Package ‘methylCC’

April 16, 2024

Title Estimate the cell composition of whole blood in DNA methylation samples

Version 1.16.0

Imports Biobase, GenomicRanges, IRanges, S4Vectors, dplyr, magrittr, mini, bsseq, quadprog, plyranges, stats, utils, bumphunter, genefilter, methods, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylation450kanno.ilmn12.hg19

Depends R (>= 3.6), FlowSorted.Blood.450k

Suggests rmarkdown, knitr, testthat (>= 2.1.0), BiocGenerics, BiocStyle, tidyr, ggplot2

Description A tool to estimate the cell composition of DNA methylation whole blood sample measured on any platform technology (microarray and sequencing).

biocViews Microarray, Sequencing, DNAMethylation, MethylationArray, MethylSeq, WholeGenome

VignetteBuilder knitr

RoxygenNote 6.1.1

Encoding UTF-8

License GPL-3

BugReports https://github.com/stephaniehicks/methylCC/

URL https://github.com/stephaniehicks/methylCC/

git_url https://git.bioconductor.org/packages/methylCC

git_branch RELEASE_3_18

git_last_commit 5122b11

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-15

Author Stephanie C. Hicks [aut, cre] (<https://orcid.org/0000-0002-7858-0231>), Rafael Irizarry [aut] (<https://orcid.org/0000-0002-3944-4309>)

Maintainer Stephanie C. Hicks <shicks19@jhu.edu>
R topics documented:

.extract_raw_data 2
.find_dmrs .. 3
.initializeMLEs 4
.initialize_theta 5
.methylcc_engine 5
.methylcc_estep 6
.methylcc_mstep 7
.pick_target_positions 7
.preprocess_estimatecc 8
.split ... 8
.WFun ... 9
.cell_counts 9
.estimatecc .. 10
.estimatecc-class 12
.offMethRegions 13
.onMethRegions 13

Index 14

.extract_raw_data Extract raw data

Description

Extract the methylation values and GRanges objects

Usage

.extract_raw_data(object)

Arguments

object an object can be a RGChannelSet, GenomicMethylSet or BSseq object

Value

A list preprocessed objects from the RGChannelSet, GenomicMethylSet or BSseq objects to be used in .preprocess_estimatecc().
Description

This function uses the FlowSorted.Blood.450k whole blood reference methylomes with six cell types to identify differentially methylated regions.

Usage

```r
.find_dmrs(verbose = TRUE, gr_target = NULL, include_cpgs = FALSE,
            include_dmrs = TRUE, num_cpgs = 50, num_regions = 50,
            bumphunter_beta_cutoff = 0.2, dmr_up_cutoff = 0.5,
            dmr_down_cutoff = 0.4, dmr_pval_cutoff = 1e-11,
            cpg_pval_cutoff = 1e-08, cpg_up_dm_cutoff = 0,
            cpg_down_dm_cutoff = 0, pairwise_comparison = FALSE,
            mset_train_flow_sort = NULL)
```

Arguments

- **verbose**: TRUE/FALSE argument specifying if verbose messages should be returned or not. Default is TRUE.
- **gr_target**: Default is NULL. However, the user can provide a GRanges object from the object in estimatecc. Before starting the procedure to find differentially methylated regions, the intersection of the gr_target and GRanges object from the reference methylomes (FlowSorted.Blood.450k).
- **include_cpgs**: TRUE/FALSE. Should individual CpGs be returned. Default is FALSE.
- **include_dmrs**: TRUE/FALSE. Should differentially methylated regions be returned. Default is TRUE. User can turn this to FALSE and search for only CpGs.
- **num_cpgs**: The max number of CpGs to return for each cell type. Default is 50.
- **num_regions**: The max number of DMRs to return for each cell type. Default is 50.
- **bumphunter_beta_cutoff**: The cutoff threshold in bumphunter() in the bumphunter package.
- **dmr_up_cutoff**: A cutoff threshold for identifying DMRs that are methylated in one cell type, but not in the other cell types.
- **dmr_down_cutoff**: A cutoff threshold for identifying DMRs that are not methylated in one cell type, but methylated in the other cell types.
- **dmr_pval_cutoff**: A cutoff threshold for the p-values when identifying DMRs that are methylated in one cell type, but not in the other cell types (or vice versa).
- **cpg_pval_cutoff**: A cutoff threshold for the p-values when identifying differentially methylated CpGs that are methylated in one cell type, but not in the other cell types (or vice versa).
cpg_up_dm_cutoff
A cutoff threshold for identifying differentially methylated CpGs that are methylated in one cell type, but not in the other cell types.

cpg_down_dm_cutoff
A cutoff threshold for identifying differentially methylated CpGs that are not methylated in one cell type, but are methylated in the other cell types.

pairwise_comparison
TRUE/FALSE of whether all pairwise comparisons (e.g. methylated in Granulocytes and Monocytes, but not methylated in other cell types). Default if FALSE.

mset_train_flow_sort
Default is NULL. However, a user can provide a MethylSet object after processing the FlowSorted.Blood.450k dataset. The default normalization is preprocessIllumina().

Value
A list of data frames and GRanges objects.

.initializeMLEs

Description
Helper functions to initialize MLEs in estimatecc().

Usage
.initializeMLEs(init_param_method, n, K, Ys, Zs, a0init, a1init, sig0init, sig1init, tauinit)

Arguments
init_param_method
method to initialize parameter estimates. Choose between "random" (randomly sample) or "known_regions" (uses unmethylated and methylated regions that were identified based on Reinus et al. (2012) cell sorted data.). Defaults to "random".

n
Number of samples

K
Number of cell types

Ys
observed methylation levels in samples provided by user of dimension R x n

Zs
Cell type specific regions of dimension R x K

a0init
Default NULL. Initial mean methylation level in unmethylated regions

a1init
Default NULL. Initial mean methylation level in methylated regions

sig0init
Default NULL. Initial var methylation level in unmethylated regions

sig1init
Default NULL. Initial var methylation level in methylated regions

tauinit
Default NULL. Initial var for measurement error
.initialize_theta

Value

A list of MLE estimates to be used in estimatecc().

Description

Creates a container with initial theta parameter estimates

Usage

`.initialize_theta(n, K, alpha0 = NULL, alpha1 = NULL, sig0 = NULL, sig1 = NULL, tau = NULL)`

Arguments

- `n`: Number of samples
- `K`: Number of cell types
- `alpha0`: Default NULL. Initial mean methylation level in unmethylated regions
- `alpha1`: Default NULL. Initial mean methylation level in methylated regions
- `sig0`: Default NULL. Initial var methylation level in unmethylated regions
- `sig1`: Default NULL. Initial var methylation level in methylated regions
- `tau`: Default NULL. Initial var for measurement error

Value

A data frame with initial parameter estimates to be used in .initializeMLEs().

.methylcc_engine

Description

Helper function for estimatecc

Usage

`.methylcc_engine(Ys, Zs, current_pi_mle, current_theta, epsilon, max_iter)`
Arguments

Ys observed methylation levels in samples provided by user of dimension R x n
Zs Cell type specific regions of dimension R x K
current_pi_mle cell composition MLE estimates of dimension K x n
current_theta other parameter estimates in EM algorithm
epsilon Add here.
max_iter Add here.

Value

A list of MLE estimates that is used in estimatecc().

Usage

.methylcc_estep(Ys, Zs, current_pi_mle, current_theta, meth_status = 0)

Arguments

Ys observed methylation levels in samples provided by user of dimension R x n
Zs Cell type specific regions of dimension R x K
current_pi_mle cell composition MLE estimates of dimension K x n
current_theta other parameter estimates in EM algorithm
meth_status Indicator function corresponding to regions that are unmethylated (meth_status=0) or methylated (meth_status=1)

Value

List of expected value of the first two moments of the random effects (or the E-Step in the EM algorithm) used in .methylcc_engine()
.methylcc_mstep

Maximization step

Description

Maximization step in EM Algorithm for methylCC

Usage

```
methylcc_mstep(Ys, Zs, current_pi_mle, current_theta, estep0, estep1)
```

Arguments

- **Ys**: observed methylation levels in samples provided by user of dimension R \times n
- **Zs**: Cell type specific regions of dimension R \times K
- **current_pi_mle**: cell composition MLE estimates of dimension K \times n
- **current_theta**: other parameter estimates in EM algorithm
- **estep0**: Results from expectation step for unmethylated regions
- **estep1**: Results from expectation step for methylated regions

Value

A list of the updated MLEs (or the M-Step in the EM algorithm) used in methylcc_engine()

.pick_target_positions

Pick target positions

Description

Pick probes from target data using the indices in dmp_regions

Usage

```
pick_target_positions(target_granges, target_object = NULL, target_cvg = NULL, dmp_regions)
```

Arguments

- **target_granges**: add more here.
- **target_object**: an optional argument which contains the meta-data for target_granges. If target_granges already contains the meta-data, do not need to supply target_object.
- **target_cvg**: coverage reads for the target object
- **dmp_regions**: differentially methylated regions
Description
This function preprocesses the data before the estimatecc() function

Usage
`.preprocess_estimatecc(object, verbose = TRUE,
init_param_method = "random",
celltype_specific_dmrs = celltype_specific_dmrs)`

Arguments
- `object`: an object can be a `RGChannelSet`, `GenomicMethylSet` or `BSseq` object
- `verbose`: TRUE/FALSE argument specifying if verbose messages should be returned or not. Default is TRUE.
- `init_param_method`: method to initialize parameter estimates. Choose between "random" (randomly sample) or "known_regions" (uses unmethylated and methylated regions that were identified based on Reinus et al. (2012) cell sorted data.). Defaults to "random".
- `celltype_specific_dmrs`: cell type specific differentially methylated regions (DMRs).

Value
A list of object to be used in estimatecc

Description
helper function to split along a variable

Usage
`.splitit(x)`
Helper function to take the product of Z and cell composition estimates

Description

Helper function which is the product of Z and pi_mle

Usage

```
.WFun(Zs, pi_mle)
```

Arguments

- `Zs` Cell type specific regions of dimension R x K
- `pi_mle` cell composition MLE estimates

Value

A list of output after taking the product of Z and cell composition mle estimates to be used in .methylcc_estep().

Generic function that returns the cell composition estimates

Description

Given a estimatecc object, this function returns the cell composition estimates. Accessors for the 'cell_counts' slot of a estimatecc object.

Usage

```
cell_counts(object)
```

```
## S4 method for signature 'estimatecc'
cell_counts(object)
```

Arguments

- `object` an object of class estimatecc.
Value

Returns the cell composition estimates

Examples

```r
# This is a reduced version of the FlowSorted.Blood.450k
# dataset available by using BiocManager::install("FlowSorted.Blood.450k"),
# but for purposes of the example, we use the smaller version
# and we set \code{demo=TRUE}. For any case outside of this example for
# the package, you should set \code{demo=FALSE} (the default).

dir <- system.file("data", package="methylCC")
files <- file.path(dir, "FlowSorted.Blood.450k.sub.RData")
if(file.exists(files)){
  load(file = files)
  set.seed(12345)
  est <- estimatecc(object = FlowSorted.Blood.450k.sub, demo = TRUE)
  cell_counts(est)
}
```

estimatecc

Estimate cell composition from DNAm data

Description

Estimate cell composition from DNAm data

Usage

```r
estimatecc(object, find_dmrs_object = NULL, verbose = TRUE,
epsilon = 0.01, max_iter = 100, take_intersection = FALSE,
include_cpgs = FALSE, include_dmrs = TRUE,
init_param_method = "random", a0init = NULL, a1init = NULL,
sig0init = NULL, sig1init = NULL, tauinit = NULL, demo = FALSE)
```

Arguments

- **object**: an object can be a RGChannelSet, GenomicMethylSet or BSseq object
- **find_dmrs_object**: If the user would like to supply different differentially methylated regions, they can use the output from the `find_dmrs` function to supply different regions to `estimatecc`.
- **verbose**: TRUE/FALSE argument specifying if verbose messages should be returned or not. Default is TRUE.
- **epsilon**: Threshold for EM algorithm to check for convergence. Default is 0.01.
max_iter Maximum number of iterations for EM algorithm. Default is 100 iterations.

take_intersection TRUE/FALSE asking if only the CpGs included in object should be used to find DMRs. Default is FALSE.

include_cpgs TRUE/FALSE. Should individual CpGs be returned. Default is FALSE.

include_dmr TRUE/FALSE. Should differentially methylated regions be returned. Default is TRUE.

init_param_method method to initialize parameter estimates. Choose between "random" (randomly sample) or "known_regions" (uses unmethylated and methylated regions that were identified based on Reinus et al. (2012) cell sorted data.). Defaults to "random".

a0init Default NULL. Initial mean methylation level in unmethylated regions

a1init Default NULL. Initial mean methylation level in methylated regions

sig0init Default NULL. Initial var methylation level in unmethylated regions

sig1init Default NULL. Initial var methylation level in methylated regions

tauinit Default NULL. Initial var for measurement error

demo TRUE/FALSE. Should the function be used in demo mode to shorten examples in package. Defaults to FALSE.

Value

A object of the class estimatecc that contains information about the cell composition estimation (in the summary slot) and the cell composition estimates themselves (in the cell_counts slot).

Examples

This is a reduced version of the FlowSorted.Blood.450k
dataset available by using BiocManager::install("FlowSorted.Blood.450k"),
but for purposes of the example, we use the smaller version
and we set \code{demo=TRUE}. For any case outside of this example for
the package, you should set \code{demo=FALSE} (the default).

dir <- system.file("data", package="methylCC")
files <- file.path(dir, "FlowSorted.Blood.450k.sub.RData")
if(file.exists(files)){
 load(file = files)
}

set.seed(12345)
est <- estimatecc(object = FlowSorted.Blood.450k.sub, demo = TRUE)
cell_counts(est)
}
estimatecc-class

the estimatecc class

Description

Objects of this class store all the values needed information to work with a estimatecc object

Value

- summary returns the summary information about the cell composition estimate procedure and
- cell_counts returns the cell composition estimates

Slots

- summary information about the samples and regions used to estimate cell composition
- cell_counts cell composition estimates

Examples

```r
# This is a reduced version of the FlowSorted.Blood.450k
# dataset available by using BiocManager::install("FlowSorted.Blood.450k"),
# but for purposes of the example, we use the smaller version
# and we set \code{demo=TRUE}. For any case outside of this example for
# the package, you should set \code{demo=FALSE} (the default).

dir <- system.file("data", package="methylCC")
files <- file.path(dir, "FlowSorted.Blood.450k.sub.RData")
if(file.exists(files)){
  load(file = files)
  set.seed(12345)
  est <- estimatecc(object = FlowSorted.Blood.450k.sub, demo = TRUE)
  cell_counts(est)
}
```

FlowSorted.Blood.450k.sub

A reduced size of the FlowSorted.Blood.450k dataset

Description

A reduced size of the FlowSorted.Blood.450k dataset

The object was created using the script in /inst and located in the /data folder.

Format

A RGset object with 2e5 rows (probes) and 6 columns (whole blood samples).
offMethRegions

| offMethRegions | Unmethylated regions for all celltypes |

Description

This is the script used to create the offMethRegions data set. The purpose is use in the `estimate_cc()` function.

The object was created using the script in /inst and located in the /data folder.

Format

- add more here.

onMethRegions

| onMethRegions | Methylated regions for all celltypes |

Description

This is the script used to create the onMethRegions data set. The purpose is use in the `estimate_cc()` function.

The object was created using the script in /inst and located in the /data folder.

Format

- add more here.
Index

.WFun, 9
.extract_raw_data, 2
.find_dmrs, 3
.initializeMLEs, 4
.initialize_theta, 5
.methylcc_engine, 5
.methylcc_estep, 6
.methylcc_mstep, 7
.pick_target_positions, 7
.preprocess_estimatecc, 8
.splitit, 8

cell_counts, 9
cell_counts, estimatecc-method
 (cell_counts), 9

estimatecc, 10
estimatecc-class, 12

FlowSorted.Blood.450k.sub, 12

offMethRegions, 13
onMethRegions, 13