with one viable target. Other information about where the microRNA binds is also included. Some microRNAs have multiple targets and so some microRNAs may be represented more than once.

Source

http://microrna.sanger.ac.uk/sequences/index.shtml

References

Examples

data(mmTargets)

| RNA2DNA | A Function to translate RNA sequences into DNA sequences. |

Description

RNA and DNA differ in that RNA uses uracil (U) and DNA uses thiamine (T), this function translates an RNA sequence into a DNA sequence by translating the characters.

Usage

RNA2DNA(x)

Arguments

x A valid RNA sequence.

Details

No checking for validity of sequence is made, and the input sequence is translated to upper case.
Value

A character vector, of the same length as x where all characters are in upper case, and any instance of U in x is replaced by a T.

Author(s)

R. Gentleman

See Also

chartr

Examples

input = c("AUCG", "uuac")
RNA2DNA(input)

Description

A vector of 3’ UTR sequence data, the names correspond to Entrez Gene IDs and the data were extracted using biomaRt.

Usage

data(s3utr)

Format

A character vector, the values are the 3’ UTR for a set of genes, the names are Entrez Gene Identifiers.

Details

The data were downloaded using the getSequence function in the biomaRt package and duplicate strings removed. There remain some duplicated Entrez IDs but the reported 3’ UTRs are different.

Examples

data(s3utr)
Description

The seed region of a microRNA consists of a set of nucleotides at the 5’ end of the microRNA, typically bases 2 through 7, although sometimes 8 is used.

Usage

```
seedRegions(x, start = 2, stop = 7)
```

Arguments

- `x`: A vector of microRNA sequences.
- `start`: The start locations, can be a vector.
- `stop`: The stop locations, can be a vector.

Details

We use `substr` to extract these sequences.

Value

A vector of the same length as `x` with the substrings.

Author(s)

R. Gentleman

See Also

`substr`

Examples

```
data(hsSeqs)
seedRegions(hsSeqs[1:5])
seedRegions(hsSeqs[1:3], start=c(2,1,2), stop=c(8,7,9))
```
Index

* datasets
 hsSeqs, 3
 hsTargets, 4
 mmSeqs, 6
 mmTargets, 6
 s3utr, 8

* manip
 get_selfhyb_subseq, 2
 matchSeeds, 5
 RNA2DNA, 7
 seedRegions, 9

chartr, 8

get_selfhyb_subseq, 2

hsSeqs, 3
hsTargets, 4

matchSeeds, 5
mmSeqs, 6
mmTargets, 6

RNA2DNA, 7

s3utr, 8
seedRegions, 5, 9

show_selfhyb_counts
 (get_selfhyb_subseq), 2

show_selfhyb_lengths
 (get_selfhyb_subseq), 2

substr, 9