Package ‘lionessR’

April 4, 2024

Title Modeling networks for individual samples using LIONESS
Version 1.16.0
Description LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples, can be used to reconstruct single-sample networks (https://arxiv.org/abs/1505.06440). This code implements the LIONESS equation in the lioness function in R to reconstruct single-sample networks. The default network reconstruction method we use is based on Pearson correlation. However, lionessR can run on any network reconstruction algorithms that returns a complete, weighted adjacency matrix. lionessR works for both unipartite and bipartite networks.
License MIT + file LICENSE
LazyData TRUE
Imports stats, SummarizedExperiment, S4Vectors
Depends R (>= 3.6.0)
Suggests knitr, rmarkdown, igraph, reshape2, limma,
biocViews Network, NetworkInference, GeneExpression
BugReports https://github.com/mararie/lionessR/issues
URL https://github.com/mararie/lionessR
Encoding UTF-8
RoxygenNote 6.0.1
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/lionessR
git_branch RELEASE_3_18
git_last_commit 215aecf
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
Author Marieke Lydia Kuijjer [aut] (https://orcid.org/0000-0001-6280-3130), Ping-Han Hsieh [cre] (https://orcid.org/0000-0003-3054-1409)
Maintainer Ping-Han Hsieh <dn070017@gmail.com>
Description

This function uses the LIONESS equation to estimate single-sample networks. The input supports numeric matrix or a SummarizedExperiment object.

Usage

```r
lioness(x, f = netFun)
```

Arguments

- `x`: Numeric matrix with samples in columns or SummarizedExperiment object
- `f`: Network reconstruction function. Defaults to Pearson correlation.

Value

SummarizedExperiment object for single-sample association network. The rowData contains the information about the regulators and their targets, while the colData contains the information about the samples. The edge weights of sample specific networks can be accessed through the lioness assay of the object.

Examples

```r
exp <- matrix(sample(1000,1000)/1000, 100, 10)
genex <- paste("gene", c(1:nrow(exp)), sep="_")
samples <- paste("sample", c(1:ncol(exp)), sep="_")

rowData <- S4Vectors::DataFrame(row.names = genes, gene = genes)
colData <- S4Vectors::DataFrame(col.names = samples, sample = samples)

se <- SummarizedExperiment::SummarizedExperiment(assays = list(counts = exp),
colData = colData, rowData = rowData)

lionessResults <- lioness(se, netFun)
```
netFun

Description

This is the network reconstruction function that will be used to build aggregate networks.

Usage

`netFun(x)`

Arguments

- **x**

 Numeric matrix with samples in columns.

Value

Numeric matrix of association network.

Examples

```r
exp <- matrix(sample(1000, 1000)/1000, 100, 10)
netFun(exp)
```

OSdata

OS data

Description

Pre-processed gene expression data from high-grade osteosarcoma biopsies and sample characteristics were downloaded from GEO (GSE42352). We converted nuIDs to gene symbols using the annotation platform GPL10295. For genes with duplicate gene symbols, we selected the gene with the highest variance. Finally, we subsetted the data to the 53 patients for which 5 year metastasis information was available. Finally, we extracted genes with top 10,000 variance to reduce the size of the dataset.

Usage

`data(OSdata)`

Format

Variable "exp": Data frame containing expression data for 10000 genes and 53 samples. Variable "targets": Data frame containing information on whether patients developed metastases within 5 years or not, 53 samples and 2 columns.
Index

* datasets
 OSdata, 3
* lioness
 lioness, 2
* netFun
 netFun, 3

exp (OSdata), 3
lioness, 2
netFun, 3
OSdata, 3
targets (OSdata), 3