Package ‘gcatest’

January 11, 2024

Title Genotype Conditional Association TEST
Version 2.2.0
Encoding UTF-8
LazyData true

Description
GCAT is an association test for genome wide association studies that controls for population structure under a general class of trait models. This test conditions on the trait, which makes it immune to confounding by unmodeled environmental factors. Population structure is modeled via logistic factors, which are estimated using the `lfa` package.

Imports methods, lfa
Depends R (>= 4.0)
Suggests knitr, ggplot2, testthat, BEDMatrix, genio
VignetteBuilder knitr
License GPL (>= 3)
biocViews SNP, DimensionReduction, PrincipalComponent, GenomeWideAssociation

BugReports https://github.com/StoreyLab/gcatest/issues
URL https://github.com/StoreyLab/gcatest
Roxygen RoxygenNote 7.2.3

Author Wei Hao [aut],
Minsun Song [aut],
Alejandro Ochoa [aut, cre] (https://orcid.org/0000-0003-4928-3403),
John D. Storey [aut] (https://orcid.org/0000-0001-5992-402X)

Maintainer Alejandro Ochoa <alejandro.ochoa@duke.edu>
\textbf{R topics documented:}

\begin{itemize}
 \item \texttt{delta_deviance_lf} \hfill 2
 \item \texttt{gcat} \hfill 3
 \item \texttt{sim_geno} \hfill 4
 \item \texttt{sim_trait} \hfill 4
\end{itemize}

\textbf{Index}

\begin{itemize}
 \item \texttt{delta_deviance_lf} \hfill 6
\end{itemize}

\textit{delta_deviance_lf \hfill Calculate delta deviance of logistic null/alternative models}

\section*{Description}

This function fits, at each locus of a given genotype matrix, two logistic models, and under the assumption that the models are nested, calculates the delta deviance between the two. This general function is intended for testing models in a broad setting; for the specific problem of genetic association, the interface in \texttt{gcat()} and \texttt{gcat.stat()} are more user-friendly.

\section*{Usage}

\texttt{delta_deviance_lf(X, LF0, LF1)}

\section*{Arguments}

- \texttt{X} \hfill A matrix of SNP genotypes, i.e. an integer matrix of 0’s, 1’s, 2’s and NAs. BEDMatrix is supported. Sparse matrices of class Matrix are not supported (yet).
- \texttt{LF0} \hfill Logistic factors for null model.
- \texttt{LF1} \hfill Logistic factors for alternative model.

\section*{Value}

The vector of delta deviance values, one per locus of \texttt{X}.

\section*{Examples}

\begin{verbatim}
library(lfa)

make example data smaller so example is fast
goes from 1000 to 100 individuals
indexes <- sample.int(ncol(sim_geno), 100)
sim_geno <- sim_geno[, indexes]
sim_trait <- sim_trait[indexes]

now run LFA and get delta deviances for trait assoc
(recapitulating \texttt{`gcat.stat`} in this case)
LF <- lfa(sim_geno, 3)
LF0 <- LF # structure is null
\end{verbatim}
LF1 <- cbind(LF, sim_trait) # trait is alt
devdiff_assoc <- delta_deviance_lf(sim_geno, LF0, LF1)

can instead do delta deviances for structure only
LF0 <- cbind(rep.int(1, ncol(sim_geno))) # intercept only is null
LF1 <- LF # structure is alt, no trait
devdiff_struc <- delta_deviance_lf(sim_geno, LF0, LF1)

gcat

Genotype Conditional Association TEST

Description

Performs the GCAT association test between SNPs and trait, returning p-values.

Usage

```r
gcat(X, LF, trait, adjustment = NULL)
gcat.test(X, LF, trait, adjustment = NULL)
gcat.stat(X, LF, trait, adjustment = NULL)
```

Arguments

- **X**: A matrix of SNP genotypes, i.e. an integer matrix of 0’s, 1’s, 2’s and NAs. BEDMatrix is supported. Sparse matrices of class Matrix are not supported (yet).
- **LF**: matrix of logistic factors from `lfa::lfa()`
- **trait**: vector
- **adjustment**: matrix of adjustment variables

Value

vector of p-values

Functions

- `gcat.test()`: Alias of `gcat`
- `gcat.stat()`: returns the association statistics instead of the p-value.

References

Examples

```r
library(lfa)

# make example data smaller so example is fast
# goes from 1000 to 100 individuals
indexes <- sample.int(ncol(sim_geno), 100)
sim_geno <- sim_geno[, indexes]
sim_trait <- sim_trait[indexes]

# now run LFA and GCATest
LF <- lfa(sim_geno, 3)
gcat_p <- gcat(sim_geno, LF, sim_trait)
gcat_stat <- gcat.stat(sim_geno, LF, sim_trait)
```

sim_geno

Simulated data from PSD model

Description

10,000 SNPs, 1,000 individuals, first five SNPs are associated.

Usage

```r
sim_geno
```

Format

A matrix of 0’s, 1’s and 2’s for the genotypes

Value

Simulated genotype matrix

sim_trait

Simulated data from PSD model

Description

10,000 SNPs, 1,000 individuals, first five SNPs are associated.

Usage

```r
sim_trait
```

Format

A vector of traits
<table>
<thead>
<tr>
<th>sim_trait</th>
<th>5</th>
</tr>
</thead>
</table>

Value

- simulated traits
Index

delta_deviance_lf, 2

gcat, 3
gcat(), 2
gcat.stat(), 2
gcatest (gcat), 3

lfa::lfa(), 3

sim_geno, 4
sim_trait, 4