Package ‘ggsc’

Title Visualizing Single Cell Data

Version 1.0.2

Description Useful functions to visualize single cell and spatial data. It supports both 'SingleCellExperiment' and 'Seurat' objects. It also supports visualizing the data using grammar of graphics implemented in 'ggplot2'.

Imports Rcpp, RcppParallel, cli, dplyr, ggplot2, grDevices, grid, methods, rlang, scattermore, stats, Seurat,SingleCellExperiment, SummarizedExperiment, tidydr, tidyr, tibble, utils, yulab.utils

Suggests aplot, BiocParallel, forcats, ggforce, ggnewscale, igraph, knitr, ks, Matrix, prettydoc, rmarkdown, scran, scater, scuttle, shadowtext, sf, SeuratObject, SpatialExperiment, STexampleData, testthat (> 3.0.0)

BugReports https://github.com/YuLab-SMU/ggsc/issues

URL https://github.com/YuLab-SMU/ggsc

biocViews DimensionReduction, GeneExpression, SingleCell, Software, Spatial, Transcriptomics,Visualization

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo, RcppParallel

git_url https://git.bioconductor.org/packages/ggsc

git_branch RELEASE_3_18

git_last_commit 67f8871

git_last_commit_date 2023-10-31
ggsc-package

Repository Bioconductor 3.18
Date/Publication 2024-02-26
Author Guangchuang Yu [aut, cre, cph]
 (<https://orcid.org/0000-0002-6485-8781>),
 Shuangbin Xu [aut] (<https://orcid.org/0000-0003-3513-5362>)
Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

R topics documented:

- ggsc-package ... 2
- CalWkdeCpp ... 3
- reexports ... 3
- sc_dim ... 4
- sc_dim_count .. 5
- sc_dim_geom_ellipse ... 6
- sc_dim_geom_feature ... 7
- sc_dim_geom_label ... 8
- sc_dim_geom_sub .. 9
- sc_dim_sub ... 10
- sc_feature .. 11
- sc_geom_point .. 13
- sc.spatial ... 14
- sc_violin ... 16

Index 19

ggsc-package ggsc: Visualizing Single Cell Data

Description

Useful functions to visualize single cell and spatial data. It supports both 'SingleCellExperiment' and 'Seurat' objects. It also supports visualizing the data using grammar of graphics implemented in 'ggplot2'.

Author(s)

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com> (ORCID) [copyright holder]
Authors:

- Shuangbin Xu <xshuangbin@163.com> (ORCID)

See Also

Useful links:

- https://github.com/YuLab-SMU/ggsc
- Report bugs at https://github.com/YuLab-SMU/ggsc/issues
Two-Dimensional Weighted Kernel Density Estimation And Mapping the Result To Original Dimension

Usage

\texttt{CalWkdeCcpp(x, w, l, h, adjust = 1, n = 400L)}

Arguments

- **x**: The 2-D coordinate matrix
- **w**: The weighted sparse matrix, the number of columns is the same as the number of rows as `x`.
- **l**: The limits of the rectangle covered by the grid as `(xl, xu, yl, yu)`
- **h**: The vector of bandwidths for `x` and `y` directions, defaults to normal reference bandwidth (see `bandwidth.nrd`). A scalar value will be taken to apply to both directions (see `ks::hpi`).
- **adjust**: numeric value to adjust to bandwidth, default is 1.
- **n**: number of grid points in the two directions, default is 400.

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

\texttt{ggplot2 aes, theme}

Value

Depending on the re-exported function
sc_dim

Description

sc_dim

Usage

sc_dim(
 object,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ...
)

S4 method for signature 'Seurat'
sc_dim(
 object,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ...
)

S4 method for signature 'SingleCellExperiment'
sc_dim(
 object,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Seurat object</td>
</tr>
<tr>
<td>dims</td>
<td>selected dimensions (must be a two-length vector) that are used in visualization</td>
</tr>
<tr>
<td>reduction</td>
<td>reduction method, default is NULL and will use the default setting store in the object</td>
</tr>
</tbody>
</table>
Description

The `sc_dim_count` function allows for the customization of a dimension reduction plot.

Usage

```r
sc_dim_count(sc_dim_plot)
```

Arguments

- `sc_dim_plot`: A dimension reduction plot of single cell data.
Value

a bar plot to present the cell numbers of different clusters

See Also

sc_dim()

Examples

library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p <- sc_dim(sce, reduction = 'UMAP')
p1 <- sc_dim_count(p)

sc_dim_geom_ellipse sc_dim_geom_ellipse

Description

sc_dim_geom_ellipse

Usage

sc_dim_geom_ellipse(mapping = NULL, level = 0.95, ...)

Arguments

mapping aesthetic mapping
level the level at which to draw an ellipse
... additional parameters pass to the stat_ellipse

Value

layer of ellipse

See Also

stat_ellipse:
Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
collabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP', mapping = aes(colour = Cell_Cycle))
p2 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_ellipse()
```

Description

sc_dim_geom_feature

Usage

```r
sc_dim_geom_feature(
  object,
  features,
  dims = c(1, 2),
  ncol = 3,
  ...
  .fun = function(.data) dplyr::filter(.data, .data$value > 0)
)
```

Arguments

- **object**: Seurat or SingleCellExperiment object
- **features**: selected features (i.e., genes)
- **dims**: selected dimensions (must be a two-length vector) that are used in visualization
- **ncol**: number of facet columns if `length(features) > 1`
- **...**: additional parameters pass to `scattermore::geom_scattermore()`
- **.fun**: user defined function that will be applied to selected features (default is to filter out genes with no expression values)

Value

layer of points for selected features
See Also

sc_feature()

Examples

library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP')
set.seed(123)
genes <- rownames(sce) |> sample(6)
f1 <- p1 +
 sc_dim_geom_feature(
 object = sce,
 features = genes
)

sc_dim_geom_label sc_dim_geom_label

Description

sc_dim_geom_label

Usage

sc_dim_geom_label(geom = ggplot2::geom_text, ...)

Arguments

geom geometric layer (default: geom_text) to display the lables
...
additional parameters pass to the geom

Value

layer of labels

See Also

sc_dim_geom_label()
Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
colLabels(sce) <- clusters
sce <- runUMAP(sce)
p1 <- sc_dim(sce, reduction = 'UMAP', mapping = aes(colour = Cell_Cycle))
p2 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_label()
```

Description

sc_dim_geom_subset

Usage

```r
sc_dim_geom_sub(mapping = NULL, subset, .column = "ident", ...)
```

Arguments

- `mapping`: aesthetic mapping
- `subset`: subset of clusters to be displayed
- `.column`: which column represents cluster (e.g., 'ident')
- `...`: additional parameters pass to `sc_geom_point`

Value

plot with a layer of specified clusters

See Also

`sc_dim_geom_sub`

Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
```
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_sub(subset = c(1, 2), .column = 'label')

sc_dim_sub

Description

sc_dim_sub

Usage

sc_dim_sub(subset, .column = "ident")

Arguments

subset subset of clusters to be displayed
.column which column represents cluster (e.g., 'ident')

Value

update plot with only subset displayed

See Also

sc_dim

Examples

library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
collLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_sub(subset = c(1, 2), .column = 'label')
sc_feature

Description

sc_feature

Usage

```r
sc_feature(
  object,
  features,
  dims = c(1, 2),
  reduction = NULL,
  cells = NULL,
  slot = "data",
  mapping = NULL,
  ncol = 3,
  density = FALSE,
  grid.n = 100,
  joint = FALSE,
  joint.fun = prod,
  common.legend = TRUE,
  ...
)
```

```r
## S4 method for signature 'Seurat'
sc_feature(
  object,
  features,
  dims = c(1, 2),
  reduction = NULL,
  cells = NULL,
  slot = "data",
  mapping = NULL,
  ncol = 3,
  density = FALSE,
  grid.n = 100,
  joint = FALSE,
  joint.fun = prod,
  common.legend = TRUE,
  ...
)
```

```r
## S4 method for signature 'SingleCellExperiment'
sc_feature(
  object,
```
features,
dims = c(1, 2),
reduction = NULL,
cells = NULL,
slot = "data",
mapping = NULL,
ncol = 3,
density = FALSE,
grid.n = 100,
joint = FALSE,
joint.fun = prod,
common.legend = TRUE,
...)

Arguments

object Seurat object
features selected features (i.e., genes)
dims selected dimensions (must be a two-length vector) that are used in visualization
reduction reduction method, default is NULL and will use the default setting store in the object
cells selected cells to plot (default is all cells)
slot slot to pull expression data from (e.g., 'count' or 'data')
mapping aesthetic mapping
ncol number of facet columns if 'length(features) > 1'
density whether plot the 2D weighted kernel density, default is FALSE.
grid.n number of grid points in the two directions to estimate 2D weighted kernel density, default is 100.
joint whether joint the multiple features with joint.fun, default is FALSE.
joint.fun how to joint the multiple features if joint=TRUE, default is prod.
common.legend whether to use facet_wrap to display the multiple features, default is TRUE.
... additional parameters pass to 'scattermore::geom_scattermore()'

Value
dimension reduction plot colored by selected features

Examples
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runTSNE(sce, assay.type = 'logcounts')
set.seed(123)
genes <- rownames(sce) |> sample(6)
p1 <- sc_feature(sce, genes[1], slot='logcounts', reduction = 'TSNE')
p2 <- sc_feature(sce, genes, slot='logcounts', reduction = 'TSNE')
f1 <- sc_dim(sce, slot='logcounts', reduction = 'TSNE') +
 sc_dim_geom_feature(sce, genes[1], color='black')
f2 <- sc_dim(sce, alpha=.3, slot='logcounts', reduction = 'TSNE') +
 ggnewscale::new_scale_color() +
 sc_dim_geom_feature(sce, genes, mapping=aes(color=features)) +
 scale_color_viridis_d()
p1 + p2 + f1 + f2

sc_geom_point

Description

sc_geom_point

Usage

sc_geom_point(mapping = NULL, ...)

Arguments

mapping aesthetic mapping
... additional parameters pass to 'scattermore::geom_scattermore()'

Value

layer of points

See Also

sc_dim() and sc_feature()

Examples

library(ggplot2)
ggplot(iris,
 aes(x= Sepal.Length, y = Petal.Width, color=Species)
) +
sc_geom_point()
sc_spatial

Description

sc_spatial

Usage

sc_spatial(
 object,
 features = NULL,
 sample.id = NULL,
 image.id = NULL,
 slot = "data",
 image.plot = TRUE,
 image.first.operation = "rotate",
 image.rotate.degree = NULL,
 image.mirror.axis = NULL,
 remove.point = FALSE,
 mapping = NULL,
 ncol = 6,
 density = FALSE,
 grid.n = 100,
 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 point.size = 5,
 ...
)

S4 method for signature 'Seurat'
sc_spatial(
 object,
 features = NULL,
 sample.id = NULL,
 image.id = NULL,
 slot = "data",
 image.plot = TRUE,
 image.first.operation = "rotate",
 image.rotate.degree = NULL,
 image.mirror.axis = NULL,
 remove.point = FALSE,
 mapping = NULL,
 ncol = 6,
 density = FALSE,
 grid.n = 100,
sc.spatial

joint = FALSE,
joint.fun = prod,
common.legend = TRUE,
point.size = 5,
...
)

S4 method for signature 'SingleCellExperiment'
sc.spatial(
 object,
 features = NULL,
 sample.id = NULL,
 image.id = NULL,
 slot = "data",
 image.plot = TRUE,
 image.first.operation = "rotate",
 image.rotate.degree = NULL,
 image.mirror.axis = NULL,
 remove.point = FALSE,
 mapping = NULL,
 ncol = 6,
 density = FALSE,
 grid.n = 100,
 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 point.size = 5,
 ...
)

Arguments

object Seurat object
features selected features to be visualized
sample.id the index name of sample id, which only work with SingleCellExperiment or SpatialExperiment.
image.id the index name of image id, which only work with SingleCellExperiment or SpatialExperiment.
slot if plotting a feature, which data will be used (e.g., ‘data’, ‘counts’), the assay name if object is SingleCellExperiment or SpatialExperiment.
image.plot whether to display the issue image as background.
image.first.operation character which the first operation to image, ‘rotate’ or ‘mirror’, default is ‘rotate’.
image.rotate.degree integer the degree to rotate image, default is NULL.
image.mirror.axis
character the direction to mirror the image, default is 'h'.
remove.point
whether to remove the spot points, it is nice if your just view the issue image,
default is FALSE.
mapping
aesthetic mapping, default is NULL.
ncol
integer number of facet columns if 'length(features) > 1', default is 6.
density
whether plot the 2D weighted kernel density, default is FALSE.
grid.n
number of grid points in the two directions to estimate 2D weighted kernel den-
sity, default is 100.
joint
whether joint the multiple features with joint.fun, default is FALSE.
joint.fun
how to joint the multiple features if joint = TRUE, default is prod.
common.legend
whether to use facet_wrap to display the multiple features, default is TRUE.
point.size
the size of point, default is 5.
... additional parameters.

Value

ggplot object

Examples

Not run:
library(STexampleData)
create ExperimentHub instance
eh <- ExperimentHub()
query STexampleData datasets
myfiles <- query(eh, "STexampleData")
spe <- myfiles[["EH7538"]]
spe <- spe[, colData(spe)$in_tissue == 1]
set.seed(123)
genes <- rownames(spe) |> sample(6)
p <- sc.spatial(spe, features = genes,
image.rotate.degree = -90,
image.mirror.axis = NULL,
ncol = 3)

End(Not run)
sc_violin

Usage

sc_violin(
 object,
 features,
 cells = NULL,
 slot = "data",
 .fun = NULL,
 mapping = NULL,
 ncol = 3,
 ...
)

S4 method for signature 'Seurat'
sc_violin(
 object,
 features,
 cells = NULL,
 slot = "data",
 .fun = NULL,
 mapping = NULL,
 ncol = 3,
 ...
)

S4 method for signature 'SingleCellExperiment'
sc_violin(
 object,
 features,
 cells = NULL,
 slot = "data",
 .fun = NULL,
 mapping = NULL,
 ncol = 3,
 ...
)

Arguments

object Seurat object
features selected features
cells selected cells to plot (default is all cells)
slot slot to pull expression data from (e.g., 'count' or 'data')
.fun user defined function that will be applied to selected features (default is NULL and there is no data operation)
mapping aesthetic mapping
ncol number of facet columns if \(\text{length(features)} > 1\)
... additional parameters pass to 'ggplot2::geom_violin()'
Value

violin plot to visualize feature expression distribution

See Also

geom_violin;

Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
set.seed(123)
genes <- rownames(sce) |> sample(6)
sc_violin(sce, genes[1], slot = 'logcounts')
sc_violin(sce, genes[1], slot = 'logcounts',
  .fun=function(d) dplyr::filter(d, value > 0)
) +
  ggforce::geom_sina(size=.1)
sc_violin(sce, genes, slot = 'logcounts') +
  theme(axis.text.x = element_text(angle=45, hjust=1))
```
internal	ggsc-package, 2
	reexports, 3
aes	3
aes (reexports)	3
CalWkdeCpp	3
geom_scattermore	5
geom_violin	18
ggsc (ggsc-package)	2
ggsc-package	2
reexports	3
sc_dim	4, 10
sc_dim()	6, 13
sc_dim,Seurat (sc_dim)	4
sc_dim,Seurat-method (sc_dim)	4
sc_dim,SingleCellExperiment (sc_dim)	4
sc_dim,SingleCellExperiment-method (sc_dim)	4
sc_dim_count	5
sc_dim_geom_ellipse	6
sc_dim_geom_feature	7
sc_dim_geom_label	8
sc_dim_geom_label()	8
sc_dim_geom_sub	9, 9
sc_dim_sub	10
sc_feature	11
sc_feature()	8, 13
sc_feature,Seurat (sc_feature)	11
sc_feature,Seurat-method (sc_feature)	11
sc_feature,SingleCellExperiment (sc_feature)	11
sc_feature,SingleCellExperiment-method (sc_feature)	11
sc_geom_point	13
sc_spatial	14
sc_spatial,Seurat (sc_spatial)	14
sc_spatial,Seurat-method (sc_spatial)	14
sc_spatial,SingleCellExperiment (sc_spatial)	14
sc_spatial,SingleCellExperiment-method (sc_spatial)	14
sc_violin	16
sc_violin,Seurat (sc_violin)	16
sc_violin,Seurat-method (sc_violin)	16
sc_violin,SingleCellExperiment (sc_violin)	16
sc_violin,SingleCellExperiment-method (sc_violin)	16
stat_ellipse	6
theme	3
theme (reexports)	3