Package ‘methylGSA’

March 28, 2024

Type Package
Title Gene Set Analysis Using the Outcome of Differential Methylation
Version 1.20.0
Description The main functions for methylGSA are methylglm and methylRRA.
methylGSA implements logistic regression adjusting number of probes as a covariate.
methylRRA adjusts multiple p-values of each gene by Robust Rank Aggregation.
For more detailed help information, please see the vignette.
Encoding UTF-8
Imports RobustRankAggreg, ggplot2, stringr, stats, clusterProfiler,
missMethyl, org.Hs.eg.db, reactome.db, BiocParallel, GO.db,
AnnotationDbi, shiny,
IlluminaHumanMethylation450kannoilmn12.hg19,
IlluminaHumanMethylationEPICannoilm10b4.hg19
Depends R (>= 3.5)
Suggests knitr, rmarkdown, testthat, enrichplot
License GPL-2
URL https://github.com/reese3928/methylGSA
BugReports https://github.com/reese3928/methylGSA/issues
RoxygenNote 6.1.0
VignetteBuilder knitr
biocViews DNA Methylation, Differential Methylation, Gene Set Enrichment, Regression,
Gene Regulation, Pathways

git_url https://git.bioconductor.org/packages/methylGSA

git_branch RELEASE_3_18

Repository Bioconductor 3.18
Date/Publication 2024-03-27
R topics documented:

- barplot
- cpg.pval
- CpG2Gene
- getAnnot
- getDescription
- getGS
- GS.list
- methylglm
- methylgometh
- methylRRA
- prepareAnnot
- runExample

Description

This function visualizes methylGSA analysis result by barplot.

Usage

```r
barplot(res, xaxis = "Size", num = 5, colorby = "padj", title = "")
```

Arguments

- `res`: A data frame which contains methylGSA analysis result.
- `xaxis`: A string which specify the x-axis in the barplot. Either "Size" (number of genes in gene set) or "Count" (number of significant genes in gene set). Default is "Size". "Count" option is not available for methylglm and methylRRA (GSEA) result.
- `num`: An integer. Number of gene sets to display on the barplot. Default is 5.
- `colorby`: A string. Either "pvalue" or "padj". Default is "padj".
- `title`: A string. Barplot title. Default is NULL.

Details

The implementation of the function is adapted from barplot function in enrichplot package.
cpg.pval

Value

`ggplot` object

References

Examples

```r
res = data.frame(ID = c("04144", "04510", "04740", "04810", "05200"),
                 Description = c("Endocytosis", "Focal adhesion",
                                 "Olfactory transduction",
                                 "Regulation of actin cytoskeleton", "Pathways in cancer"),
                 Size = c(201, 200, 388, 213, 326),
                 pvalue = c(0.481, 0.696, 1, 1, 1),
                 padj = 1)

barplot(res)
```

Description

An example of user input `cpg.pval`

Usage

`cpg.pval`

Format

A named vector contains p-values of each probe tested

CpG2Gene

Description

An example of user user-supplied mapping between CpGs and genes

Usage

`CpG2Gene`

Format

A data frame contains mapping between CpGs and genes
getAnnot

Get CpG annotation

Description

This function gets CpG IDs and their corresponding gene symbols.

Usage

getAnnot(array.type, group = "all")

Arguments

array.type A string. Either "450K" or "EPIC". Default is "450K".

group A string. "all", "body", "promoter1" or "promoter2". Default is "all". If group = "body", only CpGs on gene body will be pulled out. If group = "promoter1" or group = "promoter2", only CpGs on promoters will be pulled out. Here is the definition of "body", "promoter1" and "promoter2" according to the annotation in IlluminaHumanMethylation450kanno.ilmn12.hg19 or IlluminaHumanMethylationEPICanno.ilm10b4.hg19.

- body: CpGs whose gene group correspond to "Body" or "1stExon"
- promoter1: CpGs whose gene group correspond to "TSS1500" or "TSS200"
- promoter2: CpGs whose gene group correspond to "TSS1500", "TSS200", "1stExon", or "5'UTR".

If group = "all", all CpGs will be pulled out.

Details

The implementation of the function is modified from .flattenAnn function in missMethyl package.

Value

A data frame contains CpG IDs and gene symbols.

References

getDescription

This function gets description of gene sets.

Usage

description(GSids, GS.type)

Arguments

GSids A vector contains gene set IDs.
GS.type A string. "GO", "KEGG", or "Reactome".

Value

A vector contains gene sets description.

References

Examples

GSids = c("GO:0007389", "GO:0000978", "GO:0043062")
Description = getDescription(GSids, "GO")
head(Description)

getGS

Get Gene Sets

Description

This function gets gene sets information.

Usage

getGS(geneids, GS.type)
Arguments

- **geneids**
 A vector contains all gene ids of interest. Gene ids should be gene symbol.

- **GS.type**
 A string. "GO", "KEGG", or "Reactome".

Value

A list contains all gene sets of interest and their corresponding genes.

References

Examples

```r
geneids = c("FKBP5", "NDUFA1", "STAT5B")
GO.list = getGS(geneids, "KEGG")
head(GO.list)
```

| GS.list | An example of user input gene sets |

Description

An example of user input gene sets

Usage

GS.list

Format

A list contains user input gene set names and their corresponding genes
methylglm

Implement logistic regression adjusting for number of probes in enrichment analysis

Description

This function implements logistic regression adjusting for number of probes in enrichment analysis.

Usage

methylglm(cpg.pval, array.type = "450K", FullAnnot = NULL,
 group = "all", GS.list = NULL, GS.idtype = "SYMBOL",
 GS.type = "GO", minsize = 100, maxsize = 500, parallel = FALSE,
 BPPARAM = bpparam())

Arguments

cpg.pval A named vector containing p-values of differential methylation test. Names should be CpG IDs.
array.type A string. Either "450K" or "EPIC". Default is "450K". This argument will be ignored if FullAnnot is provided.
FullAnnot A data frame provided by prepareAnnot function. Default is NULL.
group A string. "all", "body", "promoter1" or "promoter2". Default is "all". If group = "body", only CpGs on gene body will be considered in methylglm. If group = "promoter1" or group = "promoter2", only CpGs on promoters will be considered. Here is the definition of "body", "promoter1" and "promoter2" according to the annotation in IlluminaHumanMethylation450kanno.ilmn12.hg19 or IlluminaHumanMethylationEPICan.ilm10b4.hg19.
 • body: CpGs whose gene group correspond to "Body" or "1stExon"
 • promoter1: CpGs whose gene group correspond to "TSS1500" or "TSS200"
 • promoter2: CpGs whose gene group correspond to "TSS1500", "TSS200", "1stExon", or "5'UTR".
If group = "all", all CpGs are considered regardless of their gene group.

GS.list A list. Default is NULL. If there is no input list, Gene Ontology is used. Entry names are gene sets names, and elements correpond to genes that gene sets contain.
GS.idtype A string. "SYMBOL", "ENSEMBL", "ENTREZID" or "REFSEQ". Default is "SYMBOL"
GS.type A string. "GO", "KEGG", or "Reactome". Default is "GO"
minsize An integer. If the number of genes in a gene set is less than this integer, this gene set is not tested. Default is 100.
maxsize An integer. If the number of genes in a gene set is greater than this integer, this gene set is not tested. Default is 500.
parallel either TRUE or FALSE indicating whether parallel should be used. Default is FALSE
BPPARAM an argument provided to bplapply. See register for details.

Details

The implementation of this function is modified from goglm function in GOglm package.

Value

A data frame contains gene set tests results.

References

Examples

data(CpG2Genetoy)
data(cpgtoy)
data(GSlisttoy)
GS.list = GS.list[1:10]
FullAnnot = prepareAnnot(CpG2Gene)
res = methylglm(cpg.pval = cpg.pval, FullAnnot = FullAnnot,
GS.list = GS.list, GS.idtype = "SYMBOL")
head(res)

methylgometh Adjusting number of probes in gene set testing using gometh or gsameth in missMethyl

Description

This function calls gometh or gsameth function in missMethyl package to adjust number of probes in gene set testing

Usage

methylgometh(cpg.pval, sig.cut = 0.001, topDE = NULL,
array.type = "450K", GS.list = NULL, GS.idtype = "SYMBOL",
GS.type = "GO", minsize = 100, maxsize = 500)
Arguments

cpg.pval A named vector containing p-values of differential methylation test. Names should be CpG IDs.
sig.cut A numeric value indicating cut-off value for significant CpG. Default is 0.001. This argument will be ignored if topDE is provided.
topDE An integer. The top number of CpGs to be declared as significant.
array.type A string. Either "450K" or "EPIC". Default is "450K".
GS.list A list. Default is NULL. If there is no input list, Gene Ontology is used. Entry names are gene sets names, and elements correspond to genes that gene sets contain.
GS.idtype A string. "SYMBOL", "ENSEMBL", "ENTREZID" or "REFSEQ". Default is "SYMBOL".
GS.type A string. "GO", "KEGG", or "Reactome"
minsize An integer. If the number of genes in a gene set is less than this integer, this gene set is not tested. Default is 100.
maxsize An integer. If the number of genes in a gene set is greater than this integer, this gene set is not tested. Default is 500.

Value

A data frame contains gene set tests results.

References

Examples

```r
## Not run:
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
data(cpgtoy)
res = methylgometh(cpg.pval = cpg.pval, sig.cut = 0.001, GS.type = "KEGG",
minsize = 200, maxsize = 205)
head(res)

## End(Not run)
```
methylRRA

Enrichment analysis after adjusting multiple p-values of each gene by Robust Rank Aggregation

Description

This function implements enrichment after adjusting multiple p-values of each gene by Robust Rank Aggregation.

Usage

methylRRA(cpg.pval, array.type = "450K", FullAnnot = NULL,
group = "all", method = "ORA", sig.cut = 0.05, topDE = NULL,
GS.list = NULL, GS.idtype = "SYMBOL", GS.type = "GO",
minsize = 100, maxsize = 500)

Arguments

cpg.pval A named vector containing p-values of differential methylation test. Names should be CpG IDs.
array.type A string. Either "450K" or "EPIC". Default is "450K". This argument will be ignored if FullAnnot is provided.
FullAnnot A data frame provided by prepareAnnot function. Default is NULL.
group A string. "all", "body", "promoter1" or "promoter2". Default is "all". If group = "body", only CpGs on gene body will be considered in methylRRA. If group = "promoter1" or group = "promoter2", only CpGs on promoters will be considered. Here is the definition of "body", "promoter1" and "promoter2" according to the annotation in IlluminaHumanmethylation450kanno.ilmn12.hg19 or IlluminaHumanmethylationEPICanno.ilm10b4.hg19:
 • body: CpGs whose gene group correspond to "Body" or "1stExon"
 • promoter1: CpGs whose gene group correspond to "TSS1500" or "TSS200"
 • promoter2: CpGs whose gene group correspond to "TSS1500", "TSS200", "1stExon", or "5'UTR".
If group = "all", all CpGs are considered regardless of their gene group.
method A string. "ORA" or "GSEA". Default is "ORA"
sig.cut A numeric value indicating FDR cut-off for significant gene in ORA. Default is 0.05. This argument will be ignored if topDE is provided or method = "GSEA" is used.
topDE An integer. The top number of genes to be declared as significant after robust rank aggregation. This argument will be ignored if method = "GSEA" is used.
GS.list A list. Default is NULL. If there is no input list, Gene Ontology is used. Entry names are gene sets names, and elements correspond to genes that gene sets contain.
prepareAnnot

<table>
<thead>
<tr>
<th>GS.idtype</th>
<th>A string. "SYMBOL", "ENSEMBL", "ENTREZID" or "REFSEQ". Default is "SYMBOL".</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS.type</td>
<td>A string. "GO", "KEGG", or "Reactome". Default is "GO"</td>
</tr>
<tr>
<td>minsize</td>
<td>An integer. If the number of genes in a gene set is less than this integer, this gene set is not tested. Default is 100.</td>
</tr>
<tr>
<td>maxsize</td>
<td>An integer. If the number of genes in a gene set is greater than this integer, this gene set is not tested. Default is 500.</td>
</tr>
</tbody>
</table>

Value

A data frame contains gene set tests results.

References

Examples

data(CpG2Genetoy)
data(cpgtoy)
data(GSlisttoy)
GS.list = GS.list[1:10]
FullAnnot = prepareAnnot(CpG2Gene)
res1 = methylRRA(cpg.pval = cpg.pval, FullAnnot = FullAnnot, method = "ORA", GS.list = GS.list)
head(res1)

Description

This function prepares CpG to gene mapping which will be used by methylRRA and methylglm.

Usage

```r
prepareAnnot(CpG2Gene, geneidtype = "SYMBOL")
```
Arguments

- **CpG2Gene** A matrix, or a data frame or a list contains CpG to gene mapping. For a matrix or data frame, 1st column should be CpG ID and 2nd column should be gene name. For a list, entry names should be gene names, and elements correspond to CpG IDs.

- **geneidtype** A string. "SYMBOL", "ENSEMBL", "ENTREZID" or "REFSEQ". Default is "SYMBOL".

Value

A data frame contains ready to use CpG to gene mapping.

References

Examples

```r
data(CpG2Genetoy)
FullAnnot = prepareAnnot(CpG2Gene)
head(FullAnnot)
```

Description

This is an interface for Bioconductor package methylGSA.

Usage

```r
runExample(run = TRUE)
```

Arguments

- **run** Run the app or not. Default is TRUE

Value

The shiny app will be opened in a web browser.

Note

In order to run the app, the following R/Bioconductor packages needs to be installed properly: shinycssloaders, DT, ggplot2, IlluminaHumanMethylation450kanno.ilmn12.hg19 (if analyzing 450K array) IlluminaHumanMethylationEPICanno.ilm10b4.hg19 (if analyzing EPIC array)
Examples

Please note: in this example, the argument run is set to be FALSE in
order to pass R CMD check. However, when using the app, users are
expected to launch the app by runExample()
runExample(FALSE)
Index

* datasets
 - cpg.pval, 3
 - CpG2Gene, 3
 - GS.list, 6

barplot, 2
bplapply, 8

cpg.pval, 3
CpG2Gene, 3

getAnnot, 4
getDescription, 5
getGS, 5
GS.list, 6

methylglm, 7
methylgometh, 8
methylRRA, 10

prepareAnnot, 11

register, 8
runExample, 12