Package ‘fgsea’

March 27, 2024

Title Fast Gene Set Enrichment Analysis

Version 1.28.0

Description The package implements an algorithm for fast gene set enrichment analysis. Using the fast algorithm allows to make more permutations and get more fine grained p-values, which allows to use accurate standard approaches to multiple hypothesis correction.

biocViews GeneExpression, DifferentialExpression, GeneSetEnrichment, Pathways

SystemRequirements C++11

Depends R (>= 4.1)

Imports Rcpp, data.table, BiocParallel, stats, ggplot2 (>= 2.2.0), cowplot, grid, fastmatch, Matrix, scales, utils

Suggests testthat, knitr, rmarkdown, reactome.db, AnnotationDbi, parallel, org.Mm.eg.db, limma, GEOquery, msigdb, aggregation, Seurat

License MIT + file LICENCE

LazyData true

LinkingTo Rcpp, BH

RoxygenNote 7.2.3

Encoding UTF-8

VignetteBuilder knitr

URL https://github.com/ctlab/fgsea/

BugReports https://github.com/ctlab/fgsea/issues

git_url https://git.bioconductor.org/packages/fgsea
git_branch RELEASE_3_18
git_last_commit 6c19b1e
git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-27
Author Gennady Korotkevich [aut],
Vladimir Sukhov [aut],
Nikolay Budin [ctb],
Alexey Sergushichev [aut, cre]

Maintainer Alexey Sergushichev <alsergbox@gmail.com>

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcGseaStat</td>
<td>3</td>
</tr>
<tr>
<td>calcGseaStatBatchCpp</td>
<td>4</td>
</tr>
<tr>
<td>collapsePathways</td>
<td>4</td>
</tr>
<tr>
<td>collapsePathwaysGeseca</td>
<td>5</td>
</tr>
<tr>
<td>collapsePathwaysORA</td>
<td>6</td>
</tr>
<tr>
<td>exampleExpressionMatrix</td>
<td>7</td>
</tr>
<tr>
<td>examplePathways</td>
<td>7</td>
</tr>
<tr>
<td>exampleRanks</td>
<td>8</td>
</tr>
<tr>
<td>fgsea</td>
<td>8</td>
</tr>
<tr>
<td>fgseaLabel</td>
<td>9</td>
</tr>
<tr>
<td>fgseaMultilevel</td>
<td>10</td>
</tr>
<tr>
<td>fgseaSimple</td>
<td>12</td>
</tr>
<tr>
<td>fgseaSimpleImpl</td>
<td>14</td>
</tr>
<tr>
<td>fora</td>
<td>15</td>
</tr>
<tr>
<td>geseca</td>
<td>16</td>
</tr>
<tr>
<td>gesecaSimple</td>
<td>17</td>
</tr>
<tr>
<td>gmtPathways</td>
<td>18</td>
</tr>
<tr>
<td>mapIdsList</td>
<td>19</td>
</tr>
<tr>
<td>multilevelError</td>
<td>20</td>
</tr>
<tr>
<td>multilevelImpl</td>
<td>20</td>
</tr>
<tr>
<td>plotCoregulationProfile</td>
<td>21</td>
</tr>
<tr>
<td>plotCoregulationProfileReduction</td>
<td>22</td>
</tr>
<tr>
<td>plotCoregulationProfileSpatial</td>
<td>23</td>
</tr>
<tr>
<td>plotEnrichment</td>
<td>24</td>
</tr>
<tr>
<td>plotEnrichmentData</td>
<td>24</td>
</tr>
<tr>
<td>plotGesecaTable</td>
<td>26</td>
</tr>
<tr>
<td>plotGseaTable</td>
<td>27</td>
</tr>
<tr>
<td>reactomePathways</td>
<td>28</td>
</tr>
<tr>
<td>writeGmtPathways</td>
<td>29</td>
</tr>
</tbody>
</table>

Index 30
calcGseaStat

Description

Calculates GSEA statistics for a given query gene set.

Takes $O(k \log k)$ time, where k is a size of 'selectedSize'.

Usage

calcGseaStat(
 stats,
 selectedStats,
 gseaParam = 1,
 returnAllExtremes = FALSE,
 returnLeadingEdge = FALSE,
 scoreType = c("std", "pos", "neg")
)

Arguments

stats Named numeric vector with gene-level statistics sorted in decreasing order (order is not checked).
selectedStats Indexes of selected genes in the 'stats' array.
gseaParam GSEA weight parameter (0 is unweighted, suggested value is 1).
returnAllExtremes If TRUE return not only the most extreme point, but all of them. Can be used for enrichment plot
returnLeadingEdge If TRUE return also leading edge genes.
scoreType This parameter defines the GSEA score type. Possible options are ("std", "pos", "neg")

Value

Value of GSEA statistic if both returnAllExtremes and returnLeadingEdge are FALSE. Otherwise returns list with the following elements:

- res – value of GSEA statistic
- tops – vector of top peak values of cumulative enrichment statistic for each gene;
- bottoms – vector of bottom peak values of cumulative enrichment statistic for each gene;
- leadingGene – vector with indexes of leading edge genes that drive the enrichment, see http://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm#_Running_a_Leading.
Examples

```r
data(exampleRanks)
data(examplePathways)
ranks <- sort(exampleRanks, decreasing=TRUE)
es <- calcGseaStat(ranks, na.omit(match(examplePathways[[1]], names(ranks))))
```

calcGseaStatBatchCpp \textit{Calculates GSEA statistic values for all gene sets in 'selectedStats' list.}

Description

Takes $O(n + mK\log K)$ time, where n is the number of genes, m is the number of gene sets, and k is the mean gene set size.

Usage

```r
calcGseaStatBatchCpp(stats, selectedGenes, geneRanks)
```

Arguments

- `stats`: Numeric vector of gene-level statistics sorted in decreasing order
- `selectedGenes`: List of integer vector with integer gene IDs (from 1 to n)
- `geneRanks`: Integer vector of gene ranks

Value

Numeric vector of GSEA statistics of the same length as `selectedGenes` list

collapsePathways \textit{Collapse list of enriched pathways to independent ones.}

Description

Collapse list of enriched pathways to independent ones.

Usage

```r
collapsePathways(
    fgseaRes, 
    pathways, 
    stats, 
    pval.threshold = 0.05, 
    nperm = 10/pval.threshold, 
gseaParam = 1
)
```
collapsePathwaysGeseca

Arguments

fgseaRes Table with results of running fgsea(), should be filtered by p-value, for example by selecting ones with padj < 0.01.
pathways List of pathways, should contain all the pathways present in ‘fgseaRes’.
stats Gene-level statistic values used for ranking, the same as in ‘fgsea()’.
pval.threshold Two pathways are considered dependent when p-value of enrichment of one pathways on background of another is greater then ‘pval.threshold’.
nperm Number of permutations to test for independence, should be several times greater than ‘1/pval.threshold’. Default value: ‘10/pval.threshold’.
gseaParam GSEA parameter, same as for ‘fgsea()’

Value

Named list with two elements: ‘mainPathways’ containing IDs of pathways not reducable to each other, and ‘parentPathways’ with vector describing for all the pathways to which ones they can be reduced. For pathways from ‘mainPathways’ vector ‘parentPathways’ contains ‘NA’ values.

Examples

data(examplePathways)
data(exampleRanks)
fgseaRes <- fgsea(examplePathways, exampleRanks, nperm=10000, maxSize=500)
collapsedPathways <- collapsePathways(fgseaRes[order(pval)][padj < 0.01],
examplePathways, exampleRanks)
mainPathways <- fgseaRes[pathway %in% collapsedPathways$mainPathways][
order(-NES), pathway]

Description

Collapse list of enriched pathways to independent ones (GESECA version, highly experimental).

Usage

collapsePathwaysGeseca(
 gesecaRes,
 pathways,
 E,
 center = TRUE,
 scale = FALSE,
 eps = min(c(1e-50, gesecaRes$pval)),
 checkDepth = 10,
collapsePathwaysORA

Arguments

gesecaRes Table with results of running geseca(), should be filtered by p-value, for example by selecting ones with padj < 0.01.
pathways List of pathways, should contain all the pathways present in ‘gesecaRes’.
E expression matrix, the same as in ‘geseca()’.
center a logical value indicating whether the gene expression should be centered to have zero mean before the analysis takes place. The default is TRUE. The value is passed to scale.
scale a logical value indicating whether the gene expression should be scaled to have unit variance before the analysis takes place. The default is FALSE. The value is passed to scale.
eps eps parameter for internal gesecaMultilevel runs. Default: min(c(1e-50, gesecaRes$pval))
checkDepth how much pathways to check against
nproc If not equal to zero sets BPPARAM to use nproc workers (default = 0).
BPPARAM Parallelization parameter used in bplapply.

collapsePathwaysORA Collapse list of enriched pathways to independent ones. Version for ORA hypergeometric test.

Description
Collapse list of enriched pathways to independent ones. Version for ORA hypergeometric test.

Usage
collapsePathwaysORA(foraRes, pathways, genes, universe, pval.threshold = 0.05)

Arguments
foraRes Table with results of running fgsea(), should be filtered by p-value, for example by selecting ones with padj < 0.01.
pathways List of pathways, should contain all the pathways present in ‘fgseaRes’.
genesis Set of query genes, same as in ‘fora()’
universe A universe from which ‘genes’ were selected, same as in ‘fora()’
pval.threshold Two pathways are considered dependent when p-value of enrichment of one pathways on background of another is greater then ‘pval.threshold’.
exampleExpressionMatrix

Value

Named list with two elements: `mainPathways` containing IDs of pathways not reducible to each other, and `parentPathways` with vector describing for all the pathways to which ones they can be reduced. For pathways from `mainPathways` vector ‘parentPathways’ contains ‘NA’ values.

Examples

```r
data(examplePathways)
data(exampleRanks)
foraRes <- fora(examplePathways, genes=tail(names(exampleRanks), 200), universe=names(exampleRanks))
collapsedPathways <- collapsePathwaysORA(foraRes[order(pval)][padj < 0.01],
                                         examplePathways,
                                         genes=tail(names(exampleRanks), 200),
                                         universe=names(exampleRanks))

mainPathways <- foraRes[pathway %in% collapsedPathways$mainPathways][
                          order(pval), pathway]
```

exampleExpressionMatrix
Example of expression values obtained for GSE14308.

Description

Expression data was obtained by preprocessing the GSE14308 dataset. For the matrix of gene expression value, the following steps were performed:

- expression values were log2-scaled
- quantile-type normalization was performed between arrays
- rows were collapsed by ‘ENTREZID’
- rows were sorted in descending order by mean expression value per gene
- finally, top-10,000 genes were taken

The exact script is available as `system.file("gen_gse14308_expression_matrix.R", package="fgsea")`

examplePathways
Example list of mouse Reactome pathways.

Description

The list was obtained by selecting all the pathways from ‘reactome.db’ package that contain mouse genes. The exact script is available as `system.file("gen.reactome_pathways.R", package="fgsea")`
exampleRanks

Example vector of gene-level statistics obtained for Th1 polarization.

Description

The data were obtained by doing differential expression between Naive and Th1-activated states for GEO dataset GSE14308. The exact script is available as system.file("gen_gene_ranks.R", package="fgsea")

fgsea

Wrapper to run methods for preranked gene set enrichment analysis.

Description

This function provide an interface to two existing functions: fgseaSimple, fgseaMultilevel. By default, the fgseaMultilevel function is used for analysis. For compatibility with the previous implementation you can pass the 'nperm' argument to the function.

Usage

fgsea(
 pathways,
 stats,
 minSize = 1,
 maxSize = length(stats) - 1,
 gseaParam = 1,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathways</td>
<td>List of gene sets to check.</td>
</tr>
<tr>
<td>stats</td>
<td>Named vector of gene-level stats. Names should be the same as in 'pathways'</td>
</tr>
<tr>
<td>minSize</td>
<td>Minimal size of a gene set to test. All pathways below the threshold are ex-</td>
</tr>
<tr>
<td>maxSize</td>
<td>cluded.</td>
</tr>
<tr>
<td>gseaParam</td>
<td>GSEA parameter value, all gene-level stats are raised to the power of 'gsea-</td>
</tr>
<tr>
<td></td>
<td>Param'</td>
</tr>
<tr>
<td>...</td>
<td>optional arguments for functions fgseaSimple, fgseaMultilevel</td>
</tr>
</tbody>
</table>

Value

A table with GSEA results. Each row corresponds to a tested pathway.
Examples

```r
data(examplePathways)
data(exampleRanks)
fgseaRes <- fgsea(examplePathways, exampleRanks, maxSize=500)
# Testing only one pathway is implemented in a more efficient manner
fgseaRes1 <- fgsea(examplePathways[1], exampleRanks)
```

Description

Runs label-permuring gene set enrichment analysis.

Usage

```r
fgseaLabel(
  pathways,
  mat,
  labels,
  nperm,
  minSize = 1,
  maxSize = nrow(mat) - 1,
  nproc = 0,
  gseaParam = 1,
  BPPARAM = NULL
)
```

Arguments

- **pathways**: List of gene sets to check.
- **mat**: Gene expression matrix. Row name should be the same as in 'pathways'.
- **labels**: Numeric vector of labels for the correlation score of the same length as the number of columns in 'mat'.
- **nperm**: Number of permutations to do. Minimal possible nominal p-value is about 1/nperm.
- **minSize**: Minimal size of a gene set to test. All pathways below the threshold are excluded.
- **maxSize**: Maximal size of a gene set to test. All pathways above the threshold are excluded.
- **nproc**: If not equal to zero sets BPPARAM to use nproc workers (default = 0).
- **gseaParam**: GSEA parameter value, all gene-level statis are raised to the power of 'gseaParam' before calculation of GSEA enrichment scores.
- **BPPARAM**: Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting 'nproc' default value 'bpparam()' is used.
Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- **pathway** – name of the pathway as in 'names(pathway)';
- **pval** – an enrichment p-value;
- **padj** – a BH-adjusted p-value;
- **ES** – enrichment score, same as in Broad GSEA implementation;
- **NES** – enrichment score normalized to mean enrichment of random samples of the same size;
- **nMoreExtreme** – a number of times a random gene set had a more extreme enrichment score value;
- **size** – size of the pathway after removing genes not present in 'names(stats)'.
- **leadingEdge** – vector with indexes of leading edge genes that drive the enrichment, see http://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm#_Running_a_Leading.

Examples

```r
library(limma)
library(GEOquery)
es <- getGEO("GSE19429", AnnotGPL = TRUE)[[1]]
exprs(es) <- normalizeBetweenArrays(log2(exprs(es)+1), method="quantile")
es <- es[!grepl("///", fData(es)$Gene ID), ]
es <- es[fData(es)$Gene ID != "", ]
es <- es[order(apply(exprs(es), 1, mean), decreasing=TRUE), ]
es <- es[!duplicated(fData(es)$Gene ID), ]
rownames(es) <- fData(es)$Gene ID
pathways <- reactomePathways(rownames(es))
mat <- exprs(es)
labels <- as.numeric(as.factor(gsub(".*", "", es$title)))
fgseaRes <- fgseaLabel(pathways, mat, labels, nperm = 1000, minSize = 15, maxSize = 500)
```

fgseaMultilevel

Runs preranked gene set enrichment analysis.

Description

This feature is based on the adaptive multilevel splitting Monte Carlo approach. This allows us to exceed the results of simple sampling and calculate arbitrarily small P-values.
fgseaMultilevel

Usage

```r
gseaMultilevel(
    pathways,
    stats,
    sampleSize = 101,
    minSize = 1,
    maxSize = length(stats) - 1,
    eps = 1e-50,
    scoreType = c("std", "pos", "neg"),
    nproc = 0,
    gseaParam = 1,
    BPPARAM = NULL,
    nPermSimple = 1000,
    absEps = NULL
)
```

Arguments

- **pathways**: List of gene sets to check.
- **stats**: Named vector of gene-level stats. Names should be the same as in `pathways`.
- **sampleSize**: The size of a random set of genes which in turn has size = pathwaySize.
- **minSize**: Minimal size of a gene set to test. All pathways below the threshold are excluded.
- **maxSize**: Maximal size of a gene set to test. All pathways above the threshold are excluded.
- **eps**: This parameter sets the boundary for calculating the p value.
- **scoreType**: This parameter defines the GSEA score type. Possible options are ("std", "pos", "neg"). By default ("std") the enrichment score is computed as in the original GSEA. The "pos" and "neg" score types are intended to be used for one-tailed tests (i.e. when one is interested only in positive ("pos") or negative ("neg") enrichment).
- **nproc**: If not equal to zero sets BPPARAM to use nproc workers (default = 0).
- **gseaParam**: GSEA parameter value, all gene-level stats are raised to the power of `gseaParam` before calculation of GSEA enrichment scores.
- **BPPARAM**: Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting `nproc` default value `bpparam()` is used.
- **nPermSimple**: Number of permutations in the simple fgsea implementation for preliminary estimation of P-values.
- **absEps**: deprecated, use `eps` parameter instead

Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:
fgseaSimple

- pathway – name of the pathway as in 'names(pathway)';
- pval – an enrichment p-value;
- padj – a BH-adjusted p-value;
- log2err – the expected error for the standard deviation of the P-value logarithm.
- ES – enrichment score, same as in Broad GSEA implementation;
- NES – enrichment score normalized to mean enrichment of random samples of the same size;
- size – size of the pathway after removing genes not present in 'names(stats)'.

Examples

```r
data(examplePathways)
data(exampleRanks)
fgseaMultilevelRes <- fgseaMultilevel(examplePathways, exampleRanks, maxSize=500)
```

fgseaSimple Runs preranked gene set enrichment analysis.

Description

The function takes about $O(nk^{3/2})$ time, where n is number of permutations and k is a maximal size of the pathways. That means that setting 'maxSize' parameter with a value of ~500 is strongly recommended.

Usage

```r
fgseaSimple(  
  pathways,  
  stats,  
  nperm,  
  minSize = 1,  
  maxSize = length(stats) - 1,  
  scoreType = c("std", "pos", "neg"),  
  nproc = 0,  
  gseaParam = 1,  
  BPPARAM = NULL  )
```

Arguments

- pathways List of gene sets to check.
- stats Named vector of gene-level stats. Names should be the same as in 'pathways'
- nperm Number of permutations to do. Minimal possible nominal p-value is about 1/nperm
fgseaSimple

- **minSize**: Minimal size of a gene set to test. All pathways below the threshold are excluded.
- **maxSize**: Maximal size of a gene set to test. All pathways above the threshold are excluded.
- **scoreType**: This parameter defines the GSEA score type. Possible options are ("std", "pos", "neg"). By default ("std") the enrichment score is computed as in the original GSEA. The "pos" and "neg" score types are intended to be used for one-tailed tests (i.e. when one is interested only in positive ("pos") or negative ("neg") enrichment).
- **nproc**: If not equal to zero sets BPPARAM to use nproc workers (default = 0).
- **gseaParam**: GSEA parameter value, all gene-level stats are raised to the power of 'gseaParam' before calculation of GSEA enrichment scores.
- **BPPARAM**: Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting 'nproc' default value ‘bpparam()’ is used.

Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- **pathway**: name of the pathway as in 'names(pathway)';
- **pval**: an enrichment p-value;
- **padj**: a BH-adjusted p-value;
- **ES**: enrichment score, same as in Broad GSEA implementation;
- **NES**: enrichment score normalized to mean enrichment of random samples of the same size;
- **nMoreExtreme**: a number of times a random gene set had a more extreme enrichment score value;
- **size**: size of the pathway after removing genes not present in 'names(stats)'.

Examples

```r
data(examplePathways)
data(exampleRanks)
fgseaRes <- fgseaSimple(examplePathways, exampleRanks, nperm=10000, maxSize=500)
# Testing only one pathway is implemented in a more efficient manner
fgseaRes1 <- fgseaSimple(examplePathways[1], exampleRanks, nperm=10000)
```
fgseaSimpleImpl

Runs preranked gene set enrichment analysis for preprocessed input data.

Description

Runs preranked gene set enrichment analysis for preprocessed input data.

Usage

fgseaSimpleImpl(
 pathwayScores,
 pathwaysSizes,
 pathwaysFiltered,
 leadingEdges,
 permPerProc,
 seeds,
 toKeepLength,
 stats,
 BPPARAM,
 scoreType
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathwayScores</td>
<td>Vector with enrichment scores for the 'pathways'.</td>
</tr>
<tr>
<td>pathwaysSizes</td>
<td>Vector of pathways sizes.</td>
</tr>
<tr>
<td>pathwaysFiltered</td>
<td>Filtered pathways.</td>
</tr>
<tr>
<td>leadingEdges</td>
<td>Leading edge genes.</td>
</tr>
<tr>
<td>permPerProc</td>
<td>Parallelization parameter for permutations.</td>
</tr>
<tr>
<td>seeds</td>
<td>Seed vector</td>
</tr>
<tr>
<td>toKeepLength</td>
<td>Number of 'pathways' that meet the condition for 'minSize' and 'maxSize'.</td>
</tr>
</tbody>
</table>
| stats | Named vector of gene-level stats. Names should be the same as in 'pathways'
| BPPARAM | Parallelization parameter used in bplapply. |
| scoreType | This parameter defines the GSEA score type. Possible options are ("std", "pos", "neg") Can be used to specify cluster to run. If not initialized explicitly or by setting 'nproc' default value 'bpparam()' is used. |

Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- pathway – name of the pathway as in ‘names(pathway)’;
fora

Description

Simple overrepresentation analysis based on hypergeometric test

Usage

fora(pathways, genes, universe, minSize = 1, maxSize = length(universe) - 1)

Arguments

pathways List of gene sets to check.
genesis Set of query genes
universe A universe from which `genes` were selected
minSize Minimal size of a gene set to test. All pathways below the threshold are excluded.
maxSize Maximal size of a gene set to test. All pathways above the threshold are excluded.

Value

A table with ORA results. Each row corresponds to a tested pathway. The columns are the following:

• pathway – name of the pathway as in `names(pathway)`;
• pval – an enrichment p-value from hypergeometric test;
• padj – a BH-adjusted p-value;
• overlap – size of the overlap;
• size – size of the gene set;
• leadingEdge – vector with overlapping genes.
Examples

```r
data(examplePathways)
data(exampleRanks)
foraRes <- fora(examplePathways, genes=tail(names(exampleRanks), 200), universe=names(exampleRanks))
```

geseca

Runs multilevel Monte-Carlo variant for performing gene sets co-regulation analysis

Description

This function is based on the adaptive multilevel splitting Monte Carlo approach and allows to estimate arbitrarily small P-values for the task of analyzing variance along a set of genes.

Usage

```r
geseca(
  pathways,
  E,
  minSize = 1,
  maxSize = nrow(E) - 1,
  center = TRUE,
  scale = FALSE,
  sampleSize = 101,
  eps = 1e-50,
  nproc = 0,
  BPPARAM = NULL,
  nPermSimple = 1000
)
```

Arguments

- **pathways**
 - List of gene sets to check.
- **E**
 - Expression matrix, rows corresponds to genes, columns corresponds to samples.
- **minSize**
 - Minimal size of a gene set to test. All pathways below the threshold are excluded.
- **maxSize**
 - Maximal size of a gene set to test. All pathways above the threshold are excluded.
- **center**
 - A logical value indicating whether the gene expression should be centered to have zero mean before the analysis takes place. The default is TRUE. The value is passed to `scale`.
- **scale**
 - A logical value indicating whether the gene expression should be scaled to have unit variance before the analysis takes place. The default is FALSE. The value is passed to `scale`.
- **sampleSize**
 - Sample size for conditional sampling.
gesecaSimple

eps This parameter sets the boundary for calculating P-values.
nproc If not equal to zero sets BPPARAM to use nproc workers (default = 0).
BPPARAM Parallelization parameter used in bplapply.
nPermSimple Number of permutations in the simple geseca implementation for preliminary estimation of P-values.

Value

A table with GESECA results. Each row corresponds to a tested pathway. The columns are the following

- pathway – name of the pathway as in 'names(pathways)';
- pctVar – percent of explained variance along gene set;
- pval – P-value that corresponds to the gene set score;
- padj – a BH-adjusted p-value;
- size – size of the pathway after removing genes not present in 'rownames(E)'.

Examples

data("exampleExpressionMatrix")
data("examplePathways")
gr <- geseca(examplePathways, exampleExpressionMatrix, minSize=15, maxSize=500)

Description

This function is based on the rude Monte Carlo sampling approach and P-value calculation accuracy is limited to ‘1 / nperm’ value.

Usage

gesecaSimple(
 pathways,
 E,
 minSize = 1,
 maxSize = nrow(E) - 1,
 center = TRUE,
 scale = FALSE,
 nperm = 1000,
 nproc = 0,
 BPPARAM = NULL
)
Arguments

- **pathways**
 List of gene sets to check.

- **E**
 Expression matrix, rows corresponds to genes, columns corresponds to samples.

- **minSize**
 Minimal size of a gene set to test. All pathways below the threshold are excluded.

- **maxSize**
 Maximal size of a gene set to test. All pathways above the threshold are excluded.

- **center**
 A logical value indicating whether the gene expression should be centered to have zero mean before the analysis takes place. The default is TRUE. The value is passed to `scale`.

- **scale**
 A logical value indicating whether the gene expression should be scaled to have unit variance before the analysis takes place. The default is FALSE. The value is passed to `scale`.

- **nperm**
 Number of permutations to do. Minimal possible nominal p-value is about 1/nperm

- **nproc**
 If not equal to zero sets BPPARAM to use nproc workers (default = 0).

- **BPPARAM**
 Parallelization parameter used in bplapply.

Value

A table with GESECA results. Each row corresponds to a tested pathway. The columns are the following:

- **pathway** – name of the pathway as in `names(pathways)`;
- **pctVar** – percent of explained variance along gene set;
- **pval** – P-value that corresponds to the gene set score;
- **padj** – a BH-adjusted p-value;
- **size** – size of the pathway after removing genes not present in `rownames(E)`.

Examples

```r
data("exampleExpressionMatrix")
data("examplePathways")
gesecaRes <- gesecaSimple(examplePathways, exampleExpressionMatrix, minSize=15, maxSize=500)
```

gmtPathways

Returns a list of pathways from a GMT file.

Description

Returns a list of pathways from a GMT file.

Usage

```r
gmtPathways(gmt.file)
```
mapIdsList

Arguments

- `gmt.file` Path to a GMT file.

Value

A list of vectors with gene sets.

Examples

```r
pathways <- gmtPathways(system.file(
    "extdata", "mouse.reactome.gmt", package="fgsea")
```

mapIdsList

Efficiently converts collection of pathways using `AnnotationDbi::mapIds` function. Parameters are the same as for `mapIds` except for keys, which is assumed to be a list of vectors.

Description

Efficiently converts collection of pathways using `AnnotationDbi::mapIds` function. Parameters are the same as for `mapIds` except for keys, which is assumed to be a list of vectors.

Usage

```r
mapIdsList(x, keys, column, keytype, ...)
```

Arguments

- `x` the AnnotationDb object. But in practice this will mean an object derived from an AnnotationDb object such as an OrgDb or ChipDb object.
- `keys` a list of vectors with gene ids
- `column` the column to search on
- `keytype` the keytype that matches the keys used
- `...` other parameters passed to `AnnotationDbi::mapIds`

See Also

`AnnotationDbi::mapIds`

Examples

```r
library(org.Mm.eg.db)
data(exampleRanks)
fgseaRes <- fgsea(examplePathways, exampleRanks, maxSize=500, eps=1e-4)
fgseaRes[, leadingEdge := mapIdsList(org.Mm.eg.db, keys=leadingEdge, column="SYMBOL", keytype="ENTREZID")]
```
multilevelError

Calculates the expected error for the standard deviation of the P-value logarithm.

Description

Calculates the expected error for the standard deviation of the P-value logarithm.

Usage

multilevelError(pval, sampleSize)

Arguments

pval P-value
sampleSize equivalent to sampleSize in fgseaMultilevel

Value

The value of the expected error

Examples

expectedError <- multilevelError(pval=1e-10, sampleSize=1001)

multilevelImpl

Calculates P-values for preprocessed data.

Description

Calculates P-values for preprocessed data.

Usage

multilevelImpl(
 multilevelPathwaysList,
 stats,
 sampleSize,
 seed,
 eps,
 sign = FALSE,
 BPPARAM = NULL
)
plotCoregulationProfile

Arguments

- **multilevelPathwaysList**
 List of pathways for which P-values will be calculated.
- **stats**
 Named vector of gene-level stats. Names should be the same as in `pathways`.
- **sampleSize**
 The size of a random set of genes which in turn has size = `pathwaySize`.
- **seed**
 'seed' parameter from `fgseaMultilevel`.
- **eps**
 This parameter sets the boundary for calculating the p value.
- **sign**
 This option will be used in future implementations.
- **BPPARAM**
 Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting `nproc` default value `bpparam()` is used.

Value

List of P-values.

plotCoregulationProfile

Plots expression profile of a gene set

Description

Plots expression profile of a gene set.

Usage

```r
plotCoregulationProfile(
  pathway,  # Gene set to plot.
  E,        # matrix with gene expression values
  center = TRUE,  # a logical value indicating whether the gene expression should be centered to have zero mean before the analysis takes place. The default is TRUE. The value is passed to `scale`.
  scale = FALSE,  # a logical value indicating whether the gene expression should be scaled to have unit variance before the analysis takes place. The default is FALSE. The value is passed to `scale`.
  titles = colnames(E),
  conditions = NULL
)
```

Arguments

- **pathway**
- **E**
- **center**
- **scale**
plotCoregulationProfileReduction

plotCoregulationProfileReduction
Plot a spatial expression profile of a gene set

Description
Plot a spatial expression profile of a gene set

Usage
plotCoregulationProfileReduction(
 pathway,
 object,
 title = NULL,
 assay = DefaultAssay(object),
 reduction = NULL,
 colors = c("darkblue", "lightgrey", "darkred"),
 guide = "colourbar",
 ...
)

Arguments
pathway Gene set to plot or a list of gene sets (see details below)
object Seurat object
title plot title
assay assay to use for obtaining scaled data, preferably with
reduction reduction to use for plotting (one of the ‘Seurat::Reductions(object)’)
colors vector of three colors to use in the color scheme
guide option for ‘ggplot2::scale_color_gradientn’ to control for presence of the color
legend the same universe of genes in the scaled data
...
additional arguments for Seurat::FeaturePlot

Value
ggplot object (or a list of objects) with the coregulation profile plot
When the input is a list of pathways, pathway names are used for titles. A list of ggplot objects a
returned in that case.
plotCoregulationProfileSpatial

Plot a spatial expression profile of a gene set

Description

Plot a spatial expression profile of a gene set

Usage

plotCoregulationProfileSpatial(
 pathway,
 object,
 title = NULL,
 assay = DefaultAssay(object),
 colors = c("darkblue", "lightgrey", "darkred"),
 guide = "colourbar"
)

Arguments

pathway Gene set to plot or a list of gene sets (see details below)
object Seurat object
title plot title
assay assay to use for obtaining scaled data, preferably with the same universe of genes in the scaled data
colors vector of three colors to use in the color scheme
guide option for `ggplot2::scale_color_gradientn` to control for presence of the color legend the same universe of genes in the scaled data

Value

ggplot object (or a list of objects) with the coregulation profile plot

When the input is a list of pathways, pathway names are used for titles. A list of ggplot objects a returned in that case.
plotEnrichment

Plots GSEA enrichment plot. For more flexibility use 'plotEnrichmentData' function.

Description

Plots GSEA enrichment plot. For more flexibility use 'plotEnrichmentData' function.

Usage

plotEnrichment(pathway, stats, gseaParam = 1, ticksSize = 0.2)

Arguments

pathway Gene set to plot.
stats Gene-level statistics.
gseaParam GSEA parameter.
ticksSize width of vertical line corresponding to a gene (default: 0.2)

Value

ggplot object with the enrichment plot.

Examples

data(examplePathways)
data(exampleRanks)
Not run:
plotEnrichment(examplePathways[["5991130_Programmed_Cell_Death"]],
 exampleRanks)
End(Not run)

plotEnrichmentData

Returns data required for doing an enrichment plot.

Description

Returns data required for doing an enrichment plot.

Usage

plotEnrichmentData(pathway, stats, gseaParam = 1)
plotEnrichmentData

Arguments

- `pathway` - Gene set to plot.
- `stats` - Gene-level statistics.
- `gseaParam` - GSEA parameter.

Value

returns list with the following data:
- *‘curve’* - data.table with the coordinates of the enrichment curve;
- *‘ticks’* - data.table with statistic entries for each pathway gene, adjusted with `gseaParam`;
- *‘stats’* - data.table with statistic values for all of the genes, adjusted with `gseaParam`;
- *‘posES’*, *‘negES’*, *‘spreadES’* - values of the positive enrichment score, negative enrichment score, and difference between them;
- *‘maxAbsStat’* - maximal absolute value of statistic entries, adjusted with `gseaParam`.

Examples

```r
library(ggplot2)
data(examplePathways)
data(exampleRanks)
pd <- plotEnrichmentData(
  pathway = examplePathways[["5991130_Programmed_Cell_Death"]],
  stats = exampleRanks
)
with(pd, 
  ggplot(data=curve) +
  geom_line(aes(x=rank, y=ES), color="green") +
  geom_ribbon(data=stats,
              mapping=aes(x=rank, ymin=0, ymax=stat/maxAbsStat*(spreadES/4)),
              fill="grey") +
  geom_segment(data=ticks,
               mapping=aes(x=rank, y=-spreadES/16, xend=rank, yend=spreadES/16),
               size=0.2) +
  geom_hline(yintercept=posES, colour="red", linetype="dashed") +
  geom_hline(yintercept=negES, colour="red", linetype="dashed") +
  geom_hline(yintercept=0, colour="black") +
  theme(
    panel.background = element_blank(),
    panel.grid.major = element_line(color="grey92")
  ) +
  labs(x="rank", y="enrichment score"))
```
plotGesecaTable

Description
Plots table of gene set profiles.

Usage
plotGesecaTable(
 gesecaRes,
 pathways,
 E,
 center = TRUE,
 scale = FALSE,
 colwidths = c(5, 3, 0.8, 1.2, 1.2),
 titles = colnames(E),
 colors = c("blue", "white", "red"),
 pathwayLabelStyle = NULL,
 headerLabelStyle = NULL,
 valueStyle = NULL,
 axisLabelStyle = NULL,
 axisLabelHeightScale = NULL
)

Arguments

gesecaRes Table with geseca results.
pathways Pathways to plot table, as in ‘geseca‘ function.
E gene expression matrix, as in ‘geseca‘ function.
center a logical value indicating whether the gene expression should be centered to
have zero mean before the analysis takes place. The default is TRUE. The value
is passed to scale.
scale a logical value indicating whether the gene expression should be scaled to have
unit variance before the analysis takes place. The default is FALSE. The value
is passed to scale.
colwidths Vector of five elements corresponding to column width for grid.arrange. Can be
both units and simple numeric vector, in latter case it defines proportions, not
actual sizes. If column width is set to zero, the column is not drawn.
titles sample titles to use an axis labels. Default to ‘colnames(E)’
colors vector of three colors to use in the color scheme
pathwayLabelStyle list with style parameter adjustments for pathway labels. For example, ‘list(size=10,
 color="red")’ set the font size to 10 and color to red. See ‘cowplot::draw_text’
 for possible options.
plotGseaTable

headerLabelStyle similar to 'pathwayLabelStyle' but for the table header.
valueStyle similar to 'pathwayLabelStyle' but for pctVar and p-value columns.
axisLabelStyle list with style parameter adjustments for sample labels. See ‘ggplot2::element_text’ for possible options.
axisLabelHeightScale height of the row with axis labels compared to other rows. When set to ‘NULL’ the value is determined automatically.

Value
ggplot object with gene set profile plots

Description
Plots table of enrichment graphs using ggplot and gridExtra.

Usage
plotGseaTable(
 pathways,
 stats,
 fgseaRes,
 gseaParam = 1,
 colwidths = c(5, 3, 0.8, 1.2, 1.2),
 pathwayLabelStyle = NULL,
 headerLabelStyle = NULL,
 valueStyle = NULL,
 axisLabelStyle = NULL,
 render = NULL
)

Arguments
 pathways Pathways to plot table, as in ‘fgsea’ function.
 stats Gene-level stats, as in ‘fgsea’ function.
 fgseaRes Table with fgsea results.
 gseaParam GSEA-like parameter. Adjusts displayed statistic values, values closer to 0 flatten plots. Default = 1, value of 0.5 is a good choice too.
 colwidths Vector of five elements corresponding to column width for grid.arrange. Can be both units and simple numeric vector, in latter case it defines proportions, not actual sizes. If column width is set to zero, the column is not drawn.
reactomePathways

Returns a list of Reactome pathways for given Entrez gene IDs

Description

Returns a list of Reactome pathways for given Entrez gene IDs

Usage

reactomePathways(genes)

Arguments

genes Entrez IDs of query genes.

Value

A list of vectors with gene sets.

Examples

data(exampleRanks)
pathways <- reactomePathways(names(exampleRanks))
writeGmtPathways

Write collection of pathways (list of vectors) to a gmt file

Description

Write collection of pathways (list of vectors) to a gmt file

Usage

writeGmtPathways(pathways, gmt.file)

Arguments

pathways a named list of vectors with gene ids
gmt.file name of the output file

Examples

data(examplePathways)
writeGmtPathways(examplePathways, tempfile("examplePathways", fileext=".gmt"))
Index

calcGseaStat, 3
calcGseaStatBatchCpp, 4
collapsePathways, 4
collapsePathwaysGeseca, 5
collapsePathwaysORA, 6
eexampleExpressionMatrix, 7
eexamplePathways, 7
eexampleRanks, 8
fgsea, 8
fgseaLabel, 9
fgseaMultilevel, 8, 10
fgseaSimple, 8, 12
fgseaSimpleImpl, 14
fora, 15
geseca, 16
gesecaSimple, 17
gmtPathways, 18
mapIdsList, 19
multilevelError, 20
multilevelImpl, 20
plotCoregulationProfile, 21
plotCoregulationProfileReduction, 22
plotCoregulationProfileSpatial, 23
plotEnrichment, 24
plotEnrichmentData, 24
plotGesecaTable, 26
plotGseaTable, 27
reactomePathways, 28
scale, 6, 16, 18, 21, 26
writeGmtPathways, 29