Package ‘hypeR’

May 10, 2024

Title An R Package For Geneset Enrichment Workflows
Version 2.2.0
Description An R Package for Geneset Enrichment Workflows.
Depends R (>= 3.6.0)
License GPL-3 + file LICENSE
URL https://github.com/montilab/hypeR
Encoding UTF-8
RoxygenNote 7.2.3
LazyData false
Imports ggplot2, ggforce, R6, magrittr, dplyr, purrr, stats, stringr, scales, rlang, httr, openxlsx, htmltools, reshape2, reactive, msigdbr, kableExtra, rmarkdown, igraph, visNetwork, shiny, BiocStyle
Suggests tidyverse, devtools, testthat, knitr
biocViews GeneSetEnrichment, Annotation, Pathways
VignetteBuilder knitr

BugReports https://github.com/montilab/hypeR/issues

git_url https://git.bioconductor.org/packages/hypeR

git_branch RELEASE_3_19

git_last_commit 14ffc40

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-10

Author Anthony Federico [aut, cre], Andrew Chen [aut], Stefano Monti [aut]

Maintainer Anthony Federico <anfed@bu.edu>
.check_overlap

Check overlap of signature across genesets

Description

Check overlap of signature across genesets

Usage

.check_overlap(signature, genesets, threshold = 0.05)

Arguments

signature A vector of symbols
genesets A list of genesets
threshold Minimum percent overlap

Value

Percent overlap
Plot top enriched genesets across multiple signatures

Usage

.dots_multi_plot(
 multihyp_data,
 top = 20,
 abrv = 50,
 size_by = c("genesets", "significance", "none"),
 pval_cutoff = 1,
 fdr_cutoff = 1,
 val = c("fdr", "pval"),
 title = ""
)

Arguments

- multihyp_data: A list of hyp objects
- top: Limit number of genesets shown
- abrv: Abbreviation length of geneset labels
- size_by: Size dots by e.g. c("genesets", "significance", "none")
- pval_cutoff: Filter results to be less than pval cutoff
- fdr_cutoff: Filter results to be less than fdr cutoff
- val: Choose significance value e.g. c("fdr", "pval")
- title: Plot title

Value

A ggplot object
.dots_plot

Description

Plot top enriched genesets

Usage

```r
.dots_plot(
  hyp_df,
  top = 20,
  abrv = 50,
  size_by = c("genesets", "significance", "none"),
  pval_cutoff = 1,
  fdr_cutoff = 1,
  val = c("fdr", "pval"),
  title = ""
)
```

Arguments

- **hyp_df**: A dataframe from a hyp object
- **top**: Limit number of genesets shown
- **abrv**: Abbreviation length of geneset labels
- **size_by**: Size dots by e.g. c("genesets", "significance", "none")
- **pval_cutoff**: Filter results to be less than pval cutoff
- **fdr_cutoff**: Filter results to be less than fdr cutoff
- **val**: Choose significance value e.g. c("fdr", "pval")
- **title**: Plot title

Value

A ggplot object
Description

Plot enrichment map

Usage

```r
.enrichment_map(
  hyp_df,
  genesets,
  similarity_metric = c("jaccard_similarity", "overlap_similarity"),
  similarity_cutoff = 0.2,
  pval_cutoff = 1,
  fdr_cutoff = 1,
  val = c("fdr", "pval"),
  top = NULL,
  title = ""
)
```

Arguments

- **hyp_df**: A dataframe from a hyp object
- **genesets**: A list of genesets
- **similarity_metric**: Metric to calculate geneset similarity
- **similarity_cutoff**: Geneset similarity cutoff
- **pval_cutoff**: Filter results to be less than pval cutoff
- **fdr_cutoff**: Filter results to be less than fdr cutoff
- **val**: Choose significance value shown above nodes e.g. c("fdr", "pval")
- **top**: Limit number of pathways shown
- **title**: Plot title

Value

A visNetwork object
.find_members Find geneset members

Description
Find geneset members

Usage
.find_members(id, genesets, nodes, edges)

Arguments
id A vector of ids
 genesets A list of genesets (see rgsets)
 nodes A data frame of labeled nodes (see rgsets)
 edges A data frame of directed edges (see rgsets)

Value
A vector of ids

.format_str Format a string using placeholders

Description
Format a string using placeholders

Usage
.format_str(string, ...)

Arguments
string A an unformatted string with placeholders
... Variables to format placeholders with

Value
A formatted string
Examples

```r
## Not run:
format_str("Format with \{1\} and \{2\}", "x", "y")
## End(Not run)
```

.github_rds
Load an rds file directly from github

Description

Load an rds file directly from github

Usage

```r
.github_rds(url)
```

Arguments

- `url`: A url

Value

A list

.hexa
Adjust alpha of a hex string

Description

Adjust alpha of a hex string

Usage

```r
.hexa(hex, percent = 1)
```

Arguments

- `hex`: A 6-character hex string (e.g. #000000)
- `percent`: Alpha level from 0-1

Value

A hex string
Plot hierarchy map

Usage

.hierarchy_map(
 hyp_df,
 rgsets_obj,
 pval_cutoff = 1,
 fdr_cutoff = 1,
 val = c("fdr", "pval"),
 top = NULL,
 title = "",
 graph = FALSE
)

Arguments

hyp_df A dataframe from a hyp object
rgsets_obj A relational geneset from a hyp object
pval_cutoff Filter results to be less than pval cutoff
fdr_cutoff Filter results to be less than fdr cutoff
val Choose significance value displayed when hovering nodes e.g. c("fdr", "pval")
top Limit number of pathways shown
title Plot title
graph Return an igraph object instead

Value

A visNetwork object
.hyper_enrichment

Description
Overrepresentation test via hyper-geometric distribution

Usage
.hyper_enrichment(
 signature,
 genesets,
 background = length(unique(unlist(genesets))),
 plotting = TRUE
)

Arguments
 signature A vector of symbols
 genesets A list of genesets
 background Size of background population genes
 plotting Use true to generate plots

Value
A list of data and plots
jaccard_similarity

Calculate jaccard similarity of two sets

Description

Calculate jaccard similarity of two sets

Usage

```
.jaccard_similarity(a, b)
```

Arguments

- `a` A vector
- `b` A vector

Value

A numerical value

ktest

One-sided Kolmogorov–Smirnov test

Description

One-sided Kolmogorov–Smirnov test

Usage

```
.ktest(
  n.x,
  y,
  weights = NULL,
  weights.pwr = 1,
  absolute = FALSE,
  plotting = FALSE,
  plot.title = ""
)
```
Arguments

- **n.x**: The length of a ranked list
- **y**: A vector of positions in the ranked list
- **weights**: Weights for weighted score (Subramanian et al.)
- **weights.pwr**: Exponent for weights (Subramanian et al.)
- **absolute**: Takes max-min score rather than the max deviation from null
- **plotting**: Use true to generate plot
- **plot.title**: Plot title

Value

A list of data and plots

.ks_enrichment

Enrichment test via one-sided Kolmogorov–Smirnov test

Description

Enrichment test via one-sided Kolmogorov–Smirnov test

Usage

```r
.ks_enrichment(
  signature,
  genesets,
  weights = NULL,
  weights.pwr = 1,
  absolute = FALSE,
  plotting = TRUE
)
```

Arguments

- **signature**: A vector of ranked symbols
- **genesets**: A list of gene sets
- **weights**: Weights for weighted score (Subramanian et al.)
- **weights.pwr**: Exponent for weights (Subramanian et al.)
- **absolute**: Takes max-min score rather than the max deviation from null
- **plotting**: Use true to generate plot

Value

A list of data and plots
.overlap_similarity

Description

Calculate overlap similarity of two sets

Usage

.overlap_similarity(a, b)

Arguments

a A vector
b A vector

Value

A numerical value

.reverselog_trans

Custom reverse log transformation of continuous ggplot axes

Description

Custom reverse log transformation of continuous ggplot axes

Usage

.reverselog_trans(base = exp(1))

Arguments

base Logarithm base
.string_args

Convert an arguments list to string format

Description

Convert an arguments list to string format

Usage

```
.string_args(args)
```

Arguments

- **args** A list of keyword arguments

Value

A string of keyword arguments

Examples

```
## Not run:
.string_args(list(x=15, y="fdr", z=TRUE))
## End(Not run)
```

clean_genesets

Clean labels of genexets

Description

Clean labels of genexets

Usage

```
clean_genesets(x)
```

Arguments

- **x** A vector of labels

Examples

```r
HALLMARK <- msigdb_download("Homo sapiens", "H", "")
names(HALLMARK) <- clean_genesets(names(HALLMARK))
head(names(HALLMARK))
```
enrichr_available Get enrichr available genesets

Description
Get enrichr available genesets

Usage
enrichr_available(
 db = c("Enrichr", "YeastEnrichr", "FlyEnrichr", "WormEnrichr", "FishEnrichr")
)

Arguments
db A species

Value
A dataframe of available genesets

Examples
enrichr_available()

enrichr_connect Connect to the enrichr web application

Description
Connect to the enrichr web application

Usage
enrichr_connect(
 endpoint,
 db = c("Enrichr", "YeastEnrichr", "FlyEnrichr", "WormEnrichr", "FishEnrichr")
)

Arguments
endpoint The url endpoint to connect to
db A species

Value
A web response
enrichr_download Download data from enrichr in the form of a named list

Description
Download data from enrichr in the form of a named list

Usage
enrichr_download(
genesets,
db = c("Enrichr", "YeastEnrichr", "FlyEnrichr", "WormEnrichr", "FishEnrichr")
)

Arguments
 genesets A name corresponding to available genesets
db A species

Value
A list of genesets

Examples
ATLAS <- enrichr_download("Human_Gene_Atlas")

enrichr_gsets Download data from enrichr in the form of a gsets object

Description
Download data from enrichr in the form of a gsets object

Usage
enrichr_gsets(
genesets,
db = c("Enrichr", "YeastEnrichr", "FlyEnrichr", "WormEnrichr", "FishEnrichr"),
clean = FALSE
)
enrichr_urls

Arguments

- **genesets** A name corresponding to available genesets
- **db** A species
- **clean** Use true to clean labels of genesets

Value

A gsets object

Examples

```r
ATLAS <- enrichr_gsets("Human_Gene_Atlas")
```

enrichr_urls

Get url base for species-specific enrichr libraries

Description

Get url base for species-specific enrichr libraries

Usage

```r
enrichr_urls(
  db = c("Enrichr", "YeastEnrichr", "FlyEnrichr", "WormEnrichr", "FishEnrichr")
)
```

Arguments

- **db** A species

Value

A url
genesets_Server

Description

Shiny server module for geneset selection

Usage

```r
genesets_Server(id, clean = FALSE)
```

Arguments

- `id` A unique namespace identifier matching to interface
- `clean` Use true to clean geneset names

Value

Shiny server code

genesets_UI

Description

Shiny interface module for geneset selection

Usage

```r
genesets_UI(id)
```

Arguments

- `id` A unique namespace identifier

Value

Shiny ui elements
ggempty

An empty ggplot

Description

An empty ggplot

Usage

ggempty()

Value

A ggplot object

ggeplot

Enrichment plot implemented in ggplot

Description

Enrichment plot implemented in ggplot

Usage

ggeplot(n, positions, x_axis, y_axis, title = "")

Arguments

- n: The length of a ranked list
- positions: A vector of positions in the ranked list
- x_axis: The x-axis of a running enrichment score
- y_axis: The y-axis of a running enrichment score
- title: Plot title

Value

A ggplot object
ggvenn

Venn diagram implemented in ggplot

Description

Venn diagram implemented in ggplot

Usage

ggvenn(a, b, ga, gb, title = "")

Arguments

a
A vector for group a

b
A vector for group b

ga
A string label for group a

gb
A string label for group b

title
Plot title

Value

A ggplot object

gsets

A genesets object

Description

A genesets object
A genesets object

See Also

rgsets

Public fields

genesets A named list of genesets
name A character vector describing source of genesets
version A character vector describing versioning
Methods

Public methods:

• `gsets$new()`
• `gsets$print()`
• `gsets$list()`
• `gsets$info()`
• `gsets$reduce()`
• `gsets$clone()`

Method `new()`: Create a gsets object

Usage:
```r
gsets$new(
  genesets,
  name = "Custom",
  version = "",
  clean = FALSE,
  quiet = FALSE
)
```

Arguments:
- `genesets`: A named list of genesets
- `name`: A character vector describing source of genesets
- `version`: A character vector describing versioning
- `clean`: Use true to clean labels of genesets
- `quiet`: Use true to silence warnings

Returns: A new gsets object

Method `print()`: Print genesets information

Usage:
```r
gsets$print()
```

Returns: NULL

Method `list()`: Return genesets as a list

Usage:
```r
gsets$list()
```

Returns: A list of genesets

Method `info()`: Returns versioning information

Usage:
```r
gsets$info()
```

Returns: A character vector with name and version

Method `reduce()`: Reduces genesets to a background distribution of symbols

Usage:
gsets$reduce(background)

Arguments:
background A character vector of symbols

Returns: A gsets object

Method clone(): The objects of this class are cloneable with this method.

Usage:
gsets$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples

```r
genesets <- list("GSET1" = c("GENE1", "GENE2", "GENE3"),
                 "GSET2" = c("GENE4", "GENE5", "GENE6"),
                 "GSET3" = c("GENE7", "GENE8", "GENE9"))

gsets_obj <- gsets$new(genesets, name="example", version="v1.0")
print(gsets_obj)
```

hyp

A hyp object

Description

A hyp object

See Also

multihyp

Public fields

data A dataframe returned by hypeR()

plots A list of plots returned by hypeR()

args A list of arguments passed to hypeR()

info Exported information for reproducibility
Methods

Public methods:

• hyp$new()
• hyp$print()
• hyp$as.data.frame()
• hyp$clone()

Method new(): Create a hyp object

Usage:
hyp$new(data, plots = NULL, args = NULL, info = NULL)

Arguments:

data A dataframe returned by hypeR()
plots A list of plots returned by hypeR()
args A list of arguments passed to hypeR()
info Exported information for reproducibility

Returns: A new hyp object

Method print(): Print hyp obect

Usage:
hyp$print()

Returns: NULL

Method as.data.frame(): Extract dataframe from hyp obect

Usage:
hyp$as.data.frame()

Returns: NULL

Method clone(): The objects of this class are cloneable with this method.

Usage:
hyp$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples

data <- data.frame(replicate(5, sample(0:1, 10, rep = TRUE)))
args <- list("arg_1" = 1, "arg_2" = 2, "arg_3" = 3)
hyp_obj <- hyp$new(data, args = args)
hypeR

Calculate enrichment of one or more signatures

Description

Calculate enrichment of one or more signatures

Usage

hypeR(
 signature,
 genesets,
 test = c("hypergeometric", "kstest"),
 background = 23467,
 power = 1,
 absolute = FALSE,
 pval = 1,
 fdr = 1,
 plotting = FALSE,
 quiet = TRUE
)

Arguments

 signature A vector of symbols
 genesets A gsets/rgsets object or a named list of genesets
 test Choose an enrichment type e.g. c("hypergeometric", "kstest")
 background Size or character vector of background population genes
 power Exponent for weights (kstest only)
 absolute Takes max-min score rather than the max deviation from null (kstest only)
 pval Filter results to be less than pval cutoff
 fdr Filter results to be less than fdr cutoff
 plotting Use true to generate plots for each geneset test (may slow performance)
 quiet Use true to suppress logs and warnings

Value

A hyp object
Examples

```r
genesets <- msigdb_gsets("Homo sapiens", "C2", "CP:KEGG")


hyp_obj <- hyperR(signature, genesets, background=2522)
```

Description

Check available data to download from hyperdb

Usage

```r
hyperdb_available()
```

Examples

```r
hyperdb_available()
```

hyperdb_gsets

Download data from hyperdb

Description

Download data from hyperdb

Usage

```r
hyperdb_gsets(source, gsets)
```

Arguments

- `source` A source identifier
- `gsets` A genesets identifier

Value

A list
hyperdb_rgsets

Download data from hyperdb in the form of a rgsets object

Description
Download data from hyperdb in the form of a rgsets object

Usage
hyperdb_rgsets(rgsets, version)

Arguments
rgsets A name corresponding to an available relational genesets object
version A version number

Value
An rgsets object

Examples
REACTOME <- hyperdb_rgsets("REACTOME", "70.0")

hyp_dots

Visualize hyp/multihyp objects as a dots plot

Description
Visualize hyp/multihyp objects as a dots plot

Usage
hyp_dots(
 hyp_obj,
 top = 20,
 abrv = 50,
 size_by = c("genesets", "significance", "none"),
 pval = 1,
 fdr = 1,
 val = c("fdr", "pval"),
 title = "",
 merge = FALSE
)
Arguments

- **hyp_obj**: A hyp or multihyp object
- **top**: Limit number of genesets shown
- **abrv**: Abbreviation length of geneset labels
- **size_by**: Size dots by e.g. c("genesets", "significance", "none")
- **pval**: Filter results to be less than pval cutoff
- **fdr**: Filter results to be less than fdr cutoff
- **val**: Choose significance value for plot e.g. c("fdr", "pval")
- **title**: Plot title
- **merge**: Use true to merge a multihyp object into one plot

Value

A ggplot object

Examples

```r
genesets <- msigdb_gsets("Homo sapiens", "C2", "CP:KEGG")


hyp_obj <- hypeR(signature, genesets, background=2522)

hyp_dots(hyp_obj, val="fdr")
```

Description

Visualize hyp/multihyp objects as an enrichment map

Usage

```r
hyp_emap(
  hyp_obj,
  similarity_metric = c("jaccard_similarity", "overlap_similarity"),
  similarity_cutoff = 0.2,
  pval = 1,
  fdr = 1,
  val = c("fdr", "pval"),
  top = NULL,
  title = ""
)
```
Arguments

- **hyp_obj**: A hyp or multihyp object
- **similarity_metric**: Metric to calculate geneset similarity
- **similarity_cutoff**: Geneset similarity cutoff
- **pval**: Filter results to be less than pval cutoff
- **fdr**: Filter results to be less than fdr cutoff
- **val**: Choose significance value shown above nodes e.g. c("fdr", "pval")
- **top**: Limit number of pathways shown
- **title**: Plot title

Value

A visNetwork object

Examples

```r
genesets <- msigdb_gsets("Homo sapiens", "C2", "CP:KEGG")

signature <- c("IDH3B", "DLST", "PCK2", "CS", "PDHB", "PCK1", "PDHA1", "LOC642502",
               "PDHA2", "LOC283398", "FH", "SDHB", "OGDH", "SDHB", "IDH3A", "SDHC",
               "IDH2", "IDH1", "OGDHL", "PC", "SDHA", "SUCLG1", "SUCLA2", "SUCLG2")

hyp_obj <- hypeR(signature, genesets, background=2522)

hyp_emap(hyp_obj, top=30, val="fdr")
```

hyp_hmap

Visualize hyp/multihyp objects as a hierarchy map

Description

Visualize hyp/multihyp objects as a hierarchy map

Usage

```r
hyp_hmap(
  hyp_obj,
  pval = 1,
  fdr = 1,
  val = c("fdr", "pval"),
  top = NULL,
  title = "",
  graph = FALSE
)
```
Arguments

- `hyp_obj`: A hyp or multihyp object
- `pval`: Filter results to be less than pval cutoff
- `fdr`: Filter results to be less than fdr cutoff
- `val`: Choose significance value displayed when hovering nodes e.g. c("fdr", "pval")
- `top`: Limit number of pathways shown
- `title`: Plot title
- `graph`: Return an igraph object instead

Value

A visNetwork object

Examples

```r
genesets <- hyperdb_rgsets("REACTOME", "70.0")
signature <- c("IDH3B", "DLST", "PCK2", "CS", "PDHB", "PCK1", "PDHA1", "LOC642502",
"PDHA2", "LOC283398", "FH", "SDHD", "OGDH", "SDHB", "IDH3A", "SDHC",
"IDH2", "IDH1", "OGDH1", "PC", "SDHA", "SUCLG1", "SUCLA2", "SUCLG2")

hyp_obj <- hypeR(signature, genesets, background=2522)
hyp_hmap(hyp_obj, top=60)
```

hyp_show

Convert a hyp object to a reactable table

Description

Convert a hyp object to a reactable table

Usage

```r
hyp_show(hyp_obj, simple = FALSE)
```

Arguments

- `hyp_obj`: A hyp object
- `simple`: Use true to only include essential columns

Value

A reactable table
Examples

```
genesets <- msigdb_gsets("Homo sapiens", "C2", "CP:KEGG")
hyp_obj <- hypeR(signature, genesets, background=2522)
hyp_show(hyp_obj)
```

Description

Export hyp/multihyp object to excel

Usage

```
hyp_to_excel(hyp_obj, file_path, cols = NULL, versioning = TRUE)
```

Arguments

- `hyp_obj`: A hyp or multihyp object
- `file_path`: A file path
- `cols`: Dataframe columns to include
- `versioning`: Add sheet with versioning information

Examples

```
genesets <- msigdb_gsets("Homo sapiens", "C2", "CP:KEGG")
hyp_obj <- hypeR(signature, genesets, background=2522)
hyp_to_excel(hyp_obj, file_path="pathways.xlsx")
```
hyp_to_graph

Convert a hyp object to an igraph object

Description

Convert a hyp object to an igraph object

Usage

hyp_to_graph(hyp_obj)

Arguments

hyp_obj

A hyp object

Value

An igraph object

Examples

genesets <- hyperdb_rgsets("REACTOME", "70.0")
signature <- c("IDH3B","DLST","PCK2","CS","PDHB","PCK1","PDHA1","LOC642502",
"PDHA2","LOC283398","FH","SDHD","OGDH","SDHB","IDH3A","SDHC",
"IDH2","IDH1","OGDHL","PC","SDHA","SUCLG1","SUCLA2","SUCLG2")

hyp_obj <- hyperR(signature, genesets, background=2522)

ig <- hyp_to_graph(hyp_obj)

hyp_to_rmd

Export hyp object to rmarkdown

Description

Export hyp object to rmarkdown
Usage

```r
hyp_to_rmd(
  hyp_obj,
  file_path,
  title = "Workflow Report",
  subtitle = "",
  author = "",
  header = "Results",
  versioning = TRUE,
  show_dots = TRUE,
  show_emaps = TRUE,
  show_hmaps = FALSE,
  show_tables = TRUE,
  hyp_dots_args = list(top = 15, val = "fdr"),
  hyp_emap_args = list(top = 25, val = "fdr", similarity_metric = "jaccard_similarity",
                        similarity_cutoff = 0.2),
  hyp_hmap_args = list(top = 25, val = "fdr"),
  custom_rmd_config = NULL,
  custom_pre_content = NULL,
  custom_post_content = NULL,
  session_info = FALSE
)
```

Arguments

- `hyp_obj`: A hyp object, multihyp object, or list of multihyp objects
- `file_path`: A file path
- `title`: Title of markdown report
- `subtitle`: Subtitle of markdown report
- `author`: Authors of markdown report
- `header`: Header name of tabset section
- `versioning`: Add versioning information
- `show_dots`: Option to show dots plots in tabs
- `show_emaps`: Option to show enrichment maps in tabs
- `show_hmaps`: Option to show hierarchy maps in tabs
- `show_tables`: Option to show table in tabs
- `hyp_dots_args`: A list of keyword arguments passed to `hyp_dots`
- `hyp_emap_args`: A list of keyword arguments passed to `hyp_emap`
- `hyp_hmap_args`: A list of keyword arguments passed to `hyp_hmap`
- `custom_rmd_config`: Replace configuration section of markdown report
- `custom_pre_content`: Insert custom content before tabset section
Description

Export hyp/multihyp object to table

Usage

```r
hyp_to_table(hyp_obj, file_path, sep = "\t", cols = NULL, versioning = TRUE)
```

Arguments

- **hyp_obj**: A hyp or multihyp object
- **file_path**: A file path for hyp objects and directory for multihyp objects
- **sep**: The field separator string
- **cols**: Dataframe columns to include
- **versioning**: Add header with versioning information

Examples

```r
genesets <- msigdb_gsets("Homo sapiens", "C2", "CP:KEGG")


hyp_obj <- hypeR(signature, genesets, background=2522)

hyp_to_table(hyp_obj, file_path="pathways.txt")
```
limma

Description

A differential expression table

Usage

```r
limma
```

Format

A data frame

msigdb_available

Get msigdb available genesets

Description

Get msigdb available genesets

Usage

```r
msigdb_available(species = "Homo sapiens")
```

Arguments

- `species`
 A species to determine gene symbols (refer to ?msigdb::msigdb for available species)

Value

A dataframe of available genesets

Examples

```r
msigdb_available("Homo sapiens")
```
msigdb_check_species Check if species is available

Description

Check if species is available

Usage

msigdb_check_species(species = "")

Arguments

species A species

Examples

Not run:
msigdb_check_species("Homo sapiens")

End(Not run)

msigdb_download Download data from msigdb in the form of a named list

Description

Download data from msigdb in the form of a named list

Usage

msigdb_download(species, category, subcategory = "")

Arguments

species A species to determine gene symbols (refer to ?msigbr::msigbr for available species)
category Geneset category (refer to ?msigbr::msigbr for available categories)
subcategory Geneset subcategory (refer to ?msigbr::msigbr for available subcategories)

Value

A list of genesets
Examples

```
HALLMARK <- msigdb_download("Homo sapiens", "H", "")
```

msigdb_gsets
Download data from msigdb in the form of a gsets object

Description

Download data from msigdb in the form of a gsets object

Usage

```
msigdb_gsets(species, category, subcategory = "", clean = FALSE)
```

Arguments

- `species`: A species to determine gene symbols (refer to ?msigdbr::msigdbr for available species)
- `category`: Geneset category (refer to ?msigdbr::msigdbr for available categories)
- `subcategory`: Geneset subcategory (refer to ?msigdbr::msigdbr for available subcategories)
- `clean`: Use true to clean labels of genesets

Value

A gsets object

Examples

```
HALLMARK <- msigdb_gsets("Homo sapiens", "H", "")
```

msigdb_info
Print msigdb gsets information

Description

Print msigdb gsets information

Usage

```
msigdb_info()
```

Examples

```
msigdb_info()
```
msigdb_species Get msigdb available species

Description
Get msigdb available species

Usage
msigdb_species()

Value
A character vector of species

Examples
msigdb_species()

msigdb_version Get msigdb package version number

Description
Get msigdb package version number

Usage
msigdb_version()

Value
Version number

Examples
msigdb_version()
multihyp

A multihyp object

Description

A multihyp object

See Also

hyp

Public fields

data A list of hyp objects

Methods

Public methods:

- `multihyp$new()`
- `multihyp$print()`
- `multihyp$as.list()`
- `multihyp$clone()`

Method new(): Create a multihyp object

Usage:

`multihyp$new(data)`

Arguments:

data A list of hyp objects

Returns: A new multihyp object

Method print(): Print multihyp object

Usage:

`multihyp$print()`

Returns: NULL

Method as.list(): Print multihyp object

Usage:

`multihyp$as.list()`

Returns: A list of hyp objects as dataframes

Method clone(): The objects of this class are cloneable with this method.

Usage:

`multihyp$clone(deep = FALSE)`

Arguments:

deep Whether to make a deep clone.
Examples

```r
data <- data.frame(replicate(5, sample(0:1, 10, rep=TRUE)))
args <- list("arg_1"=1, "arg_2"=2, "arg_3"=3)
hyph_obj <- hyph$new(data, args=args)
data <- list("hyp_1"=hyph_obj, "hyp_2"=hyph_obj, "hyp_3"=hyph_obj)
multihyp_obj <- multihyp$new(data)
```

pvector

* A push/pop capable vector

Description

A push/pop capable vector

Public fields

- **values** A vector of values

Methods

- **Public methods:**
 - `pvector$new()`
 - `pvector$print()`
 - `pvector$length()`
 - `pvector$pop()`
 - `pvector$push()`
 - `pvector$clone()`

Method new(): Create a pvector

Usage:

```
pvector$new(values = c())
```

Arguments:

- `values` A vector of values

Returns: A new pvector

Method print(): Print pvector

Usage:

```
pvector$print()
```

Returns: NULL

Method length(): Get length of pvector

Usage:

```
pvector$length()
```
pvector$length()

Returns: An integer

Method `pop()`: Pop vector

Usage:

```r
pvector$pop()
```

Returns: Popped value

Method `push()`: Push values

Usage:

```r
pvector$push(pushed.values)
```

Arguments:

- `pushed.values` A vector of values

Returns: NULL

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```r
pvector$clone(deep = FALSE)
```

Arguments:

- `deep` Whether to make a deep clone.

rctbl_build

Reactable builder for hyp or mhyp objects

Description

Reactable builder for hyp or mhyp objects

Usage

```r
rctbl_build(obj, ...)
```

Arguments

- `obj` A hyp or multihyp object
- `...` Arguments passed to table generators

Examples

```r

experiment <- list("S1"=c("IDH3B","DLST","PCK2","CS","PDHB","PCK1","PDHA1","LOC642502"),
  "S2"=c("PDHA2","LOC283398","FH","SDHD","OGDH","SDHB","IDH3A","SDHC"))

mhyp_obj <- hypeR(experiment, genesets, background=2522)

rctbl_build(mhyp_obj)
```
Reactable table for hyp objects

Description

Reactable table for hyp objects

Usage

\[
\text{rctbl_hyp}(\text{hyp}, \text{type} = \text{c("inner", "outer")}, \text{show_emaps} = \text{FALSE}, \text{show_hmaps} = \text{FALSE}, \text{hyp_emap_args} = \text{list(top = 25, val = "fdr")}, \text{hyp_hmap_args} = \text{list(top = 25, val = "fdr")})
\]

Arguments

- **hyp**: A hyp object
- **type**: Use style class for outer or inner tables
- **show_emaps**: Option to show enrichment maps in tabs
- **show_hmaps**: Option to show hiearchy maps in tabs
- **hyp_emap_args**: A list of keyword arguments passed to hyp_emap
- **hyp_hmap_args**: A list of keyword arguments passed to hyp_hmap

Examples

```r

hyp_obj <- hypeR(signature, genesets, background=2522)

rctbl_hyp(hyp_obj)
```
rgsets

Description

A relational genesets object

rgsets

Description

A relational genesets object
See Also
gsets

Public fields

genesets A list of genesets where list names refers to geneset labels and values are geneset members represented as a vector
nodes A data frame of labeled nodes
edges A data frame of directed edges
name A character vector describing source of genesets
version A character vector describing versioning

Methods

Public methods:
• `rgsets$new()`
• `rgsets$print()`
• `rgsets$info()`
• `rgsets$reduce()`
• `rgsets$subset()`
• `rgsets$clone()`

Method `new()`: Create a rgsets object

Usage:
```r
gersets$new(
genomesets, nodes, edges,
name = "Custom",
version = "",
quiet = FALSE
)
```

Arguments:

genomesets A list of genesets where list names refers to geneset labels and values are geneset members represented as a vector
nodes A data frame of labeled nodes
edges A data frame of directed edges
name A character vector describing source of genesets
version A character vector describing versioning
quiet Use true to silence warnings

Returns: A new rgsets object

Method `print()`: Print relational genesets information

Usage:
rgsets$print()

Returns: NULL

Method info(): Returns versioning information

Usage:
rgsets$info()

Returns: A character vector with name and version

Method reduce(): Reduces genesets to a background distribution of symbols

Usage:
rgsets$reduce(background)

Arguments:
background A character vector of symbols

Returns: A rgsets object

Method subset(): Subsets genesets on a character vector of labels

Usage:
rgsets$subset(labels)

Arguments:
labels A character vector of genesets

Returns: A rgsets object

Method clone(): The objects of this class are cloneable with this method.

Usage:
rgsets$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

wgcna

Co-expression Modules

Description

A list of co-expression modules

Usage

wgcna

Format

A nested list of character vectors
Index

* datasets
 limma, 34
 wgcna, 44
* internal
 .check_overlap, 3
 .dots_multi_plot, 4
 .dots_plot, 5
 .enrichment_map, 6
 .find_members, 7
 .format_str, 7
 .github_rds, 8
 .hexa, 8
 .hiearchy_map, 9
 .hyper_enrichment, 10
 .hyperdb_url, 10
 .jaccard_similarity, 11
 .ks_enrichment, 12
 .kstest, 11
 .overlap_similarity, 13
 .reverselog_trans, 13
 .string_args, 14
 clean_genesets, 14
 enrichr_available, 15
 enrichr_connect, 15
 enrichr_download, 16
 enrichr_gsets, 16
 enrichr_urls, 17
 genesets_Server, 18
 genesets_UI, 18
 ggempty, 19
 ggeplot, 19
 ggvenn, 20
 gsets, 20
 hyp, 22
 hyp_dots, 26
 hyp_emap, 27
 hyp_hmap, 28
 hyp_show, 29
 hyp_to_excel, 30
 hyp_to_graph, 31
 hyp_to_rmd, 31
 hyp_to_table, 33
 hypeR, 24
 hyperdb_available, 25
 hyperdb_gsets, 25
 hyperdb_rgsets, 26
 limma, 34
 msigdb_available, 34
 msigdb_check_species, 35
 msigdb_download, 35
 msigdb_gsets, 36
 msigdb_info, 36
 msigdb_species, 37
msigdb_version, 37
multihyp, 38
pvector, 39
rctbl_build, 40
rctbl_hyp, 41
rctbl_mhyp, 42
rgsets, 42
wgcna, 44