Package ‘gwascat’

May 3, 2024

Title representing and modeling data in the EMBL-EBI GWAS catalog
Version 2.36.0
Author VJ Carey <stvjc@channing.harvard.edu>
Description Represent and model data in the EMBL-EBI GWAS catalog.
Enhances SNPlocs.Hsapiens.dbSNP144.GRCh37
Depends R (>= 3.5.0), methods
Imports S4Vectors (>= 0.9.25), IRanges, GenomeInfoDb, GenomicRanges
(>= 1.29.6), GenomicFeatures, readr, Biostrings, AnnotationDbi,
BiocFileCache, snpStats, VariantAnnotation, AnnotationHub
Suggests DO.db, DT, knitr, RBGL, testthat, rmarkdown, dplyr, Gviz,
Rsamtools, rtracklayer, graph, ggbio, DelayedArray,
TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, BiocStyle
VignetteBuilder knitr
Maintainer VJ Carey <stvjc@channing.harvard.edu>
License Artistic-2.0
LazyData no
biocViews Genetics
RoxygenNote 7.2.1
Encoding UTF-8
git_url https://git.bioconductor.org/packages/gwascat
git_branch RELEASE_3_19
git_last_commit 2127a40
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-02
Contents

as_GRanges .. 2
bindcadd_snv ... 3
chklocs ... 4
ebicat_2020_04_30 ... 5
g17SM ... 5
getRsids ... 5
getRsids,gwaswloc-method ... 6
getTraits ... 6
getTraits,gwaswloc-method .. 7
get_cached_gwascat .. 7
gg17N ... 8
gr6.0_hg38 .. 8
gw6.rs_17 .. 9
gwascat_from_AHub ... 9
gwastagger .. 10
gwaswloc-class ... 10
gwcat_snapshot .. 10
gwex2gviz .. 11
ldtagr ... 12
locon6 ... 13
locs4trait ... 13
low17 ... 14
makeCurrentGwascat .. 14
obo2graphNEL .. 15
process_gwas_dataframe .. 17
riskyAlleleCount ... 17
si.hs.37 .. 18
si.hs.38 .. 18
subsetByChromosome .. 19
subsetByChromosome,gwaswloc-method 19
subsetByTraits .. 20
subsetByTraits,gwaswloc-method 20
topTraits ... 21
traitsManh .. 21
[.gwaswloc,ANY,ANY,ANY-method 23

Index ... 24

as_GRanges produce a GRanges from gwascat tibble

Description

produce a GRanges from gwascat tibble
bindcadd_snv

Usage

```r
as_GRanges(
  x,
  short = TRUE,
  for_short = c("PUBMEDID", "DATE", "DISEASE/TRAIT", "SNPS"),
  genome_tag = "GRCh38"
)
```

Arguments

- **x**: a tibble from `get_cached_gwascat()`
- **short**: logical(1) if TRUE only keep selected columns in mcols
- **for_short**: character() column names to keep in mcols
- **genome_tag**: character(1) defaults to "GRCh38"

Description

bind CADD scores of Kircher et al. 2014 to a GRanges instance; by default will use HTTP access at UW

Usage

```r
bindcadd_snv(
  gr,
  fn = "http://krishna.gs.washington.edu/download/CADD/v1.0/1000G.tsv.gz"
)
```

Arguments

- **gr**: query ranges to which CADD scores should be bound
- **fn**: path to Tabix-indexed bgzipped TSV of CADD as distributed at krishna.gs.washington.edu on 1 April 2014

Details

joins CADD fields at addresses that match query; the CADD fields for query ranges that are not matched are set to NA

Value

GRanges instance with additional fields as obtained in the CADD resource
Note

This software developed in part with support from Genentech, Inc.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

M Kircher, DM Witten, P Jain, BJ O’Roak, GM Cooper, J Shendure, A general framework for estimating the relative pathogenicity of human genetic variants, Nature Genetics Feb 2014, PMID 24487276

Examples

```r
## Not run:
data(ebicat_2020_04_30)
g2 = as(ebicat_2020_04_30, "GRanges")
# would need to lift over here
bindcadd_snv( g2[which(seqnames(g2)=="chr2")][1:20] )
## End(Not run)
```

chklocs

Return TRUE if all named SNPs with locations in both the SNPlocs package and the gwascat agree

Description

Return TRUE if all named SNPs with locations in both the SNPlocs package and the gwascat agree

Usage

```
chklocs(chrtag = "20", gwwl = gwrngs19)
```

Arguments

- `chrtag` character, chromosome identifier
- `gwwl` instance of `gwaswloc`
Description
serialized gwaswloc instance from april 30 2020, sample of 50000 records

Usage
ebicat_2020_04_30

Format
gwaswloc instance

g17SM SnpMatrix instance from chr17

Description
SnpMatrix instance from chr17

Usage
g17SM

Format
snpStats SnpMatrix instance

getRsids generic snp name retrieval

Description
generic snp name retrieval

Usage
getRsids(x)

Arguments
x gwaswloc
getRsids, gwaswloc-method

specific snp name retrieval

Description

specific snp name retrieval

Usage

```r
## S4 method for signature 'gwaswloc'
getRsids(x)
```

Arguments

- `x` gwaswloc

getTraits

generic trait retrieval

Description

generic trait retrieval

Usage

```r
getTraits(x)
```

Arguments

- `x` gwaswloc
getTraits.gwaswloc-method

Specific trait retrieval

Description

Specific trait retrieval

Usage

```r
## S4 method for signature 'gwaswloc'
getTraits(x)
```

Arguments

- `x` gwaswloc

`get_cached_gwascat`

Description

Use BiocFileCache to retrieve and keep an image of the tsv file distributed by EBI

Usage

```r
goget_cached_gwascat(
  url = "http://www.ebi.ac.uk/gwas/api/search/downloads/alternative",
  cache = BiocFileCache::BiocFileCache(),
  refresh = FALSE,
  ...
)
```

Arguments

- `url` character(1) url to use
- `cache` BiocFileCache::BiocFileCache instance
- `refresh` logical(1) force download and recaching
- `...` passed to bfcadd

Value

A tibble as produced by readr::read_tsv, with attributes extractDate (as recorded in cache as 'access_time'), and problems (a tibble returned by read_tsv).
Note

will If query of cache with 'ebi.ac.uk/gwas' returns 0-row tibble, will populate cache with bfcadd. Uses readr::read_tsv on cache content to return tibble. The etag field does not seem to be used at EBI, thus user must check for updates.

gg17N
genotype matrix from chr17 1000 genomes

Description
genotype matrix from chr17 1000 genomes

Usage

gg17N

Format

matrix

Examples

data(gg17N)
gg17N[1:4,1:4]

gr6.0_hg38
image of locon6 in GRanges, lifted over to hg38

Description

image of locon6 in GRanges, lifted over to hg38

Usage

gr6.0_hg38

Format

GRanges instance
gw6.rs_17

character vector of rs numbers for SNP on chr17

Description

character vector of rs numbers for SNP on chr17

Usage

```r
gw6.rs_17
```

Format

character vector

gwascat_from_AHub

grab an image of EBI GWAS catalog from AnnotationHub

Description

grab an image of EBI GWAS catalog from AnnotationHub

Usage

```r
gwascat_from_AHub(tag = "AH91571", simple = FALSE, fixNonASCII = TRUE)
```

Arguments

- **tag**: character(1) defaults to "AH91571" which is the 3.30.2021 image
- **simple**: logical(1) if TRUE, just returns data.frame as retrieved from EBI; defaults to FALSE
- **fixNonASCII**: logical(1) if TRUE, use iconv to identify and eliminate non-ASCII content

Value

If ‘simple’, a data.frame is returned based on TSV data produced by EBI. Otherwise, non-ASCII content is processed according to the value of ‘fixNonASCII’ and a ‘gwaswloc’ instance is returned, which has a concise show method. This can be coerced to a simple GRanges instance with `as(..., "GRanges")`. The reference build is GRCh38.

Examples

```r
gwcat = gwascat_from_AHub()
gwcat
```
Description

GRanges with LD information on 9998 SNP

Usage

gwastagger

Format

GRanges
gwaswloc-class container for gwas hit data and GRanges for addresses

Description

container for gwas hit data and GRanges for addresses

gwcat_snapshot use AnnotationHub snapshot as basis for gwaswloc structure creation

Description

use AnnotationHub snapshot as basis for gwaswloc structure creation

Usage

gwcat_snapshot(x, fixNonASCII = TRUE)

Arguments

x inherits from data.frame, with columns consistent with EBI table
fixNonASCII logical(1) if TRUE, use iconv to replace non-ASCII character, important for CMD check but perhaps not important for applied use
Examples

```r
ah = AnnotationHub::AnnotationHub()
entitytab = AnnotationHub::query(ah, "gwascatData")
cand = names(entitytab)[1]
stopifnot(nchar(cand)>0)
tab = ah[[cand]]
gww = gwcat_snapshot(tab)
gww
length(gww)
```

gwcex2gviz
Prepare salient components of GWAS catalog for rendering with Gviz

Description

Prepare salient components of GWAS catalog for rendering with Gviz

Usage

```r
gwcex2gviz(
  basegr,
  contextGR = GRanges(seqnames = "chr17", IRanges::IRanges(start = 37500000, width = 1e+06)),
  txrefobj = TxDb.Hsapiens.UCSC.hg19.knownGene::TxDb.Hsapiens.UCSC.hg19.knownGene,
  genome = "hg19",
  genesymobj = org.Hs.eg.db::org.Hs.eg.db,
  plot.it = TRUE,
  maxmlp = 25
)
```

Arguments

- `basegr`: gwaswloc instance containing information about GWAS in catalog
- `contextGR`: A GRanges instance delimiting the visualization in genomic coordinates
- `txrefobj`: a TxDb instance
- `genome`: character tag like 'hg19'
- `genesymobj`: an OrgDb instance
- `plot.it`: logical, if FALSE, just return list
- `maxmlp`: maximum value of -10 log p – winsorization of all larger values is performed, modifying the contents of Pvalue_mlogp in the elementMetadata for the call

Examples

```r
data(ebicat_2020_04_30)
# GenomeInfoDb::seqlevelsStyle(ebicat_2020_04_30) = "UCSC" # no more
GenomeInfoDb::seqlevels(ebicat_2020_04_30) = paste0("chr", GenomeInfoDb::seqlevels(ebicat_2020_04_30))
gwcex2gviz(ebicat_2020_04_30)
```
ldtagr

expand a list of variants by including those in a VCF with LD exceeding some threshold; uses snpStats ld()

Usage

```r
ldtagr(
  snprng,
  tf,
  samples,
  genome = "hg19",
  lbmaf = 0.05,
  lbR2 = 0.8,
  radius = 1e+05
)
```

Arguments

- **snprng**: a named GRanges for a single SNP. The name must correspond to the name that will be assigned by genotypeToSnpMatrix (from VariantTools) to the corresponding column of a SnpMatrix.
- **tf**: TabixFile instance pointing to a bgzipped tabix-indexed VCF file
- **samples**: a vector of sample identifiers, if excluded, all samples used
- **genome**: tag like 'hg19'
- **lbmaf**: lower bound on variant MAF to allow consideration
- **lbR2**: lower bound on R squared for regarding SNP to be incorporated
- **radius**: radius of search in bp around the input range

Value

a GRanges with names corresponding to 'new' variants and mcols fields 'paramRangeID' (base variant input) and 'R2'

Note

slow but safe approach. probably a matrix method could be substituted using the nice sparse approach already in snpStats

Author(s)

VJ Carey
Examples

cand = GenomicRanges::GRanges("1", IRanges::IRanges(113038694, width=1))
names(cand) = "rs883593"
requireNamespace("VariantAnnotation")
expath = dir(system.file("vcf", package="gwascat"), patt=".*exon.*gz$", full=TRUE)
tf = Rsamtools::TabixFile(expath)
ldtagr(cand, tf, lbR2 = .8)

Description

location data for 10000 SNP

Usage

locon6

Format

data.frame, coordinates are hg19

Description

get locations for SNP affecting a selected trait

Usage

locs4trait(gwwl, trait, tag = "DISEASE/TRAIT")

Arguments

gwwl instance of {gwaswloc}
trait character, name of trait
tag character, name of field to be used for trait enumeration
makeCurrentGwascat

Description

SnpMatrix instance from chr17

Usage

low17

Format

snpStats SnpMatrix instance

makeCurrentGwascat

read NHGRI GWAS catalog table and construct associated GRanges instance records for which clear genomic position cannot be determined are dropped from the ranges instance an effort is made to use reasonable data types for GRanges metadata, so some qualifying characters such as (EA) in Risk allele frequency field will simply be omitted during coercion of contents of that field to numeric.

Description

read NHGRI GWAS catalog table and construct associated GRanges instance records for which clear genomic position cannot be determined are dropped from the ranges instance an effort is made to use reasonable data types for GRanges metadata, so some qualifying characters such as (EA) in Risk allele frequency field will simply be omitted during coercion of contents of that field to numeric.

Usage

makeCurrentGwascat(
 table.url = "http://www.ebi.ac.uk/gwas/api/search/downloads/alternative",
 fixNonASCII = TRUE,
 genome = "GRCh38",
 withOnt = TRUE
)
obo2graphNEL

Arguments

- `table.url` | string identifying the .txt file curated at EBI/EMBL
- `fixNonASCII` | logical, if TRUE, non-ASCII characters as identified by iconv will be replaced by asterisk
- `genome` | character string: 'GRCh38' is default and yields current image as provided by EMBL/EBI; 'GRCh37' yields a realtime liftOver to hg19 coordinates, via AnnotationHub storage of the chain files. Any other value yields an error.
- `withOnt` | logical indicating whether 'alternative' (ontology-present, includes repetition of loci with one:many ontological mapping) or 'full' (ontology-absent, one record per locus report) version of distributed table

Value

a slightly extended GRanges instance, with class name 'gwaswloc'; the purpose of the introduction of this class is to support a concise show method that does not produce very long lines owing to large numbers of fields in the mcols component.

Note

'readr::read_tsv' records problems when some records have field contents that are inconsistent with the column specification. This information can be retrieved from the metadata slot of the returned object, as noted in a message produced when this function is run.

Author(s)

VJ Carey

Examples

```r
# if you have good internet access
if (interactive()) {
  newcatr = makeCurrentGwascat()
  newcatr
}
```

Description

convert a typical OBO text file to a graphNEL instance (using Term elements)
Usage

```r
obo2graphNEL(
  obo = "human-phenotype-ontology.obo",
  kill = "\[Typedef\]",
  killTrailSp = TRUE
)
```

Arguments

- `obo` string naming a file in OBO format
- `kill` entity types to be excluded from processing – probably this should be in a ’keep’ form, but for now this works.
- `killTrailSp` In the textual version of EFO ca. Aug 2015, there is a trailing blank in the tag field defining EFO:0000001, which is not present in references to this term. Set this to TRUE to eliminate this, or graphNEL construction will fail to validate.

Details

Very rudimentary list and grep operations are used to retain sufficient information to map the DAG to a graphNEL, using formal term identifiers as node names and ’is-a’ relationships as edges, and term names and other metadata are assigned to nodeData components.

Value

a graphNEL instance

Note

The OBO for Human Disease ontology is serialized as text with this package.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

For use with human disease ontology, http://www.obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology

Examples

```r
data(efo.obo.g)
requireNamespace("graph")
hn = graph::nodes(efo.obo.g)[1:5]
hn
graph::nodeData(efo.obo.g, hn[5])
```
process_gwas_dataframe

convert GWAS catalog data.frame to gwaswloc, a GRanges extension with simple show method

Description

convert GWAS catalog data.frame to gwaswloc, a GRanges extension with simple show method

Usage

`process_gwas_dataframe(df)`

Arguments

- **df** data.frame

riskyAlleleCount

given a matrix of subjects x SNP calls, count number of risky alleles

Description

given a matrix of subjects x SNP calls, count number of risky alleles for various conditions, relative to NHGRI GWAS catalog

Usage

`riskyAlleleCount(callmat, matIsAB = TRUE, chr, gwwl, snpap = "SNPlocs.Hsapiens.dbSNP144.GRCh37", gencode = c("A/A", "A/B", "B/B"))`

Arguments

- **callmat** matrix with subjects as rows, SNPs as columns; entries can be generic A/A, A/B, B/B, or specific nucleotide calls
- **matIsAB** logical, FALSE if nucleotide codes are present, TRUE if generic call codes are present; in the latter case, gwascat:::ABmat2nuc will be run
- **chr** code for chromosome, should work with the SNP annotation getSNPlocs function, so likely "ch[nn]"
- **gwwl** an instance of `gwaswloc`
- **snpap** name of a Bioconductor SNPlocs.Hsapiens.dbSNP.* package
- **gencode** codes used for generic SNP call
Value

matrix with rows corresponding to subjects, columns corresponding to SNP

Examples

```r
## Not run:
data(gg17N) # translated from GGdata chr 17 calls using ABmat2nuc
data(ebicat37)
library(GenomeInfoDb)
seqlevelsStyle(ebicat37) = "UCSC"
h17 = riskyAlleleCount(gg17N, matIsAB=FALSE, chr="ch17", gwwl=ebicat37)
h17[1:5,1:5]
table(as.numeric(h17))

## End(Not run)
```

si.hs.37

Seqinfo for GRCh37

Description

Seqinfo for GRCh37

Usage

si.hs.37

Format

GenomeInfoDb Seqinfo instance

si.hs.38

Seqinfo for GRCh38

Description

Seqinfo for GRCh38

Usage

si.hs.38

Format

GenomeInfoDb Seqinfo instance
subsetByChromosome

subsetByChromosome
generic trait subsetting

Description

generic trait subsetting

Usage

```
subsetByChromosome(x, ch)
```

Arguments

- `x`
gwaswloc
- `ch`
character vector of chromosomes

subsetByChromosome, gwaswloc-method
specific trait subsetting

Description

specific trait subsetting

Usage

```
## S4 method for signature 'gwaswloc'
subsetByChromosome(x, ch)
```

Arguments

- `x`
gwaswloc
- `ch`
character vector of chromosomes
subsetByTraits

generic trait subsetting

Description

generic trait subsetting

Usage

```r
subsetByTraits(x, tr)
```

Arguments

- `x`
gwaswloc
- `tr`
character vector of traits

subsetByTraits,gwaswloc-method

specific trait subsetting

Description

specific trait subsetting

Usage

```r
## S4 method for signature 'gwaswloc'
subsetByTraits(x, tr)
```

Arguments

- `x`
gwaswloc
- `tr`
character vector of traits
topTraits

operations on GWAS catalog

Description

operations on GWAS catalog

Usage

```r
topTraits(gwsl, n = 10, tag = "DISEASE/TRAIT")
```

Arguments

- `gwsl`: instance of `gwaswloc`
- `n`: numeric, number of traits to report
- `tag`: character, name of field to be used for trait enumeration

Value

topTraits returns a character vector of most frequently occurring traits in the database

locs4trait returns a `gwaswloc` object with records defining associations to the specified trait

chklocs returns a logical that is TRUE when the asserted locations of SNP in the GWAS catalog agree with the locations given in the dbSNP package SNPlocs.Hsapiens.dbSNP144.GRCh37

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

```r
data(ebicat_2020_04_30)
topTraits(ebicat_2020_04_30)
```

traitsManh

use ggbio facilities to display GWAS results for selected traits in genomic coordinates

Description

use ggbio facilities to display GWAS results for selected traits in genomic coordinates
Usage

```r
traitsManh(
  gwr,
  selr = GRanges(seqnames = "chr17", IRanges(3e+07, 5e+07)),
  traits = c("Asthma", "Parkinson's disease", "Height", "Crohn's disease"),
  truncmlp = 25,
  ...
)
```

Arguments

- **gwr**: GRanges instance as managed by the gwaswloc container design, with Disease.Trait and Pvalue_mlog among elementMetadata columns
- **selr**: A GRanges instance to restrict the `gwr` for visualization. Not tested for noncontiguous regions.
- **traits**: Character vector of traits to be exhibited; GWAS results with traits not among these will be labeled "other".
- **truncmlp**: Maximum value of \(-\log10\ p\) to be displayed; in the raw data this ranges to the hundreds and can cause bad compression.
- **...**: not currently used

Details

uses a ggbio autoplot

Value

autoplot value

Note

An xlab is added, concatenating genome tag with seqnames tag.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

```r
# do a p-value truncation if you want to reduce compression
## Not run: # ggbio July 2018
data(ebicat_2020_04_30)
library(GenomeInfoDb)
seqlevelsStyle(ebicat_2020_04_30) = "UCSC"
traitsManh(ebicat_2020_04_30)

## End(Not run)
```
Description

extractor for gwaswloc

Usage

```r
## S4 method for signature 'gwaswloc,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
```

Arguments

- `x`: gwaswloc
- `i`: index
- `j`: index
- `...`: addtl indices
- `drop`: logical(1)
Index

* datasets
 - ebicat_2020_04_30, 5
 - g17SM, 5
 - gg17N, 8
 - gr6.0_hg38, 8
 - gw6.rs_17, 9
 - gwascat_from_AHub, 9
 - gwastagger, 10
 - gwaswloc-class, 10
 - gwcat_snapshot, 10
 - gwcex2gviz, 11
 - ldtagr, 12
 - locon6, 13
 - low17, 14
 - si.hs.37, 18
 - si.hs.38, 18

* graphics
 - gwcex2gviz, 11
 - traitsManh, 21

* models
 - bindcadd_snv, 3
 - ldtagr, 12
 - makeCurrentGwascat, 14
 - obo2graphNEL, 15
 - riskyAlleleCount, 17
 - topTraits, 21
 - traitsManh, 21
 - [,gwaswloc,ANY,ANY,ANY-method, 23
 - as_GRanges, 2
 - bindcadd_snv, 3
 - chklocs, 4
 - ebicat_2020_04_30, 5
 - efo.obo.g (obo2graphNEL), 15
 - g17SM, 5
 - get_cached_gwascat, 7
 - getRsids, 5
 - getRsids,gwaswloc-method, 6
 - getTraits, 6
 - getTraits,gwaswloc-method, 7
 - gg17N, 8
 - gr6.0_hg38, 8

 gw6.rs_17, 9
 gwascat_from_AHub, 9
 gwastagger, 10
 gwaswloc-class, 10
 gwcat_snapshot, 10
 gwcex2gviz, 11
 ldtagr, 12
 locon6, 13
 locs4trait, 13
 low17, 14
 makeCurrentGwascat, 14
 node2uri (obo2graphNEL), 15
 obo2graphNEL, 15
 process_gwas_dataframe, 17
 riskyAlleleCount, 17
 si.hs.37, 18
 si.hs.38, 18
 subsetByChromosome, 19
 subsetByChromosome,gwaswloc-method, 19
 subsetByTraits, 20
 subsetByTraits,gwaswloc-method, 20
 topTraits, 21
 traitsManh, 21
 uri2node (obo2graphNEL), 15