Package ‘genefu’

May 29, 2024

Type Package

Title Computation of Gene Expression-Based Signatures in Breast Cancer

Version 2.36.0

Date 2021-05-21

Description This package contains functions implementing various tasks usually required by gene expression analysis, especially in breast cancer studies: gene mapping between different microarray platforms, identification of molecular subtypes, implementation of published gene signatures, gene selection, and survival analysis.

biocViews DifferentialExpression, GeneExpression, Visualization, Clustering, Classification

Depends R (>= 4.1), survcomp, biomaRt, iC10, AIMS

Suggests GeneMeta, breastCancerVDX, breastCancerMAINZ, breastCancerTRANSBIG, breastCancerUPP, breastCancerUNT, breastCancerNKL, rmeta, Biobase, xtable, knitr, caret, survival, BiocStyle, magick, rmarkdown

Imports amap, impute, mclust, limma, graphics, stats, utils

VignetteBuilder knitr

License Artistic-2.0

Encoding UTF-8

URL http://www.pmgenomics.ca/bhklab/software/genefu

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/genefu

git_branch RELEASE_3_19

git_last_commit a82c8f1

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29
Author: Deena M.A. Gendoo [aut],
 Natchar RatanaSirinigulchai [aut],
 Markus S. Schroeder [aut],
 Laia Pare [aut],
 Joel S Parker [aut],
 Aleix Prat [aut],
 Nikta Feizi [ctb],
 Christopher Eeles [ctb],
 Benjamin Haibe-Kains [aut, cre]

Maintainer: Benjamin Haibe-Kains <benjamin.haibe.kains@utoronto.ca>

Contents

bimod .. 4
boxplotplus2 .. 5
claudinLow ... 7
claudinLowData .. 8
collapseIDs ... 9
compareProtoCor .. 9
compute.pairw.cor.meta 11
compute.pairw.cor.z .. 12
compute.proto.cor.meta ... 13
cordiff.dep ... 14
endoPredict .. 15
expos ... 16
fuzzy.ttest ... 17
gene70 .. 18
gene76 .. 20
geneid.map .. 21
genius ... 22
ggi ... 23
ihc4 ... 25
intrinsic.cluster ... 26
intrinsic.cluster.predict 28
map.datasets .. 30
medianCtr .. 31
mod1 ... 32
mod2 ... 32
modelOvcAngiogenic ... 33
molecular.subtyping .. 33
nkis .. 36
npi ... 37
oncotypedx ... 38
ovcAngiogenic .. 39
ovcCrijns ... 40
ovcTCGA .. 42
ovcYoshihara ... 43
Contents

overlapSets .. 44
pam50 .. 45
pik3cags ... 46
power.cor ... 47
ps.cluster ... 48
read.m.file ... 49
readArray ... 50
rename.duplicate 51
rescale .. 52
rorS ... 53
scmgene.robust 54
scmod1.robust ... 55
scmod2.robust ... 55
setcolclass.df ... 56
sig.endoPredict 57
sig.gene70 ... 57
sig.gene76 ... 58
sig.genius ... 59
sig.ggi .. 59
sig.oncotypedx .. 60
sig.pik3cags .. 60
sig.score ... 61
sig.tamr13 ... 62
sigOvcAngiogenic 63
sigOvcCrijns ... 63
sigOvcSpentzos 64
sigOvcTCGA ... 64
sigOvcYoshihara 65
spearmanCI ... 65
ssp2003 ... 66
ssp2006 ... 67
st.gallen ... 68
stab.fs ... 69
stab.fs.ranking 70
strescR ... 72
subtype.cluster 73
subtype.cluster.predict 75
tamr13 .. 77
tbrm ... 78
vdxs ... 79
weighted.meanvar 80
write.m.file .. 81

Index ... 82
Description

This function fits a mixture of two Gaussians to identify bimodality. Useful to identify ER of HER2 status of breast tumors using ESR1 and ERBB2 expressions respectively.

Usage

```r
bimod(x, data, annot, do.mapping = FALSE, mapping, model = c("E", "V"),
       do.scale = TRUE, verbose = FALSE, ...)
```

Arguments

- `x`: Matrix containing the gene(s) in the gene list in rows and at least three columns: "probe", "EntrezGene.ID" and "coefficient" standing for the name of the probe, the NCBI Entrez Gene id and the coefficient giving the direction and the strength of the association of each gene in the gene list.
- `data`: Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
- `annot`: Matrix of annotations with at least one column named "EntrezGene.ID", dimnames being properly defined.
- `do.mapping`: TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
- `mapping`: Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
- `model`: Model name used in Mclust.
- `do.scale`: TRUE if the gene expressions or signature scores must be rescaled (see rescale), FALSE otherwise.
- `verbose`: TRUE to print informative messages, FALSE otherwise.
- `...`: Additional parameters to pass to sig.score.

Value

A list with items:

- `status`: Status being 0 or 1.
- `status1.proba`: Probability p to be of status 1, the probability to be of status 0 being 1-p.
- `gaussians`: Matrix of parameters fitted in the mixture of two Gaussians. Matrix of NA values if EM algorithm did not converge.
- `BIC`: Values (gene expressions or signature scores) used to identify bimodality.
- `BI`: Bimodality Index (BI) as defined by Wang et al., 2009.
- `x`: Values (gene expressions or signature scores) used to identify bimodality.
References

See Also

mclust::Mclust

Examples

```r
# load NKI data
data(nkis)
# load gene modules from Desmedt et al. 2008
data(mod1)
# retrieve esr1 affy probe and Entrez Gene id
esr1 <- mod1$ESR1[1, ,drop=FALSE]
# computation of signature scores
esr1.bimod <- bimod(x=esr1, data=data.nkis, annot=annot.nkis, do.mapping=TRUE,
                   model="V", verbose=TRUE)
table("ER.IHC"=demo.nkis[ ,"er"], "ER.GE"=esr1.bimod$status)
```

Description

This function allows for display a boxplot with jittered points.

Usage

```r
boxplotplus2(x, .jit = 0.25, .las = 1, .ylim, box.col = "lightgrey",
            pt.col = "blue", pt.cex = 0.5, pt.pch = 16, med.line = FALSE,
            med.col = "goldenrod", ...)
```
Arguments

x could be a list of group values or a matrix (each group is a row).

.jit Amount of jittering noise.

.las Numeric in 0,1,2,3; the style of axis labels.

.ylim Range for y axis.

box.col Color for boxes.

pt.col Color for groups (jittered points).

pt.cex A numerical value giving the amount by which plotting jittered points should be magnified relative to the default.

pt.pch Either an integer specifying a symbol or a single character to be used as the default in plotting jittered points. See points for possible values and their interpretation.

med.line TRUE if a line should link the median of each group, FALSE otherwise.

med.col Color of med.line.

... Additional parameters for boxplot function.

Value

Number of samples in each group.

Note

2.21.2006 - Christos Hatzis, Nuvera Biosciences

See Also

graphics::boxplot, base::jitter

Examples

dd <- list("G1"=runif(20), "G2"=rexp(30) * -1.1, "G3"=rnorm(15) * 1.3)
boxplotplus2(x=dd, .las=3, .jit=0.75, .ylim=c(-3,3), pt.cex=0.75,
pt.col=c(rep("darkred", 20), rep("darkgreen", 30), rep("darkblue", 15)),
pt.pch=c(0, 9, 17))
claudinLow

Claudin-low classification for Breast Cancer Data

Description

Subtyping method for identifying Claudin-Low Breast Cancer Samples. Code generously provided by Aleix Prat.

Usage

```r
claudinLow(x, classes = "", y, nGenes = "", priors = "equal", std = FALSE, distm = "euclidean", centroids = FALSE)
```

Arguments

- **x**: the data matrix of training samples, or pre-calculated centroids.
- **classes**: a list labels for use in coloring the points.
- **y**: the data matrix of test samples.
- **nGenes**: the number of genes selected when training the model.
- **priors**: 'equal' assumes equal class priors, 'class' calculates them based on proportion in the data.
- **std**: when true, the training and testing samples are standardized to mean=0 and var=1.
- **distm**: the distance metric for determining the nearest centroid, can be one of euclidean, pearson, or spearman.
- **centroids**: when true, it is assumed that x consists of pre-calculated centroids.

Value

A list with items:

- predictions
- testData
- distances
- centroids

References

See Also

`medianCtr()`, `q`
Examples

data(claudinLowData)

Training Set
train <- claudinLowData
train$xd <- medianCtr(train$xd)

Testing Set
test <- claudinLowData
test$xd <- medianCtr(test$xd)

Generate Predictions
predout <- claudinLow(x=train$xd, classes=as.matrix(train$classes$Group,ncol=1), y=test$xd)

Obtain results
results <- cbind(predout$predictions, predout$distances)
#write.table(results,"T.E.9CELL.LINE_results.txt",sep="\t",col=T, row=FALSE)

claundinLowData claudinLowData for use in the claudinLow classifier. Data generously provided by Aleix Prat.

Description
Training and Testing Data for use with the Claudin-Low Classifier

Usage
data(claudinLowData)

Format
- xd: Matrix of 807 features and 52 samples
- classes: factor to split samples
- nfeatures: number of features
- nsamples: number of samples
- fnames: names of features
- snames: names of samples

Source
http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References
collapseIDs

See Also
claudinLow()

collapseIDs

Utility function to collapse IDs

Description
Utility function called within the claudinLow classifier

Usage
collapseIDs(x, allids=row.names(x), method="mean")

Arguments
- x: Matrix of numbers.
- allids: Defaults to rownames of matrix.
- method: Default method is "mean".

Value
A matrix

References
citation("claudinLow")

See Also
claudinLow

compareProtoCor

Function to statistically compare correlation to prototypes

Description
This function performs a statistical comparison of the correlation coefficients as computed between each probe and prototype.

Usage
compareProtoCor(gene.cor, proto.cor, nn, p.adjust.m = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"))
Arguments

- **gene.cor**: Correlation coefficients between the probes and each of the prototypes.
- **proto.cor**: Pairwise correlation coefficients of the prototypes.
- **nn**: Number of samples used to compute the correlation coefficients between the probes and each of the prototypes.
- **p.adjust.m**: Correction method as defined in `p.adjust`.

Value

Data frame with probes in rows and with three columns: "proto" is the prototype to which the probe is the most correlated, "cor" is the actual correlation, and "signif" is the (corrected) p-value for the superiority of the correlation to this prototype compared to the second highest correlation.

See Also

- `compute.proto.cor.meta`, `compute.pairw.cor.meta`

Examples

```r
# load VDX dataset
data(vdxs)
# load NKI dataset
data(nkis)
# reduce datasets
ginter <- intersect(annot.vdxs[, "EntrezGene.ID"], annot.nkis[, "EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[, "EntrezGene.ID"],
    sample(x=1:nrow(annot.vdxs), size=20)),
    annot.vdxs[, myx]
data2.vdxs <- data.vdxs[, myx]
annot2.vdxs <- annot.vdxs[, myx]

myx <- unique(c(match(ginter, annot.nkis[, "EntrezGene.ID"],
    sample(x=1:nrow(annot.nkis), size=20)),
    annot.nkis[, myx]
data2.nkis <- data.nkis[, myx]
annot2.nkis <- annot.nkis[, myx]

# mapping of datasets
datas <- list("VDX"=data2.vdxs, "NKI"=data2.nkis)
annots <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE)
# define some prototypes
protos <- paste("geneid", ginter[1:3], sep=".")
# compute meta-estimate of correlation coefficients to the three prototype genes
probecor <- compute.proto.cor.meta(datas=datas.mapped$datas, proto=protos,
    method="pearson")
# compute meta-estimate of pairwise correlation coefficients between prototypes
data strcmp <- function(data)
    sapply(X=1:nrow(data), FUN=function(x, p)
        return(rbind(data[, x], data[, x] == p, data[, rep(x, nrow(data))]))

# compare correlation coefficients to each prototype
res <- compareProtoCor(gene.cor=probecor$cor, proto.cor=protocor$cor,
    nn=probecor$cor.n, p.adjust.m="fdr")
```
Function to compute pairwise correlations in a meta-analytical framework

Description
This function computes meta-estimate of pairwise correlation coefficients for a set of genes from a list of gene expression datasets.

Usage
compute.pairw.cor.meta(datas, method = c("pearson", "spearman"))

Arguments
- datas: List of datasets. Each dataset is a matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined. All the datasets must have the same probes.
- method: Estimator for correlation coefficient, can be either pearson or spearman.

Value
A list with items:
- cor: Matrix of meta-estimate of correlation coefficients with probes in rows and prototypes in columns
- cor.n: Number of samples used to compute meta-estimate of correlation coefficients.

See Also
map.datasets, compute.proto.cor.meta

Examples
load VDX dataset
data(vdxs)
load NKI dataset
data(nkis)
reduce datasets
ginter <- intersect(annot.vdxs[, "EntrezGene.ID"], annot.nkis[, "EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[, "EntrezGene.ID"]), sample(x=1:nrow(annot.vdxs), size=20)))
data2.vdxs <- data.vdxs[, myx]
annot2.vdxs <- annot.vdxs[myx,]
myx <- unique(c(match(ginter, annot.nkis[, "EntrezGene.ID"])), sample(x=1:nrow(annot.nkis), size=20))
data2.nkis <- data.nkis[, myx]
annot2.nkis <- annot.nkis[myx,]
mapping of datasets
datas <- list("VDX"=data2.vdxs,"NKI"=data2.nkis)
annots <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE)
compute meta-estimate of pairwise correlation coefficients
pairwcor <- compute.pairw.cor.meta(datas=datas.mapped$datas, method="pearson")
str(pairwcor)

compute.pairw.cor.z Function to compute the Z transformation of the pairwise correlations for a list of datasets

Description

This function computes the Z transformation of the meta-estimate of pairwise correlation coefficients for a set of genes from a list of gene expression datasets.

Usage

compute.pairw.cor.z(datas, method = c("pearson"))

Arguments

datas List of datasets. Each dataset is a matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined. All the datasets must have the same probes.

method Estimator for correlation coefficient, can be either pearson or spearman.

Value

A list with items: -z Z transformation of the meta-estimate of correlation coefficients. -se Standard error of the Z transformation of the meta-estimate of correlation coefficients. -nn Number of samples used to compute the meta-estimate of correlation coefficients.

See Also

map.datasets, compute.pairw.cor.meta, compute.proto.cor.meta
compute.proto.cor.meta

Function to compute correlations to prototypes in a meta-analytical framework

Description
This function computes meta-estimate of correlation coefficients between a set of genes and a set of prototypes from a list of gene expression datasets.

Usage
compute.proto.cor.meta(datas, proto, method = c("pearson", "spearman"))

Arguments
datas List of datasets. Each dataset is a matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined. All the datasets must have the same probes.
proto Names of prototypes (e.g. their EntrezGene ID).
method Estimator for correlation coefficient, can be either pearson or spearman

Value
A list with items: -cor Matrix of meta-estimate of correlation coefficients with probes in rows and prototypes in columns. -cor.n Number of samples used to compute meta-estimate of correlation coefficients.

See Also
map.datasets

Examples
load VDX dataset
data(vdxs)
load NKI dataset
data(nkis)
reduce datasets
ginter <- intersect(annot.vdxs[,"EntrezGene.ID"], annot.nkis[,"EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[,"EntrezGene.ID"]),
 sample(x=1:nrow(annot.vdxs), size=20)))
data2.vdxs <- data.vdxs[,myx]
annot2.vdxs <- annot.vdxs[myx,]
myx <- unique(c(match(ginter, annot.nkis[,"EntrezGene.ID"]),
 sample(x=1:nrow(annot.nkis), size=20)))
data2.nkis <- data.nkis[,myx]
annot2.nkis <- annot.nkis[myx,]
mapping of datasets
datas <- list("VDX"=data2.vdxs,"NKI"=data2.nkis)
annot <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annot, do.mapping=TRUE)
define some prototypes
protos <- paste("geneid", ginter[1:3], sep=".")
compute meta-estimate of correlation coefficients to the three prototype genes
probecor <- compute.proto.cor.meta(datas=datas.mapped$datas, proto=protos,
method="pearson")
str(probecor)

cordiff.dep

Function to estimate whether two dependent correlations differ

Description

This function tests for statistical differences between two dependent correlations using the formula provided on page 56 of Cohen & Cohen (1983). The function returns a t-value, the DF and the p-value.

Usage

cordiff.dep(r.x1y, r.x2y, r.x1x2, n,
alternative = c("two.sided", "less", "greater"))

Arguments

- **r.x1y**: The correlation between x1 and y where y is typically your outcome variable.
- **r.x2y**: The correlation between x2 and y where y is typically your outcome variable.
- **r.x1x2**: The correlation between x1 and x2 (the correlation between your two predictors).
- **n**: The sample size.
- **alternative**: A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

Details

This function is inspired from the cordif.dep.

Value

Vector of three values: t statistics, degree of freedom, and p-value.

References

See Also

stats::cor, stats::t.test, compareProtoCor

Examples

load VDX dataset
data(vdxs)
retrieve ESR1, AURKA and MKI67 gene expressions
x1 <- data.vdxs[, "208079_s_at"]
x2 <- data.vdxs[, "205225_at"]
y <- data.vdxs[, "212022_s_at"]
is MKI67 significantly more correlated to AURKA than ESR1?
cc.ix <- complete.cases(x1, x2, y)
cordiff.dep(r.x1y=abs(cor(x=x1[cc.ix], y=y[cc.ix], use="everything",
 method="pearson")), r.x2y=abs(cor(x=x2[cc.ix], y=y[cc.ix],
 use="everything", method="pearson")), r.x1x2=abs(cor(x=x1[cc.ix],
 y=x2[cc.ix], use="everything", method="pearson")), n=sum(cc.ix),
 alternative="greater")
Details

The function works best if data have been noralized with MAS5. Note that for Affymetrix HGU datasets, the mapping is not necessary.

Value

A list with items: -score Continuous signature scores -risk Binary risk classification, 1 being high risk and 0 being low risk. -mapping Mapping used if necessary. -probe If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.

References

Examples

load GENE70 signature
data(sig.endoPredict)
load NKI dataset
data(vdxs)
compute relapse score
rs.vdxs <- endoPredict(data=data.vdxs, annot=annot.vdxs, do.mapping=FALSE)

expos

Gene expression, annotations and clinical data from the International Genomics Consortium

Description

This dataset contains (part of) the gene expression, annotations and clinical data from the expO dataset collected by the International Genomics Consortium().

Usage

data(expos)

Format

expos is a dataset containing three matrices

- data.expos: Matrix containing gene expressions as measured by Affymetrix hgu133plus2 technology (single-channel, oligonucleotides)
- annot.expos: Matrix containing annotations of ffymetrix hgu133plus2 microarray platform
- demo.expos: Clinical information of the breast cancer patients whose tumors were hybridized
fuzzy.ttest

Function to compute the fuzzy Student t test based on weighted mean and weighted variance

Description
This function allows for computing the weighted mean and weighted variance of a vector of continuous values.

Usage
fuzzy.ttest(x, w1, w2, alternative=c("two.sided", "less", "greater"),
check.w = TRUE, na.rm = FALSE)

Arguments
x an object containing the observed values.
w1 a numerical vector of weights of the same length as x giving the weights to use for elements of x in the first class.
w2 a numerical vector of weights of the same length as x giving the weights to use for elements of x in the second class.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
check.w TRUE if weights should be checked such that 0 <= w <= 1 and \(w1[i] + w2[i] \) < 1
for 1 <= i <= length(x), FALSE otherwise. Beware that weights greater than one may inflate over-optimistically resulting p-values, use with caution.
na.rm TRUE if missing values should be removed, FALSE otherwise.

Details
The weights \(w1 \) and \(w2 \) should represent the likelihood for each observation stored in \(x \) to belong to the first and second class, respectively. Therefore the values contained in \(w1 \) and \(w2 \) should lay in \([0,1]\) and \(\theta <= (w1[i] + w2[i]) <= 1 \) for \(i \) in \(0,1,...,n \) where \(n \) is the length of \(x \). The Welch’s version of the t test is implemented in this function, therefore assuming unequal sample size and unequal variance. The sample size of the first and second class are calculated as the sum(\(w1 \)) and sum(\(w2 \)), respectively.
Value

A numeric vector of six values that are the difference between the two weighted means, the value of the t statistic, the sample size of class 1, the sample size of class 2, the degree of freedom and the corresponding p-value.

References

http://en.wikipedia.org/wiki/T_test

See Also

stats::weighted.mean

Examples

```r
set.seed(54321)
# random generation of 50 normally distributed values for each of the two classes
xx <- c(rnorm(50), rnorm(50)+1)
# fuzzy membership to class 1
ww1 <- runif(50) + 0.3
ww1[ww1 > 1] <- 1
ww1 <- c(ww1, 1 - ww1)
# fuzzy membership to class 2
ww2 <- 1 - ww1
# Welch's t test weighted by fuzzy membership to class 1 and 2
wt <- fuzzy.ttest(x=xx, w1=ww1, w2=ww2)
print(wt)
# Not run:
# permutation test to compute the null distribution of the weighted t statistic
wt <- wt[2]
rands <- t(sapply(1:1000, function(x,y) { return(sample(1:y)) }, y=length(xx)))
randst <- apply(rands, 1, function(x, xx, ww1, ww2) {
  { return(fuzzy.ttest(x=xx, w1=ww1[x], w2=ww2[x])$t) }
}, xx=xx, ww1=ww1, ww2=ww2)
ifelse(wt < 0, sum(randst <= wt), sum(randst >= wt)) / length(randst)
# End(Not run)
```

gene70

Function to compute the 70 genes prognosis profile (GENE70) as published by van’t Veer et al. 2002

Description

This function computes signature scores and risk classifications from gene expression values following the algorithm used for the 70 genes prognosis profile (GENE70) as published by van’t Veer et al. 2002.
Usage

gene70(data, annot, do.mapping = FALSE, mapping, std = c("none", "scale", "robust"), verbose = FALSE)

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dim-
names being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dim-
names being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of
ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
mapping Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping
such that the probes are not selected based on their variance.
std Standardization of gene expressions: scale for traditional standardization based
on mean and standard deviation, robust for standardization based on the 0.025
and 0.975 quantiles, none to keep gene expressions unchanged.
verbose TRUE to print informative messages, FALSE otherwise.

Value

A list with items:

- score Continuous signature scores
- risk Binary risk classification, 1 being high risk and 0 being low risk.
- mapping Mapping used if necessary.
- probe If mapping is performed, this matrix contains the correspondence between the gene list
 (aka signature) and gene expression data

References

L. J. van't Veer and H. Dai and M. J. van de Vijver and Y. D. He and A. A. Hart and M. Mao and
H. L. Peterse and K. van der Kooy and M. J. Marton and A. T. Witteveen and G. J. Schreiber and

See Also

nkis

Examples

load GENE70 signature
data(sig.gene70)
load NKI dataset
data(nkis)
compute relapse score
rs.nkis <- gene70(data=data.nkis)
table(rs.nkis$risk)
note that the discrepancies compared to the original publication
are closed to the official cutoff, raising doubts on its exact value.
computation of the signature scores on a different microarray platform
load VDX dataset
data(vdxs)
compute relapse score
rs.vdxs <- gene70(data=data.vdxs, annot=annot.vdxs, do.mapping=TRUE)
table(rs.vdxs$risk)

gene76 Function to compute the Relapse Score as published by Wang et al. 2005

Description
This function computes signature scores and risk classifications from gene expression values following the algorithm used for the Relapse Score (GENE76) as published by Wang et al. 2005.

Usage
gene76(data, er)

Arguments
data Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
er Vector containing the estrogen receptor (ER) status of breast cancer patients in the dataset.

Value
A list with items:
- score Continuous signature scores
- risk Binary risk classification, 1 being high risk and 0 being low risk.

References

See Also
ggi
Examples

```r
# load GENE76 signature
data(sig.gene76)
# load VDX dataset
data(vdxs)
# compute relapse score
rs.vdxs <- gene76(data=data.vdxs, er=demo.vdxs[,"er"])
table(rs.vdxs$risk)
```

```r
geneid.map Function to find the common genes between two datasets or a dataset and a gene list
```

Description

This function allows for fast mapping between two datasets or a dataset and a gene list. The mapping process is performed using Entrez Gene id as reference. In case of ambiguities (several probes representing the same gene), the most variant probe is selected.

Usage

```r
geneid.map(geneid1, data1, geneid2, data2, verbose = FALSE)
```

Arguments

- **geneid1**: First vector of Entrez Gene ids. The name of the vector cells must be the name of the probes in the dataset `data1`.
- **data1**: First dataset with samples in rows and probes in columns. The dimnames must be properly defined.
- **geneid2**: Second vector of Entrez Gene ids. The name of the vector cells must be the name of the probes in the dataset `data1` if it is not missing, proper names must be assigned otherwise.
- **data2**: First dataset with samples in rows and probes in columns. The dimnames must be properly defined. It may be missing.
- **verbose**: TRUE to print informative messages, FALSE otherwise.

Value

A list with items:

- `geneid1` Mapped gene list from `geneid1`.
- `data1` Mapped dataset from `data1`.
- `geneid2` Mapped gene list from `geneid2`.
- `data2` Mapped dataset from `data2`.
Note

It is mandatory that the names of geneid1 and geneid2 must be the probe names of the microarray platform.

Examples

load NKI data
data(nkis)
nkis.gid <- annot.nkis[, "EntrezGene.ID"]
names(nkis.gid) <- dimnames(annot.nkis)[[1]]
load GGI signature
data(sig.ggi)
ggi.gid <- sig.ggi[, "EntrezGene.ID"]
names(ggi.gid) <- as.character(sig.ggi[, "probe"])
mapping through Entrez Gene ids of NKI and GGI signature
res <- geneid.map(geneid1=nkis.gid, data1=data.nkis,
 geneid2=ggi.gid, verbose=FALSE)
str(res)

Function to compute the Gene Expression progNostic Index Using Subtypes (GENIUS) as published by Haibe-Kains et al. 2010

Description

This function computes the Gene Expression progNostic Index Using Subtypes (GENIUS) as published by Haibe-Kains et al. 2010. Subtype-specific risk scores are computed for each subtype signature separately and an overall risk score is computed by combining these scores with the posterior probability to belong to each of the breast cancer molecular subtypes.

Usage

```
genius(data, annot, do.mapping = FALSE, mapping, do.scale = TRUE)
```

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dimnames being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
mapping Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
do.scale TRUE if the ESR1, ERBB2 and AURKA (module) scores must be rescaled (see rescale), FALSE otherwise.
Value

A list with items:

- GENIUSM1: Risk score from the ER-/HER2- subtype signature in GENIUS model.
- GENIUSM2: Risk score from the HER2+ subtype signature in GENIUS model.
- GENIUSM3: Risk score from the ER+/HER2- subtype signature in GENIUS model.
- score: Overall risk prediction as computed by the GENIUS model.a.

References

See Also

subtype.cluster.predict,sig.score

Examples

```r
# load NKI dataset
data(nkis)
data(scmod1.robust)
data(sig.genius)

# compute GENIUS risk scores based on GENIUS model fitted on VDX dataset
genius.nkis <- genius(data=data.nkis, annot=annot.nkis, do.mapping=TRUE)
str(genius.nkis)
# the performance of GENIUS overall risk score predictions are not optimal
# since only part of the NKI dataset was used
```

gg

Function to compute the raw and scaled Gene expression Grade Index (GGI)

Description

This function computes signature scores and risk classifications from gene expression values following the algorithm used for the Gene expression Grade Index (GGI).

Usage

```r
ggi(data, annot, do.mapping = FALSE, mapping, hg, verbose = FALSE)
```
Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dimensions being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dimensions being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
mapping Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.

Value

A list with items:

- score: Continuous signature scores
- risk: Binary risk classification, 1 being high risk and 0 being low risk.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.

References

See Also
gene76

Examples

load GGI signature
data(sig.ggi)
load NKI dataset
data(nkis)
compute relapse score
ggi.nkis <- ggi(data=data.nkis, annot=annot.nkis, do.mapping=TRUE,
 hg=demo.nkis[, "grade"])
table(ggi.nkis$risk)
ihc4

Function to compute the IHC4 prognostic score as published by Paik et al. in 2004.

Description

This function computes the prognostic score based on four measured IHC markers (ER, PGR, HER2, Ki-67), following the algorithm as published by Cuzick et al. 2011. The user has the option to either obtain just the shrinkage-adjusted IHC4 score (IHC4) or the overall score that also combines the clinical score (IHC4+C).

Usage

```r
ihc4(ER, PGR, HER2, Ki67, age, size, grade, node, ana, scoreWithClinical=FALSE, na.rm = FALSE)
```

Arguments

- **ER**
 - ER score between 0-10, calculated as (H-score/30).
- **PGR**
 - Progesterone Receptor score between 0-10.
- **HER2**
 - Her2/neu status (0 or 1).
- **Ki67**
 - Ki67 score based on percentage of positively staining malignant cells.
- **age**
 - Patient age.
- **size**
 - Tumor size in cm.
- **grade**
 - Histological grade, i.e. low (1), intermediate (2) and high (3) grade.
- **node**
 - Nodal status.
- **ana**
 - Treatment with anastrozole.
- **scoreWithClinical**
 - TRUE to get IHC4+C score, FALSE to get just the IHC4 score.
- **na.rm**
 - TRUE if missing values should be removed, FALSE otherwise.

Value

Shrinkage-adjusted IHC4 score or the Overall Prognostic Score based on IHC4+C (IHC4+Clinical Score)

References

Examples

load NKI dataset
data(nkis)
compute shrinkage-adjusted IHC4 score
count<-nrow(demo.nkis)
ihc4(ER=sample(x=1:10, size=count, replace=TRUE), PGR=sample(x=1:10, size=count, replace=TRUE), HER2=sample(x=0:1, size=count, replace=TRUE), Ki67=sample(x=1:100, size=count, replace=TRUE), scoreWithClinical=FALSE, na.rm=TRUE)

compute IHC4+C score
ihc4(ER=sample(x=1:10, size=count, replace=TRUE), PGR=sample(x=1:10, size=count, replace=TRUE), HER2=sample(x=0:1, size=count, replace=TRUE), Ki67=sample(x=1:100, size=count, replace=TRUE), age=demo.nkis[,"age"], size=demo.nkis[,"size"], grade=demo.nkis[,"grade"], node=demo.nkis[,"node"], ana=sample(x=0:1, size=count, replace=TRUE), scoreWithClinical=TRUE, na.rm=TRUE)

intrinsic.cluster Function to fit a Single Sample Predictor (SSP) as in Perou, Sorlie, Hu, and Parker publications

Description

This function fits the Single Sample Predictor (SSP) as published in Sorlie et al 2003, Hu et al 2006 and Parker et al 2009. This model is actually a nearest centroid classifier where the centroids representing the breast cancer molecular subtypes are identified through hierarchical clustering using an "intrinsic gene list".

Usage

intrinsic.cluster(data, annot, do.mapping = FALSE, mapping, std = c("none", "scale", "robust"), rescale.q = 0.05, intrinsicg, number.cluster = 3, mins = 5, method.cor = c("spearman", "pearson"), method.centroids = c("mean", "median", "tukey"), filen, verbose = FALSE)

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dimensions being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dimensions being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
mapping Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
std Standardization of gene expressions: scale for traditional standardization based on mean and standard deviation, robust for standardization based on the 0.025 and 0.975 quantiles, none to keep gene expressions unchanged.
Proportion of expected outliers for (robust) rescaling the gene expressions.

Intrinsic gene lists. May be specified by the user as a matrix with at least 2 columns named probe and EntrezGene.ID for the probe names and the corresponding Entrez Gene ids. The intrinsic gene lists published by Sorlie et al. 2003, Hu et al. 2006 and Parker et al. 2009 are stored in ssp2003, ssp2006 and pam50 respectively.

The number of main clusters to be identified by hierarchical clustering.

The minimum number of samples to be in a main cluster.

Correlation coefficient used to identified the nearest centroid. May be spearman or pearson.

Method to compute a centroid from gene expressions of a cluster of samples: mean, median or tukey (Tukey’s Biweight Robust Mean).

Name of the csv file where the subtype clustering model must be stored.

TRUE to print informative messages, FALSE otherwise.

A list with items:

- model: Single Sample Predictor
- subtype: Subtypes identified by the SSP. For published intrinsic gene lists, subtypes can be either "Basal", "Her2", "LumA", "LumB" or "Normal".
- subtype.proba: Probabilities to belong to each subtype estimated from the correlations to each centroid.
- cor: Correlation coefficient to each centroid.

Hu, Zhiyuan and Fan, Cheng and Oh, Daniel and Marron, JS and He, Xiapeng and Qaqish, Bahjat and Livasy, Chad and Carey, Lisa and Reynolds, Evangeline and ressler, Lynn and Nobel, Andrew and Parker, Joel and Ewend, Matthew and Sawyer, Lynda and Wu, Junyuan and Liu, Yudong and Nanda, Rita and Tretiakova, Maria and Orrico, Alejandra and Dreher, Donna and Palazzo, Juan and Perreard, Laurent and Nelson, Edward and Mone, Mary and Hansen, Heidi and Mullins, Michael and Quackenbush, John and Ellis, Matthew and Olopade, Olufunmilayo and Bernard, Philip and Perou, Charles (2006) "The molecular portraits of breast tumors are conserved across microarray platforms", BMC Genomics, 7(96)

intrinsic.cluster.predict

Function to identify breast cancer molecular subtypes using the Single Sample Predictor (SSP)

Description

This function identifies the breast cancer molecular subtypes using a Single Sample Predictor (SSP) fitted by `intrinsic.cluster`.

Usage

```r
intrinsic.cluster.predict(sbt.model, data, annot, do.mapping = FALSE, mapping, do.prediction.strength = FALSE, verbose = FALSE)
```

Arguments

- `sbt.model`: Subtype Clustering Model as returned by `intrinsic.cluster`.
- `data`: Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
- `annot`: Matrix of annotations with at least one column named "EntrezGene.ID", dimnames being properly defined.
- `do.mapping`: TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
- `mapping`: Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping.
- `do.prediction.strength`: TRUE if the prediction strength must be computed (Tibshirani and Walther 2005), FALSE otherwise.
- `verbose`: TRUE to print informative messages, FALSE otherwise.

Examples

```r
# load SSP signature published in Sorlie et al. 2003
data(ssp2003)
# load NKI data
data(nkis)
# load VDX data
data(vdxs)
ssp2003.nkis <- intrinsic.cluster(data=data.nkis, annot=annot.nkis,
do.mapping=TRUE, std="robust",
intrinsicg=ssp2003$centroids.map[,c("probe", "EntrezGene.ID")],
number.cluster=5, mins=5, method.cor="spearman",
method.centroids="mean", verbose=TRUE)
str(ssp2003.nkis, max.level=1)
```

See Also

`subtype.cluster`, `intrinsic.cluster.predict`, `ssp2003`, `ssp2006`, `pam50`
Value

A list with items:

- subtype: Subtypes identified by the SSP. For published intrinsic gene lists, subtypes can be either "Basal", "Her2", "LumA", "LumB" or "Normal".
- subtype.proba: Probabilities to belong to each subtype estimated from the correlations to each centroid.
- cor: Correlation coefficient to each centroid.
- prediction.strength: Prediction strength for subtypes.
- subtype.train: Classification (similar to subtypes) computed during fitting of the model for prediction strength.
- centroids.map: Mapped probes from the intrinsic gene list used to compute the centroids.
- profiles: Intrinsic gene expression profiles for each sample.

References

Hu, Zhiyuan and Fan, Cheng and Oh, Daniel and Marron, JS and He, Xiaping and Qaqish, Bahjat and Livasy, Chad and Carey, Lisa and Reynolds, Evangeline and Dressler, Lynn and Nobel, Andrew and Parker, Joel and Ewend, Matthew and Sawyer, Lynda and Wu, Junyuan and Liu, Yudong and Nanda, Rita and Tretiakova, Maria and Orrico, Alejandra and Dreher, Donna and Palazzo, Juan and Perreard, Laurent and Nelson, Edward and Mone, Mary and Hansen, Heidi and Mullins, Michael and Quackenbush, John and Ellis, Matthew and Olopade, Olufunmilayo and Bernard, Philip and Perou, Charles (2006) "The molecular portraits of breast tumors are conserved across microarray platforms", BMC Genomics, 7(96)

See Also

intrinsic.cluster, ssp2003, ssp2006, pam50

Examples

load SSP fitted in Sorlie et al. 2003
data(ssp2003)
load NKI data
data(nkis)
SSP2003 applied on NKI
ssp2003.nkis <- intrinsic.cluster.predict(sbt.model=ssp2003,
map.datasets

Function to map a list of datasets through EntrezGene IDs in order to get the union of the genes

Description

This function maps a list of datasets through EntrezGene IDs in order to get the union of the genes.

Usage

map.datasets(datas, annots, do.mapping = FALSE, mapping.coln = "EntrezGene.ID", mapping, verbose = FALSE)

Arguments

datas List of matrices of gene expressions with samples in rows and probes in columns, dimnames being properly defined.

annots List of matrices of annotations with at least one column named "EntrezGene.ID", dimnames being properly defined.

do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.

mapping.coln Name of the column containing the biological annotation to be used to map the different datasets, default is "EntrezGene.ID".

mapping Matrix with columns "EntrezGene.ID" and "probe.x" used to force the mapping such that the probes of platform x are not selected based on their variance.

verbose TRUE to print informative messages, FALSE otherwise.

Details

In case of several probes representing the same EntrezGene ID, the most variant is selected if mapping is not specified. When a EntrezGene ID does not exist in a specific dataset, NA values are introduced.

Value

A list with items:

- datas: List of datasets (gene expression matrices)
- annots: List of annotations (annotation matrices)
Examples
load VDX dataset
data(vdxs)
load NKI dataset
data(nkis)
reduce datasets
ginter <- intersect(annot.vdxs[, "EntrezGene.ID"], annot.nkis[, "EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[, "EntrezGene.ID"]),
 sample(x=1:nrow(annot.vdxs), size=20)))
data2.vdxs <- data.vdxs[, myx]
annot2.vdxs <- annot.vdxs[myx,]
myx <- unique(c(match(ginter, annot.nkis[, "EntrezGene.ID"]),
 sample(x=1:nrow(annot.nkis), size=20)))
data2.nkis <- data.nkis[, myx]
annot2.nkis <- annot.nkis[myx,]
mapping of datasets
datas <- list("VDX"=data2.vdxs,"NKI"=data2.nkis)
annots <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE)
str(datas.mapped, max.level=2)

medianCtr

Center around the median

Description
Utility function called within the claudinLow classifier

Usage
medianCtr(x)

Arguments

x Matrix of numbers

Value
A matrix of median-centered numbers

References
citation("claudinLow")

See Also
claudinLow
mod1

Gene modules published in Desmedt et al. 2008

Description
List of seven gene modules published in Desmedt et al. 2008, i.e. ESR1 (estrogen receptor pathway), ERBB2 (her2/neu receptor pathway), AURKA (proliferation), STAT1 (immune response), PLAU (tumor invasion), VEGF (angiogenesis) and CASP3 (apoptosis).

Usage
data(mod1)

Details
mod1 is a list of seven gene signatures, i.e. matrices with 3 columns containing the annotations and information related to the signatures themselves.

References

mod2

Gene modules published in Wirapati et al. 2008

Description
List of seven gene modules published in Wirapati et al. 2008, i.e. ESR1 (estrogen receptor pathway), ERBB2 (her2/neu receptor pathway) and AURKA (proliferation).

Usage
data(mod2)

Details
mod2 is a list of three gene signatures, i.e. matrices with 3 columns containing the annotations and information related to the signatures themselves.

Source
http://breast-cancer-research.com/content/10/4/R65
modelOvcAngiogenic

Model used to classify ovarian tumors into Angiogenic and NonAngiogenic subtypes.

Description

Object containing the set of parameters for the mixture of Gaussians used as a model to classify ovarian tumors into Angiogenic and NonAngiogenic subtypes.

Usage

data(modelOvcAngiogenic)

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

References

molecular.subtyping

Function to identify breast cancer molecular subtypes using the Sub-type Clustering Model

Description

This function identifies the breast cancer molecular subtypes using a Subtype Clustering Model fitted by subtype.cluster.

Usage

molecular.subtyping(sbt.model = c("scmgene", "scmod1", "scmod2", "pam50", "ssp2006", "ssp2003", "intClust", "AIMS","claudinLow"), data, annot, do.mapping = FALSE, verbose = FALSE)
molecular.subtyping

Arguments

- **sbt.model** (Subtyping classification model, can be either "scmgene", "scmod1", "scmod2", "pam50", "ssp2006", "ssp2003", "intClust", "AIMS", or "claudinLow").
- **data** (Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined).
- **annot** (Matrix of annotations with at least one column named "EntrezGene.ID" (for ssp, scm, AIMS, and claudinLow models) or "Gene.Symbol" (for the intClust model), dimnames being properly defined).
- **do.mapping** (TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise).
- **verbose** (TRUE if informative messages should be displayed, FALSE otherwise).

Value

A list with items:

- **subtype**: Subtypes identified by the subtyping classification model.
- **subtype.proba**: Probabilities to belong to each subtype estimated by the subtyping classification model.
- **subtype.crisp**: Crisp classes identified by the subtyping classification model.

References

Hu, Zhiyuan and Fan, Cheng and Oh, Daniel and Marron, JS and He, Xiaping and Qaqish, Bahjat and Livasy, Chad and Carey, Lisa and Reynolds, Evangeline and Dressler, Lynn and Nobel, Andrew and Parker, Joel and Ewend, Matthew and Sawyer, Lynda and Wu, Junyuan and Liu, Yudong and Nanda, Rita and Tretiakova, Maria and Orrico, Alejandra and Dreher, Donna and Palazzo, Juan and Perreard, Laurent and Nelson, Edward and Mone, Mary and Hansen, Heidi and Mullins, Michael and Quackenbush, John and Ellis, Matthew and Olopade, Olu-funmilayo and Bernard, Philip and Perou, Charles (2006) "The molecular portraits of breast tumors are conserved across microarray platforms", BMC Genomics, 7(96)

See Also

subtype.cluster.predict, intrinsic.cluster.predict

Examples

without mapping (affy hgu133a or plus2 only)
load VDX data
data(vdxs)
data(AIMSmodel)
data(scmgene.robust)

Subtype Clustering Model fitted on EXPO and applied on VDX
sbt.vdx.SCMGENE <- molecular.subtyping(sbt.model="scmgene",
data=vdxs, annot=annot.vdxs, do.mapping=FALSE)
table(sbt.vdx.SCMGENE$subtype)

Using the AIMS molecular subtyping algorithm
sbt.vdxs.AIMS <- molecular.subtyping(sbt.model="AIMS", data=vdxs,
annot=annot.vdxs, do.mapping=FALSE)
table(sbt.vdxs.AIMS$subtype)

Using the IntClust molecular subtyping algorithm
colnames(annot.vdxs)[3]<-"Gene.Symbol"
sbt.vdxs.intClust <- molecular.subtyping(sbt.model="intClust", data=vdxs,
annot=annot.vdxs, do.mapping=FALSE)
table(sbt.vdxs.intClust$subtype)

with mapping
load NKI data
data(nkis)

Subtype Clustering Model fitted on EXPO and applied on NKI
sbt.nkis <- molecular.subtyping(sbt.model="scmgene", data=nkis,
annot=annot.nkis, do.mapping=TRUE)
table(sbt.nkis$subtype)

with mapping
load vdxs data
data(vdxs)
data(claudinLowData)

Claudin-Low classification of 150 VDXS samples
sbt.vdxs.CL <- molecular.subtyping(sbt.model="claudinLow", data=data.vdxs,
 annot=annot.vdxs, do.mapping=TRUE)
table(sbt.vdxs.CL$subtype)

nkis Gene expression, annotations and clinical data from van de Vijver et al. 2002

Description
This dataset contains (part of) the gene expression, annotations and clinical data as published in van de Vijver et al. 2002.

Usage
data(nkis)

Format
nkis is a dataset containing three matrices:

- data.nkis: Matrix containing gene expressions as measured by Agilent technology (dual-channel, oligonucleotides)
- annot.nkis: Matrix containing annotations of Agilent microarray platform
- demon.nkis: Clinical information of the breast cancer patients whose tumors were hybridized

Details
This dataset represents only partially the one published by van de Vijver et al. in 2008. Indeed, only part of the patients (150) and gene expressions (922) in data.nkis.

Source
http://www.nature.com/nature/journal/v415/n6871/full/415530a.html

References
npi
Function to compute the Nottingham Prognostic Index

Description

This function computes the Nottingham Prognostic Index (NPI) as published in Galeat et al, 1992. NPI is a clinical index shown to be highly prognostic in breast cancer.

Usage

```r
npi(size, grade, node, na.rm = FALSE)
```

Arguments

- **size**: tumor size in cm.
- **grade**: Histological grade, i.e. low (1), intermediate (2) and high (3) grade.
- **node**: Nodal status. If only binary nodal status (0/1) is available, map 0 to 1 and 1 to 3.
- **na.rm**: TRUE if missing values should be removed, FALSE otherwise.

Details

The risk prediction is either Good if score < 3.4, Intermediate if 3.4 <= score < 5.4, or Poor if score > 5.4.

Value

A list with items:

- score: Continuous signature scores
- risk: Binary risk classification, 1 being high risk and 0 being low risk.

References

See Also

st.gallen

Examples

```r
# load NKI dataset
data(nkis)
# compute NPI score and risk classification
npi(size=demo.nkis[,"size"], grade=demo.nkis[,"grade"],
    node=ifelse(demo.nkis[,"node"] == 0, 1, 3), na.rm=TRUE)
```
oncotypedx

Function to compute the OncotypeDX signature as published by Paik et al. in 2004.

Description

This function computes signature scores and risk classifications from gene expression values following the algorithm used for the OncotypeDX signature as published by Paik et al. 2004.

Usage

oncotypedx(data, annot, do.mapping = FALSE, mapping, do.scaling = TRUE, verbose = FALSE)

Arguments

data
Matrix of gene expressions with samples in rows and probes in columns, dimensions being properly defined.

annot
Matrix of annotations with at least one column named "EntrezGene.ID", dimensions being properly defined.

do.mapping
TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise. Note that for Affymetrix HGU datasets, the mapping is not necessary.

mapping
Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.

do.scaling
Should the data be scaled?

verbose
TRUE to print informative messages, FALSE otherwise.

Details

Note that for Affymetrix HGU datasets, the mapping is not necessary.

Value

A list with items:

- score: Continuous signature scores
- risk: Binary risk classification, 1 being high risk and 0 being low risk.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.
ovcAngiogenic

References

Examples

load GENET0 signature
data(sig.oncotypedx)
load NKI dataset
data(nkis)
compute relapse score
rs.nkis <- oncotypedx(data=data.nkis, annot=annot.nkis, do.mapping=TRUE)
table(rs.nkis$risk)

ovcAngiogenic

Function to compute the subtype scores and risk classifications for the angiogenic molecular subtype in ovarian cancer

Description

This function computes subtype scores and risk classifications from gene expression values following the algorithm developed by Bentink, Haibe-Kains et al. to identify the angiogenic molecular subtype in ovarian cancer.

Usage

ovcAngiogenic(data, annot, hgs,
gmap = c("entrezgene", "ensembl_gene_id", "hgnc_symbol", "unigene"),
do.mapping = FALSE, verbose = FALSE)

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
annot Matrix of annotations with one column named as gmap, dimnames being properly defined.
hgs vector of booleans with TRUE represents the ovarian cancer patients who have a high grade, late stage, serous tumor, FALSE otherwise. This is particularly important for properly rescaling the data. If hgs is missing, all the patients will be used to rescale the subtype score.
gmap character string containing the biomaRt attribute to use for mapping if do.mapping=TRUE
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
verbose TRUE to print informative messages, FALSE otherwise.
ovcCrijns

Value

A list with items:

- score: Continuous signature scores.
- risk: Binary risk classification, 1 being high risk and 0 being low risk.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.
- subtype: data frame reporting the subtype score, maximum likelihood classification and corresponding subtype probabilities.

References

See Also

sigOvcAngiogenic

Examples

load the ovcAngiogenic signature

load NKI dataset
data(nkis)
colnames(annot.nkis)[is.element(colnames(annot.nkis), "EntrezGene.ID")]<-
"entrezgene"

compute relapse score
ovcAngiogenic.nkis <- ovcAngiogenic(data=data.nkis, annot=annot.nkis, gmap="entrezgene", do.mapping=TRUE)
table(ovcAngiogenic.nkis$risk)
Usage

```
ovcCrijns(data, annot, hgs,
  gmap = c("entrezgene", "ensembl_gene_id", "hgnnc_symbol", "unigene"),
  do.mapping = FALSE, verbose = FALSE)
```

Arguments

data: Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
annot: Matrix of annotations with one column named as gmap, dimnames being properly defined.
hgs: vector of booleans with TRUE represents the ovarian cancer patients who have a high grade, late stage, serous tumor, FALSE otherwise. This is particularly important for properly rescaling the data. If hgs is missing, all the patients will be used to rescale the subtype score.
gmap: character string containing the biomaRt attribute to use for mapping if do.mapping=TRUE
do.mapping: TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
verbose: TRUE to print informative messages, FALSE otherwise.

Details

Note that the original algorithm has not been implemented as it necessitates refitting of the model weights in each new dataset. However the current implementation should give similar results.

Value

A list with items:

- score: Continuous signature scores.
- risk: Binary risk classification, 1 being high risk and 0 being low risk.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.

References

See Also

```
sigOvcCrijns
```
ovcTCGA

Function to compute the prediction scores and risk classifications for the ovarian cancer TCGA signature

Description
This function computes signature scores and risk classifications from gene expression values following the algorithm developed by the TCGA consortium for ovarian cancer.

Usage
```
ovcTCGA(data, annot, 
gmap = c("entrezgene", "ensembl_gene_id", "hgnc_symbol", "unigene"),
do.mapping = FALSE, verbose = FALSE)
```

Arguments
- **data**
 Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
- **annot**
 Matrix of annotations with one column named as gmap, dimnames being properly defined.
- **gmap**
 Character string containing the biomaRt attribute to use for mapping if do.mapping=TRUE
- **do.mapping**
 TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
- **verbose**
 TRUE to print informative messages, FALSE otherwise.

Value
A list with items:
- **score**: Continuous signature scores.
- **risk**: Binary risk classification, 1 being high risk and 0 being low risk.
- **mapping**: Mapping used if necessary.
- **probe**: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.
References

See Also

sigOvcTCGA

Examples

load the ovcTCGA signature
data(sigOvcTCGA)
load NKI dataset
data(nkis)
colnames(annot.nkis)[is.element(colnames(annot.nkis), "EntrezGene.ID")]
<- "entrezgene"
compute relapse score
ovcTCGA.nkis <- ovcTCGA(data=data.nkis, annot=annot.nkis, gmap="entrezgene", do.mapping=TRUE)
table(ovcTCGA.nkis$risk)

ovcYoshihara

Function to compute the subtype scores and risk classifications for the prognostic signature published by Yoshihara et al.

Description

This function computes subtype scores and risk classifications from gene expression values following the algorithm developed by Yoshihara et al, for prognosis in ovarian cancer.

Usage

ovcYoshihara(data, annot, hgs,
gmap = c("entrezgene", "ensembl_gene_id", "hgnc_symbol", "unigene", "refseq_mrna"),
do.mapping = FALSE, verbose = FALSE)

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
annot Matrix of annotations with one column named as gmap, dimnames being properly defined.
hgs vector of booleans with TRUE represents the ovarian cancer patients who have a high grade, late stage, serous tumor. FALSE otherwise. This is particularly important for properly rescaling the data. If hgs is missing, all the patients will be used to rescale the subtype score.
gmap character string containing the biomaRt attribute to use for mapping if do.mapping=TRUE
overlapSets

do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.

verbose TRUE to print informative messages, FALSE otherwise.

Value

A list with items:

- score: Continuous signature scores.
- risk: Binary risk classification, 1 being high risk and 0 being low risk.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.

References

See Also

sigOvcYoshihara

Examples

load the ovcYoshihara signature
data(sigOvcYoshihara)
load NKI dataset
data(nkis)
colnames(annot.nkis)[is.element(colnames(annot.nkis), "EntrezGene.ID")]<- "entrezgene"
compute relapse score
ovcYoshihara.nkis <- ovcYoshihara(data=data.nkis,
 annot=annot.nkis, gmap="entrezgene", do.mapping=TRUE)
table(ovcYoshihara.nkis$risk)
Arguments

- `x` Matrix1
- `y` Matrix2

Value

A list of overlapped dataset

References

citation("claudinLow")

See Also

claudinLow

**pam50
PAM50 classifier for identification of breast cancer molecular subtypes (Parker et al 2009)

Description

List of parameters defining the PAM50 classifier for identification of breast cancer molecular subtypes (Parker et al 2009).

Usage

data(pam50)
data(pam50.scale)
data(pam50.robust)

Format

List of parameters for PAM50:

- centroids: Gene expression centroids for each subtype.
- centroids.map: Mapping for centroids.
- method.cor: Method of correlation used to compute distance to the centroids.
- method.centroids: Method used to compute the centroids.
- std: Method of standardization for gene expressions ("none", "scale" or "robust")
- mins: Minimum number of samples within each cluster allowed during the fitting of the model.
Details

Three versions of the model are provided, each of ones differs by the gene expressions standardization method since it has an important impact on the subtype classification:

- **pam50**: Use of the official centroids without scaling of the gene expressions.
- **pam50.scale**: Use of the official centroids with traditional scaling of the gene expressions (see base::scale())
- **pam50.robust**: Use of the official centroids with robust scaling of the gene expressions (see rescale()) The model “pam50.robust” has been shown to reach the best concordance with the traditional clinical parameters (ER IHC, HER2 IHC/FISH and histological grade). However the use of this model is recommended only when the dataset is representative of a global population of breast cancer patients (no sampling bias, the 5 subtypes should be present).

Source

http://jco.ascopubs.org/cgi/content/short/JCO.2008.18.1370v1

References

pik3cags

Function to compute the PIK3CA gene signature (PIK3CA-GS)

Description

This function computes signature scores from gene expression values following the algorithm used for the PIK3CA gene signature (PIK3CA-GS).

Usage

pik3cags(data, annot, do.mapping = FALSE, mapping, verbose = FALSE)

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dim-names being properly defined.

annot Matrix of annotations with at least one column named "EntrezGene.ID", dim-names being properly defined.

do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
power.cor

Function for sample size calculation for correlation coefficients

Description

This function enables to compute the sample size requirements for estimating pearson, kendall and spearman correlations

Usage

power.cor(rho, w, alpha = 0.05, method = c("pearson", "kendall", "spearman"))
Arguments

rho Correlation coefficients rho (Pearson, Kendall or Spearman)
w a numerical vector of weights of the same length as x giving the weights to use for elements of x in the first class.
alpha alpha level
method a character string specifying the method to compute the correlation coefficient, must be one of "pearson" (default), "kendall" or "spearman". You can specify just the initial letter.

Value

sample size requirement

References

Examples

power.cor(rho=0.5, w=0.1, alpha=0.05, method="spearman")

ps.cluster Function to compute the prediction strength of a clustering model

Description

This function computes the prediction strength of a clustering model as published in R. Tibshirani and G. Walther 2005.

Usage

ps.cluster(cl.tr, cl.ts, na.rm = FALSE)

Arguments

cl.tr Clusters membership as defined by the original clustering model, i.e. the one that was not fitted on the dataset of interest.
cl.ts Clusters membership as defined by the clustering model fitted on the dataset of interest.
na.rm TRUE if missing values should be removed, FALSE otherwise.
read.m.file

Value

A list with items:

- `ps`: the overall prediction strength (minimum of the prediction strengths at cluster level).
- `ps.cluster`: Prediction strength for each cluster
- `ps.individual`: Prediction strength for each sample.

References

Examples

```r
# load SSP signature published in Sorlie et al. 2003
data(ssp2003)
# load NKI data
data(nkis)
# SP2003 fitted on NKI
ssp2003.2nkis <- intrinsic.cluster(data=data.nkis, annot=annot.nkis,
do.mapping=TRUE, std="robust",
intrinsicg=ssp2003$centroids.map[,c("probe", "EntrezGene.ID")],
number.cluster=5, mins=5, method.cor="spearman",
method.centroids="mean", verbose=TRUE)
# SP2003 published in Sorlie et al 2003 and applied in VDX
ssp2003.nkis <- intrinsic.cluster.predict(sbt.model=ssp2003,
data=data.nkis, annot=annot.nkis, do.mapping=TRUE, verbose=TRUE)
# prediction strength of sp2003 clustering model
ps.cluster(cl.tr=ssp2003.2nkis$subtype, cl.ts=ssp2003.nkis$subtype,
na.rm = FALSE)
```

read.m.file

Function to read a 'csv' file containing gene lists (aka gene signatures)

Description

This function allows for reading a 'csv' file containing gene signatures. Each gene signature is composed of at least four columns: "gene.list" is the name of the signature on the first line and empty fields below, "probes" are the probe names, "EntrezGene.ID" are the EntrezGene IDs and "coefficient" are the coefficients of each probe.

Usage

```r
read.m.file(file, ...)
```
readArray

Arguments

- **file**
 - Filename of the 'csv' file.

- ... (Additional parameters for read.csv function)

Value

- List of gene signatures.

See Also

- `mod1`, `mod2`, 'extdata/desmedt2008_genemodules.csv', 'extdata/haibekains2009_sig_genius.csv'

Examples

```r
# read the seven gene modules as published in Desmedt et al 2008
genemods <- read.m.file(system.file("extdata/desmedt2008_genemodules.csv",
    package = "genefu"))
str(genemods, max.level=1)

# read the three subtype signatures from GENIUS
geniusm <- read.m.file(system.file("extdata/haibekains2009_sig_genius.csv",
    package = "genefu"))
str(geniusm, max.level=1)
```

readArray

Overlap two datasets

Description

Formatting function to read arrays and format for use in the claudinLow classifier.

Usage

```r
readArray(dataFile, designFile=NA, hr=1, impute=TRUE, method="mean")
```

Arguments

- **dataFile**
 - file with matrix to be read.

- **designFile**
 - Design of file.

- **hr**
 - Header rows as Present (2) or Absent (1).

- **impute**
 - whether data will be imputed or not.

- **method**
 - Default method is "mean".

Value

- A list
rename.duplicate

Function to rename duplicated strings

Description

This function renames duplicated strings by adding their number of occurrences at the end.

Usage

rename.duplicate(x, sep = "_", verbose = FALSE)

Arguments

x vector of strings.
sep a character to be the separator between the number added at the end and the string itself.
verbose TRUE to print informative messages, FALSE otherwise.

Value

A list with items:

- new.x: new strings (without duplicates).
- duplicated.x: strings which were originally duplicated.

Examples

nn <- sample(letters[1:10], 30, replace=TRUE)
table(nn)
rename.duplicate(x=nn, verbose=TRUE)
Function to rescale values based on quantiles

Description

This function rescales values \(x \) based on quantiles specified by the user such that \(x' = (x - q_1) / (q_2 - q_1) \) where \(q \) is the specified quantile, \(q_1 = q / 2, q_2 = 1 - q/2 \) and \(x' \) are the new rescaled values.

Usage

```
rescale(x, na.rm = FALSE, q = 0)
```

Arguments

- **x**: The matrix or vector to rescale.
- **na.rm**: TRUE if missing values should be removed, FALSE otherwise.
- **q**: Quantile (must lie in \([0,1]\)).

Details

In order to rescale gene expressions, \(q = 0.05 \) yielded comparable scales in numerous breast cancer microarray datasets (data not shown). The rationale behind this is that, in general, 'extreme cases' (e.g. low and high proliferation, high and low expression of ESR1, ...) are often present in microarray datasets, making the estimation of 'extreme' quantiles quite stable. This is specially true for genes exhibiting some multi-modality like ESR1 or ERBB2.

Value

A vector of rescaled values with two attributes \(q_1 \) and \(q_1 \) containing the values of the lower and the upper quantiles respectively.

See Also

`base::scale()`

Examples

```
# load VDX dataset
data(vdxs)
# load NKI dataset
data(nkis)
# example of rescaling for ESR1 expression
par(mfrow=c(2,2))
hist(data.vdxs[, "205225_at"], xlab="205225_at", breaks=20,
     main="ESR1 in VDX")
hist(data.nkis[, "NM_000125"], xlab="NM_000125", breaks=20,
     main="ESR1 in NKI")
hist((rescale(x=data.vdxs[, "205225_at"], q=0.05) - 0.5) * 2,
```
rorS

Function to compute the rorS signature as published by Parker et al 2009

Description

This function computes signature scores and risk classifications from gene expression values following the algorithm used for the rorS signature as published by Parker et al 2009.

Usage

rorS(data, annot, do.mapping = FALSE, mapping, verbose = FALSE)

Arguments

data Matrix of gene expressions with samples in rows and probes in columns, dimensions being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dimensions being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise. Note that for Affymetrix HGU datasets, the mapping is not necessary.
mapping Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
verbose TRUE to print informative messages, FALSE otherwise.

Value

A list with items:

- score: Continuous signature scores
- risk: Binary risk classification, 1 being high risk and 0 being low risk.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.

References

Examples

```r
# load NKI dataset
data(vdxs)
data(pam50)

# compute relapse score
rs.vdxs <- rorS(data=data.vdxs, annot=annot.vdxs, do.mapping=TRUE)
```

scmgene.robust
Subtype Clustering Model using only ESR1, ERBB2 and AURKA genes for identification of breast cancer molecular subtypes

Description

Usage

```r
data(scmgene.robust)
```

Format

List of parameters for SCMGENE:

- **parameters**: List of parameters for the mixture of three Gaussians (ER-/HER2-, HER2+ and ER+/HER2-) that define the Subtype Clustering Model. The structure is the same than for an `mclust::Mclust` object.
- **cutoff.AURKA**: Cutoff for AURKA module score in order to identify ER+/HER2- High Proliferation (aka Luminal B) tumors and ER+/HER2- Low Proliferation (aka Luminal A) tumors.
- **mod**: ESR1, ERBB2 and AURKA modules.

Source

http://clincancerres.aacrjournals.org/content/14/16/5158.abstract?ck=nck

References

scmod1.robust
Subtype Clustering Model using ESR1, ERBB2 and AURKA modules for identification of breast cancer molecular subtypes (Desmedt et al 2008)

Description

List of parameters defining the Subtype Clustering Model as published in Desmedt et al 2008.

Usage

data(scmod1.robust)

Format

List of parameters for SCMOD1:

- **parameters**: List of parameters for the mixture of three Gaussians (ER-/HER2-, HER2+ and ER+/HER2-) that define the Subtype Clustering Model. The structure is the same than for an `mclust::Mclust()` object.
- **cutoff.AURKA**: Cutoff for AURKA module score in order to identify ER+/HER2- High Proliferation (aka Luminal B) tumors and ER+/HER2- Low Proliferation (aka Luminal A) tumors.
- **mod**: ESR1, ERBB2 and AURKA modules.

Source

http://clincancerres.aacrjournals.org/content/14/16/5158.abstract?ck=nck

References

scmod2.robust
Subtype Clustering Model using ESR1, ERBB2 and AURKA modules for identification of breast cancer molecular subtypes (Desmedt et al 2008)

Description

List of parameters defining the Subtype Clustering Model as published in Desmedt et al 2008.

Usage

data(scmod1.robust)
Format

List of parameters for SCMOD2:

- parameters: List of parameters for the mixture of three Gaussians (ER-/HER2-, HER2+ and ER+/HER2-) that define the Subtype Clustering Model. The structure is the same than for an mclust::Mclust object.
- cutoff.AURKA: Cutoff for AURKA module score in order to identify ER+/HER2- High Proliferation (aka Luminal B) tumors and ER+/HER2- Low Proliferation (aka Luminal A) tumors.
- mod: ESR1, ERBB2 and AURKA modules.

Source

http://breast-cancer-research.com/content/10/4/R65k

References

setcolclass.df

Function to set the class of columns in a data.frame

Description

This function enables to set the class of each column in a data.frame.

Usage

setcolclass.df(df, colclass, factor.levels)

Arguments

df data.frame for which columns' class need to be updated.
colclass class for each column of the data.frame.
factor.levels list of levels for each factor.

Value

A data.frame with columns’ class and levels properly set

Examples

tt <- data.frame(matrix(NA, nrow=3, ncol=3, dimnames=list(1:3, paste("column", 1:3, sep="."))),
stringsAsFactors=FALSE)
tt <- setcolclass.df(df=tt, colclass=c("numeric", "factor", "character"),
factor.levels=list(NULL, c("F1", "F2", "F3"), NULL))
sig.endoPredict

Signature used to compute the endoPredict signature as published by Filipits et al 2011

Description
List of 11 genes included in the endoPredict signature. The EntrezGene.ID allows for mapping and the mapping to affy probes is already provided.

Usage
data(sig.endoPredict)

Format
sig.endoPredict is a matrix with 5 columns containing the annotations and information related to the signature itself (including a mapping to Affymetrix HGU platform).

References

sig.gene70

Signature used to compute the 70 genes prognosis profile (GENE70) as published by van't Veer et al. 2002

Description
List of 70 agilent probe ids representing 56 unique genes included in the GENE70 signature. The EntrezGene.ID allows for mapping and the "average.good.prognosis.profile" values allows for signature computation.

Usage
data(sig.gene70)

Format
sig.gene70 is a matrix with 9 columns containing the annotations and information related to the signature itself.

Source
http://www.nature.com/nature/journal/v415/n6871/full/415530a.html
References

sig.gene76

Signature used to compute the Relapse Score (GENE76) as published in Wang et al. 2005

Description

List of 76 affymetrix hgu133a probesets representing 60 unique genes included in the GENE76 signature. The EntrezGene.ID allows for mapping and the coefficient allows for signature computation.

Usage

data(sig.gene76)

Format

sig.gene70 is a matrix with 10 columns containing the annotations and information related to the signature itself.

Source

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)17947-1/abstract

References

Description

List of three gene signatures which compose the Gene Expression progNostic Index Using Subtypes (GENIUS) as published by Haibe-Kains et al. 2009. GENIUSM1, GENIUSM2 and GENIUSM3 are the ER-/HER2-, HER2+ and ER+/HER2- subtype signatures respectively.

Format

sig.genius is a list a three subtype signatures.

References

Description

List of 128 affymetrix hgu133a probesets representing 97 unique genes included in the GGI signature. The "EntrezGene.ID" column allows for mapping and "grade" defines the up-regulation of the expressions either in histological grade 1 or 3.

Usage

data(sig.ggi)

Format

sig.ggi is a matrix with 9 columns containing the annotations and information related to the signature itself.

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

sig.oncotypedx
Signature used to compute the OncotypeDX signature as published by Paik et al 2004

Description

List of 21 genes included in the OncotypeDX signature. The EntrezGene.ID allows for mapping and the mapping to affy probes is already provided.

Usage

data(sig.oncotypedx)

References

sig.pik3cags
Gene expression Grade Index (GGI) as published in Sotiriou et al. 2006

Description

List of 278 affymetrix hgu133a probesets representing 236 unique genes included in the PIK3CA-GS signature. The “EntrezGene.ID” column allows for mapping and "coefficient" refers to the direction of association with PIK3CA mutation.

Usage

data(sig.pik3cags)

Format

sig.pik3cags is a matrix with 3 columns containing the annotations and information related to the signature itself.

Source

http://www.pnas.org/content/107/22/10208/suppl/DCSupplemental
References

sig.score

Function to compute signature scores as linear combination of gene expressions

Description

This function computes a signature score from a gene list (aka gene signature), i.e. a signed average as published in Sotiriou et al. 2006 and Haibe-Kains et al. 2009.

Usage

```r
sig.score(x, data, annot, do.mapping = FALSE, mapping, size = 0, cutoff = NA, signed = TRUE, verbose = FALSE)
```

Arguments

- **x**: Matrix containing the gene(s) in the gene list in rows and at least three columns: "probe", "EntrezGene.ID" and "coefficient" standing for the name of the probe, the NCBI Entrez Gene id and the coefficient giving the direction and the strength of the association of each gene in the gene list.
- **data**: Matrix of gene expressions with samples in rows and probes in columns, dim-names being properly defined.
- **annot**: Matrix of annotations with at least one column named "EntrezGene.ID", dim-names being properly defined.
- **do.mapping**: TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
- **mapping**: Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
- **size**: Integer specifying the number of probes to be considered in signature computation. The probes will be sorted by absolute value of coefficients.
- **cutoff**: Only the probes with coefficient greater than cutoff will be considered in signature computation.
- **signed**: TRUE if only the sign of the coefficient must be considered in signature computation, FALSE otherwise.
- **verbose**: TRUE to print informative messages, FALSE otherwise.
Value

A list with items:

- score: Signature score.
- mapping: Mapping used if necessary.
- probe: If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.

References

Examples

load NKI data
data(nkis)
load GGI signature
data(sig.ggi)
make of ggi signature a gene list
ggi.gl <- cbind(sig.ggi[,c("probe", "EntrezGene.ID")],
 "coefficient"=ifelse(sig.ggi[,"grade"] == 1, -1, 1))
computation of signature scores
ggi.score <- sig.score(x=ggi.gl, data=data.nkis, annot=annot.nkis,
 do.mapping=TRUE, signed=TRUE, verbose=TRUE)
str(ggi.score)

sig.tamr13

Description

List of 13 clusters of genes (and annotations) and their corresponding coefficient as an additional attribute.

Usage

data(sig.tamr13)

Format

sig.tamr13 is a list a 13 clusters of genes with their corresponding coefficient.
References

sigOvcAngiogenic

Description

sigOvcAngiogenic dataset

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

sigOvcCrijns

Description

sigOvcCrijns dataset

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

Description

sigOcvSpentzos dataset

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

Description

sigOvcTCGA dataset

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

sigOvcYoshihara

sigOvcYoshihara dataset

Description

sigOvcYoshihara dataset

Source

http://jnci.oxfordjournals.org/cgi/content/full/98/4/262/DC1

References

spearmanCI

Function to compute the confidence interval for the Spearman correlation coefficient

Description

This function enables to compute the confidence interval for the Spearman correlation coefficient using the Fischer Z transformation.

Usage

spearmanCI(x, n, alpha = 0.05)

Arguments

x
Spearman correlation coefficient rho.

n
the sample size used to compute the Spearman rho.

alpha
alpha level for confidence interval.

Value

A vector containing the lower, upper values for the confidence interval and p-value for Spearman rho

Examples

spearmanCI(x=0.2, n=100, alpha=0.05)

Description

Usage

data(ssp2003)
data(ssp2003.robust)
data(ssp2003.scale)

Format

List of parameters for SSP2003:

- centroids: Gene expression centroids for each subtype.
- centroids.map: Mapping for centroids.
- method.cor: Method of correlation used to compute distance to the centroids.
- method.centroids: Method used to compute the centroids.
- std: Method used to compute the centroids.
- mins: Minimum number of samples within each cluster allowed during the fitting of the model.

Source

http://www.pnas.org/content/100/14/8418

References

Description

List of parameters defining the SSP2006 classifier for identification of breast cancer molecular subtypes (Hu et al 2006).

Usage

data(ssp2006)
data(ssp2006.robust)
data(ssp2006.scale)

Format

List of parameters for SSP2006:

- centroids: Gene expression centroids for each subtype.
- centroids.map: Mapping for centroids.
- method.cor: Method of correlation used to compute distance to the centroids.
- method.centroids: Method used to compute the centroids.
- std: Method of standardization for gene expressions.
- mins: Minimum number of samples within each cluster allowed during the fitting of the model.

Details

Three versions of the model are provided, each of ones differs by the gene expressions standardization method since it has an important impact on the subtype classification:

- ssp2006: Use of the official centroids without scaling of the gene expressions.
- ssp2006.scale: Use of the official centroids with traditional scaling of the gene expressions (see base::scale())
- ssp2006.robust: Use of the official centroids with robust scaling of the gene expressions (see rescale()) The model ssp2006.robust has been shown to reach the best concordance with the traditional clinical parameters (ER IHC, HER2 IHC/FISH and histological grade). However the use of this model is recommended only when the dataset is representative of a global population of breast cancer patients (no sampling bias, the 5 subtypes should be present).

Source

http://www.biomedcentral.com/1471-2164/7/96
References

Hu, Zhiyuan and Fan, Cheng and Oh, Daniel and Marron, JS and He, Xiaping and Qaqish, Bahjat and Livasy, Chad and Carey, Lisa and Reynolds, Evangeline and Dressler, Lynn and Nobel, Andrew and Parker, Joel and Ewend, Matthew and Sawyer, Lynda and Wu, Junyuan and Liu, Yudong and Nanda, Rita and Tretiakova, Maria and Orrico, Alejandra and Dreher, Donna and Palazzo, Juan and Perreard, Laurent and Nelson, Edward and Mone, Mary and Hansen, Heidi and Mullins, Michael and Quackenbush, John and Elllis, Matthew and Olopade, Olufunmilayo and Bernard, Philip and Perou, Charles (2006) "The molecular portraits of breast tumors are conserved across microarray platforms", *BMC Genomics*, 7(96)

st.gallen

Function to compute the St Gallen consensus criterion for prognosis

Description

This function computes the updated St Gallen consensus criterions as published by Goldhirsh et al 2003.

Usage

```r
st.gallen(size, grade, node, her2.neu, age, vascular.inv, na.rm = FALSE)
```

Arguments

- `size`: tumor size in cm.
- `grade`: Histological grade, i.e. low (1), intermediate (2) and high (3) grade.
- `node`: Nodal status (0 or 1 for no lymph node invasion and at least 1 invaded lymph node respectively).
- `her2.neu`: Her2/neu status (0 or 1).
- `age`: Age at diagnosis (in years).
- `vascular.inv`: Peritumoral vascular invasion (0 or 1).
- `na.rm`: TRUE if missing values should be removed, FALSE otherwise.

Value

Vector of risk predictions: "Good", "Intermediate", and "Poor".

References

stab.fs

Function to quantify stability of feature selection

Description

This function computes several indexes to quantify feature selection stability. This is usually estimated through perturbation of the original dataset by generating multiple sets of selected features.

Usage

stab.fs(fsets, N, method = c("kuncheva", "davis"), ...)

Arguments

fsets list of sets of selected features, each set of selected features may have different size.
N total number of features on which feature selection is performed.
method stability index (see details section).
... additional parameters passed to stability index (penalty that is a numeric for Davis’ stability index, see details section).

Details

Stability indices may use different parameters. In this version only the Davis index requires an additional parameter that is penalty, a numeric value used as penalty term. Kuncheva index (kuncheva) lays in [-1, 1]. An index of -1 means no intersection between sets of selected features, +1 means that all the same features are always selected and 0 is the expected stability of a random feature selection. Davis index (davis) lays in [0,1]. With a penalty term equal to 0, an index of 0 means no intersection between sets of selected features and +1 means that all the same features are always selected. A penalty of 1 is usually used so that a feature selection performed with no or all features has a Davis stability index equals to 0. None estimate of the expected Davis stability index of a random feature selection was published.
Value

A numeric that is the stability index.

References

See Also

stab.fs.ranking

Examples

set.seed(54321)
100 random selection of 50 features from a set of 10,000 features
fsets <- lapply(as.list(1:100), function(x, size=50, N=10000) {
 return(sample(1:N, size, replace=FALSE))})
names(fsets) <- paste("fsel", 1:length(fsets), sep=".")

Kuncheva index
stab.fs(fsets=fsets, N=10000, method="kuncheva")
close to 0 as expected for a random feature selection

Davis index
stab.fs(fsets=fsets, N=10000, method="davis", penalty=1)
Arguments

fsets list or matrix of sets of selected features (in rows), each ranking must have the same size.
sizes Number of top-ranked features for which the stability index must be computed.
N total number of features on which feature selection is performed
method stability index (see details section).
... additional parameters passed to stability index (penalty that is a numeric for Davis' stability index, see details section).

Details

Stability indices may use different parameters. In this version only the Davis index requires an additional parameter that is penalty, a numeric value used as penalty term. Kuncheva index (kuncheva) lays in [-1, 1], An index of -1 means no intersection between sets of selected features, +1 means that all the same features are always selected and 0 is the expected stability of a random feature selection. Davis index (davis) lays in [0,1], With a penalty term equal to 0, an index of 0 means no intersection between sets of selected features and +1 means that all the same features are always selected. A penalty of 1 is usually used so that a feature selection performed with no or all features has a Davis stability index equals to 0. None estimate of the expected Davis stability index of a random feature selection was published.

Value

A vector of numeric that are stability indices for each size of the sets of selected features given the rankings.

References

See Also

stab.fs

Examples

100 random selection of 50 features from a set of 10,000 features
fsets <- lapply(as.list(1:100), function(x, size=50, N=10000) {
 return(sample(1:N, size, replace=FALSE))})
names(fsets) <- paste("fsel", 1:length(fsets), sep=".")

Kuncheva index
stab.fs.ranking(fsets=fsets, sizes=c(1, 10, 20, 30, 40, 50),
N=10000, method="kuncheva")
close to 0 as expected for a random feature selection
Davis index

```r
stab.fs.ranking(fsets=fsets, sizes=c(1, 10, 20, 30, 40, 50),
    N=10000, method="davis", penalty=1)
```

strescR

Utility function to escape LaTeX special characters present in a string

Description

This function returns a vector of strings in which LaTeX special characters are escaped, this was useful in conjunction with xtable.

Usage

```r
strescR(strings)
```

Arguments

- `strings` A vector of strings to deal with.

Value

A vector of strings with escaped characters within each string.

References

`citation("seqinr")`

See Also

`stresc`

Examples

```r
strescR("MISC_RNA")
strescR(c("BB_0001","BB_0002"))
```
subtype.cluster
Function to fit the Subtype Clustering Model

Description
This function fits the Subtype Clustering Model as published in Desmedt et al. 2008 and Wiarapati et al. 2008. This model is actually a mixture of three Gaussians with equal shape, volume and variance (see EEI model in Mclust). This model is adapted to breast cancer and uses ESR1, ERBB2 and AURKA dimensions to identify the molecular subtypes, i.e. ER-/HER2-, HER2+ and ER+/HER2- (Low and High Prolif).

Usage

```r
subtype.cluster(module.ESR1, module.ERBB2, module.AURKA, data, annot,  
do.mapping = FALSE, mapping, do.scale = TRUE, rescale.q = 0.05,  
model.name = "EEI", do.BIC = FALSE, plot = FALSE, filen, verbose = FALSE)
```

Arguments

- `module.ESR1`: Matrix containing the ESR1-related gene(s) in rows and at least three columns: "probe", "EntrezGene.ID" and "coefficient" standing for the name of the probe, the NCBI Entrez Gene id and the coefficient giving the direction and the strength of the association of each gene in the gene list.
- `module.ERBB2`: Idem for ERBB2.
- `module.AURKA`: Idem for AURKA.
- `data`: Matrix of gene expressions with samples in rows and probes in columns, dimensions being properly defined.
- `annot`: Matrix of annotations with at least one column named "EntrezGene.ID", dimensions being properly defined.
- `do.mapping`: TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
- `mapping`: DEPRECATED Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
- `do.scale`: TRUE if the ESR1, ERBB2 and AURKA (module) scores must be rescaled (see rescale), FALSE otherwise.
- `rescale.q`: Proportion of expected outliers for rescaling the gene expressions.
- `model.name`: Name of the model used to fit the mixture of Gaussians with the Mclust from the mclust package; default is "EEI" for fitting a mixture of Gaussians with diagonal variance, equal volume, equal shape and identical orientation.
- `do.BIC`: TRUE if the Bayesian Information Criterion must be computed for number of clusters ranging from 1 to 10, FALSE otherwise.
- `plot`: TRUE if the patients and their corresponding subtypes must be plotted, FALSE otherwise.
- `filen`: Name of the csv file where the subtype clustering model must be stored.
- `verbose`: TRUE to print informative messages, FALSE otherwise.
Value

A list with items:

- **model**: Subtype Clustering Model (mixture of three Gaussians), like scmgene.robust, scmod1.robust and scmod2.robust when this function is used on expO dataset (International Genomics Consortium) with the gene modules published in the two references cited below.
- **BIC**: Bayesian Information Criterion for the Subtype Clustering Model with number of clusters ranging from 1 to 10.
- **subtype**: Subtypes identified by the Subtype Clustering Model. Subtypes can be either "ER-/HER2-", "HER2+", or "ER+/HER2-".
- **subtype.proba**: Probabilities to belong to each subtype estimated by the Subtype Clustering Model.
- **subtype2**: Subtypes identified by the Subtype Clustering Model using AURKA to discriminate low and high proliferative tumors. Subtypes can be either "ER-/HER2-", "HER2+", "ER+/HER2- High Prolif" or "ER+/HER2- Low Prolif".
- **subtype.proba2**: Probabilities to belong to each subtype (including discrimination between lowly and highly proliferative ER+/HER2- tumors, see subtype2) estimated by the Subtype Clustering Model.
- **module.scores**: Matrix containing ESR1, ERBB2 and AURKA module scores.

References

See Also

subtype.cluster.predict, intrinsic.cluster, intrinsic.cluster.predict, scmod1.robust, scmod2.robust

Examples

```r
# example without gene mapping
# load expO data
data(expos)
# load gene modules
data(mod1)
# fit a Subtype Clustering Model
scmod1.expos <- subtype.cluster(module.ESR1=mod1$ESR1, module.ERBB2=mod1$ERBB2,
               module.AURKA=mod1$AURKA, data=data.expos, annot=annot.expos, do.mapping=FALSE,
               do.scale=TRUE, plot=FALSE, verbose=TRUE)
str(scmod1.expos, max.level=1)
table(scmod1.expos$subtype2)
```
example with gene mapping
load NKI data
data(nkis)
load gene modules
data(mod1)
fit a Subtype Clustering Model
scmod1.nkis <- subtype.cluster(module.ESR1=mod1$ESR1, module.ERBB2=mod1$ERBB2,
 module.AURKA=mod1$AURKA, data=data.nkis, annot=annot.nkis, do.mapping=TRUE,
 do.scale=TRUE, plot=TRUE, verbose=TRUE)
str(scmod1.nkis, max.level=1)
table(scmod1.nkis$subtype2)

subtype.cluster.predict

Function to identify breast cancer molecular subtypes using the Subtype Clustering Model

Description

This function identifies the breast cancer molecular subtypes using a Subtype Clustering Model fitted by subtype.cluster.

Usage

subtype.cluster.predict(sbt.model, data, annot, do.mapping = FALSE,
 mapping, do.prediction.strength = FALSE,
 do.BIC = FALSE, plot = FALSE, verbose = FALSE)

Arguments

sbt.model Subtype Clustering Model as returned by subtype.cluster.
data Matrix of gene expressions with samples in rows and probes in columns, dim-
names being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dim-
names being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of
ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
mapping DEPRECATED Matrix with columns "EntrezGene.ID" and "probe" used to
force the mapping such that the probes are not selected based on their variance.
do.prediction.strength TRUE if the prediction strength must be computed (Tibshirani and Walther
2005), FALSE otherwise.
do.BIC TRUE if the Bayesian Information Criterion must be computed for number of
clusters ranging from 1 to 10, FALSE otherwise.
plot TRUE if the patients and their corresponding subtypes must be plotted, FALSE
otherwise.
verbose TRUE to print informative messages, FALSE otherwise.
Value

A list with items:

- **subtype**: Subtypes identified by the Subtype Clustering Model. Subtypes can be either "ER-/HER2-", "HER2+" or "ER+/HER2-".
- **subtype.proba**: Probabilities to belong to each subtype estimated by the Subtype Clustering Model.
- **prediction.strength**: Prediction strength for subtypes.
- **BIC**: Bayesian Information Criterion for the Subtype Clustering Model with number of clusters ranging from 1 to 10.
- **subtype2**: Subtypes identified by the Subtype Clustering Model using AURKA to discriminate low and high proliferative tumors. Subtypes can be either "ER-/HER2-", "HER2+", "ER+/HER2- High Prolif" or "ER+/HER2- Low Prolif".
- **subtype.proba2**: Probabilities to belong to each subtype (including discrimination between lowly and highly proliferative ER+/HER2- tumors, see subtype2) estimated by the Subtype Clustering Model.
- **prediction.strength2**: Prediction strength for subtypes2.
- **module.scores**: Matrix containing ESR1, ERBB2 and AURKA module scores.
- **mapping**: Mapping if necessary (list of matrices with 3 columns: probe, EntrezGene.ID and new.probe).

References

See Also

`subtype.cluster`, `scmod1.robust`, `scmod2.robust`

Examples

```r
# without mapping (affy hgu133a or plus2 only)
# load VDX data
data(vdxs)
data(scmgene.robust)

# Subtype Clustering Model fitted on EXPO and applied on VDX
sbt.vdxs <- subtype.cluster.predict(sbt.model=scmgene.robust, data=data.vdxs,
               annot=annot.vdxs, do.mapping=FALSE, do.prediction.strength=FALSE,
               do.BIC=FALSE, plot=TRUE, verbose=TRUE)
```
table(sbt.vdxs$subtype)
table(sbt.vdxs$subtype2)

with mapping
load NKI data
data(nkis)
Subtype Clustering Model fitted on EXPO and applied on NKI
sbt.nkis <- subtype.cluster.predict(sbt.model=scmgene.robust, data=data.nkis,
 annot=annot.nkis, do.mapping=TRUE, do.prediction.strength=FALSE,
 do.BIC=FALSE, plot=TRUE, verbose=TRUE)
table(sbt.nkis$subtype)
table(sbt.nkis$subtype2)

tamr13

Function to compute the risk scores of the tamoxifen resistance signature (TAMR13)

Description
This function computes signature scores from gene expression values following the algorithm used for the Tamoxifen Resistance signature (TAMR13).

Usage
tamr13(data, annot, do.mapping = FALSE, mapping, verbose = FALSE)

Arguments
data Matrix of gene expressions with samples in rows and probes in columns, dim-
 names being properly defined.
annot Matrix of annotations with at least one column named "EntrezGene.ID", dim-
 names being properly defined.
do.mapping TRUE if the mapping through Entrez Gene ids must be performed (in case of
 ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
mapping Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping
 such that the probes are not selected based on their variance.
verbose TRUE to print informative messages, FALSE otherwise.

Value
A list with items:
• score: Continuous signature scores.
• risk: Binary risk classification, 1 being high risk and 0 being low risk (not implemented, the
 function will return NA values).
References

See Also
gene76

Examples

load TAMR13 signature
data(sig.tamr13)
load VDX dataset
data(vdxs)
compute relapse score
tamr13.vdxs <- tamr13(data=data.vdxs, annot=annot.vdxs, do.mapping=FALSE)
summary(tamr13.vdxs$score)

Function to compute Tukey's Biweight Robust Mean

tbrm(x, C = 9)

a numeric vector

a constant. C is preassigned a value of 9 according to the Cook reference below but other values are possible.

Details
This is a one step computation that follows the Affy whitepaper below see page 22. This function is called by chron to calculate a robust mean. C determines the point at which outliers are given a weight of 0 and therefore do not contribute to the calculation of the mean. C=9 sets values roughly +/-6 standard deviations to 0. C=6 is also used in tree-ring chronology development. Cook and Kairiukstis (1990) have further details. Retrieved from tbrm.
Value
A numeric mean.

References

See Also
chron

Examples
tbrm(rnorm(100))

vdxs

<table>
<thead>
<tr>
<th>vdxs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene expression, annotations and clinical data from Wang et al. 2005 and Minn et al 2007</td>
</tr>
</tbody>
</table>

Description
This dataset contains (part of) the gene expression, annotations and clinical data as published in Wang et al. 2005 and Minn et al 2007.

Format
vdxs is a dataset containing three matrices:

- data.vdxs: Matrix containing gene expressions as measured by Affymetrix hgu133a technology (single-channel, oligonucleotides)
- annot.vdxs: Matrix containing annotations of ffymetrix hgu133a microarray platform
- demo.vdxs: Clinical information of the breast cancer patients whose tumors were hybridized

Details
This dataset represent only partially the one published by Wang et al. 2005 and Minn et al 2007. Indeed only part of the patients (150) and gene expressions (966) are contained in data.vdxs.

Source
weighted.meanvar

Function to compute the weighted mean and weighted variance of 'x'

Description

This function allows for computing the weighted mean and weighted variance of a vector of continuous values.

Usage

weighted.meanvar(x, w, na.rm = FALSE)

Arguments

x
an object containing the values whose weighted mean is to be computed.

w
a numerical vector of weights of the same length as x giving the weights to use for elements of x.

na.rm
TRUE if missing values should be removed, FALSE otherwise.

Details

If w is missing then all elements of x are given the same weight, otherwise the weights coerced to numeric by as.numeric. On the contrary of weighted.mean the weights are NOT normalized to sum to one. If the sum of the weights is zero or infinite, NAs will be returned.

Value

A numeric vector of two values that are the weighted mean and weighted variance respectively.

References

http://en.wikipedia.org/wiki/Weighted_variance#Weighted_sample_variance

See Also

stats::weighted.mean
write.m.file

Examples

```r
set.seed(54321)
weighted.meanvar(x=rnorm(100) + 10, w=runif(100))
```

write.m.file
Function to write a 'csv' file containing gene lists (aka gene signatures)

Description

This function allows for writing a 'csv' file containing gene signatures. Each gene signature is composed of at least four columns: "gene.list" is the name of the signature on the first line and empty fields below, "probes" are the probe names, "EntrezGene.ID" are the EntrezGene IDs and "coefficient" are the coefficients of each probe.

Usage

```r
write.m.file(obj, file, ...)
```

Arguments

- `obj` List of gene signatures.
- `file` Filename of the 'csv' file.
- `...` Additional parameters for read.csv function.

Value

None.

Examples

```r
# load gene modules published by Demsedt et al 2009
data(mod1)
# write these gene modules in a 'csv' file
# Not run: write.m.file(obj=mod1, file="desmedt2009_genemodules.csv")
```
Index

* data
 claudinLowData, 8
 expos, 16
 mod1, 32
 mod2, 32
 modelOvcAngiogenic, 33
 nkis, 36
 pam50, 45
 scmgene.robust, 54
 scmod1.robust, 55
 sig.endoPredict, 57
 sig.gene70, 57
 sig.gene76, 58
 sig.geneid.map, 21
 sig.genius, 59
 sig.ggi, 20, 23
 sig.oncotypedx, 60
 sig.pik3cags, 60
 sig.tamr13, 62
 sigOvcAngiogenic, 63
 sigOvcCrijns, 63
 sigOvcSpentzos, 64
 sigOvcTCGA, 64
 sigOvcYoshihara, 65
 ssp2003, 66
 ssp2006, 67
 vdxs, 79

 annot.expos (expos), 16
 annot.nkis (nkis), 36
 annot.vdxs (vdxs), 79

 base::jitter, 6
 base::scale(), 46, 52, 67
 bimod, 4
 boxplot2plus2, 5
 claudinLow, 7, 9, 31, 45, 51
 claudinLow(), 9
 claudinLowData, 8
 collapseIDs, 9

 compareProtoCor, 9, 15
 compute.pairw.cor.meta, 10, 11, 12
 compute.pairw.cor.z, 12
 compute_proto.cor.meta, 10–12, 13
 cordiff.dep, 14

 data.expos (expos), 16
 data.nkis, 36
 data.nkis (nkis), 36
 data.vdxs (vdxs), 79
 demo.expos (expos), 16
 demo.nkis (nkis), 36
 demo.vdxs (vdxs), 79

 endoPredict, 15
 expos, 16
 fuzzy.ttest, 17
 gene70, 18
 gene76, 20, 24, 47, 78
 geneid.map, 21
 genius, 22
 ggi, 20, 23
 graphics::boxplot, 6

 ihc4, 25
 intrinsic.cluster, 26, 29, 74
 intrinsic.cluster.predict, 28, 28, 35, 74

 map.datasets, 11–13, 30
 mclust::Mclust, 5, 54, 56
 mclust::Mclust(), 55
 medianCtr, 31
 medianCtr(), 7
 mod1, 32, 50
 mod2, 32, 50
 modelOvcAngiogenic, 33
 molecular.subtyping, 33
 nkis, 36
npi, 37, 69
oncotypedx, 38
ovcAngiogenic, 39
ovcCrijns, 40
ovcTCGA, 42
ovcYoshihara, 43
overlapSets, 44
pam50, 28, 29, 45
pik3cags, 46
power.cor, 47
ps.cluster, 48
q, 7
read.m.file, 49
readArray, 50
rename.duplicate, 51
rescale, 52
rescale(), 46, 67
rorS, 53
scmgene.robust, 54
scmod1.robust, 55, 74, 76
scmod2.robust, 55, 74, 76
setcolclass.df, 56
sig.endoPredict, 57
sig.gene70, 57
sig.gene76, 58
sig.genius, 59
sig.ggi, 59
sig.oncotypedx, 60
sig.pik3cags, 60
sig.score, 23, 61
sig.tamr13, 62
sigOvcAngiogenic, 40, 63
sigOvcCrijns, 41, 63
sigOvcSpentzos, 64
sigOvcTCGA, 43, 64
sigOvcYoshihara, 44, 65
spearmanCI, 65
ssp2003, 28, 29, 66
ssp2006, 28, 29, 67
st.gallen, 37, 68
stab.fs, 69, 71
stab.fs.ranking, 70, 70
stats::cor, 15
stats::t.test, 15
stats::weighted.mean, 18, 80
strescR, 72
subtype.cluster, 28, 73, 76
subtype.cluster.predict, 23, 35, 74, 75
tamr13, 77
tbrm, 78
vdxs, 79
weighted.meanvar, 80
write.m.file, 81