Package ‘fgsea’

February 25, 2020

Title Fast Gene Set Enrichment Analysis
Version 1.12.0
Date 2019-10-25
Description The package implements an algorithm for fast gene set enrichment analysis. Using the fast algorithm allows to make more permutations and get more fine grained p-values, which allows to use accurate stantard approaches to multiple hypothesis correction.

biocViews GeneExpression, DifferentialExpression, GeneSetEnrichment, Pathways

SystemRequirements C++11

Depends R (>= 3.3), Rcpp
Imports data.table, BiocParallel, stats, ggplot2 (>= 2.2.0), gridExtra, grid, fastmatch, Matrix, utils
Suggests testthat, knitr, rmarkdown, reactome.db, AnnotationDbi, parallel, org.Mm.eg.db, limma, GEOquery

License MIT + file LICENCE
LazyData true
LinkingTo Rcpp, BH
RoxygenNote 6.1.1
Encoding UTF-8
VignetteBuilder knitr

URL https://github.com/ctlab/fgsea/
BugReports https://github.com/ctlab/fgsea/issues

git_url https://git.bioconductor.org/packages/fgsea

git_branch RELEASE_3_10

git_last_commit 22c00b6

git_last_commit_date 2019-10-29

Date/Publication 2020-02-24

Author Gennady Korotkevich [aut], Vladimir Sukhov [aut], Alexey Sergushichev [aut, cre]

Maintainer Alexey Sergushichev <alsergbox@gmail.com>
calcGseaStat

Calculates GSEA statistics for a given query gene set

Description
Takes $O(k \log k)$ time, where k is a size of `selectedSize`.

Usage
```
calcGseaStat(stats, selectedStats, gseaParam = 1,
              returnAllExtremes = FALSE, returnLeadingEdge = FALSE)
```

Arguments
- `stats` Named numeric vector with gene-level statistics sorted in decreasing order (order is not checked).
- `selectedStats` Indexes of selected genes in the `stats` array.
- `gseaParam` GSEA weight parameter (0 is unweighted, suggested value is 1).
- `returnAllExtremes` If TRUE return not only the most extreme point, but all of them. Can be used for enrichment plot
- `returnLeadingEdge` If TRUE return also leading edge genes.

Value
Value of GSEA statistic if both returnAllExtremes and returnLeadingEdge are FALSE. Otherwise returns list with the following elements:
- `res` – value of GSEA statistic
- `tops` – vector of top peak values of cumulative enrichment statistic for each gene;
calcGseaStatBatchCpp

- bottoms – vector of bottom peak values of cumulative enrichment statistic for each gene;
- leadingGene – vector with indexes of leading edge genes that drive the enrichment, see http://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm#Running_a_Leading.

Examples

data(exampleRanks)
data(examplePathways)
ranks <- sort(exampleRanks, decreasing=TRUE)
es <- calcGseaStat(ranks, na.omit(match(examplePathways[[1]], names(ranks))))

calcGseaStatBatchCpp *Calculates GSEA statistic values for all gene sets in 'selectedStats' list.*

Description

Takes $O(n + mK\log K)$ time, where n is the number of genes, m is the number of gene sets, and k is the mean gene set size.

Usage

calcGseaStatBatchCpp(stats, selectedGenes, geneRanks)

Arguments

- **stats**
 Numeric vector of gene-level statistics sorted in decreasing order
- **selectedGenes**
 List of integer vector with integer gene IDs (from 1 to n)
- **geneRanks**
 Integer vector of gene ranks

Value

Numeric vector of GSEA statistics of the same length as ‘selectedGenes’ list

collapsePathways *Collapse list of enriched pathways to independent ones.*

Description

Collapse list of enriched pathways to independent ones.

Usage

collapsePathways(fgsaRes, pathways, stats, pval.threshold = 0.05, nperm = 10/pval.threshold, gseaParam = 1)
Arguments

fgseaRes Table with results of running fgsea(), should be filtered by p-value, for example by selecting ones with padj < 0.01.

pathways List of pathways, should contain all the pathways present in ‘fgseaRes’.

stats Gene-level statistic values used for ranking, the same as in ‘fgsea()’.

pval.threshold Two pathways are considered dependent when p-value of enrichment of one pathways on background of another is greater than ‘pval.threshold’.

nperm Number of permutations to test for independence, should be several times greater than ‘1/pval.threshold’. Default value: ‘10/pval.threshold’.

gseaParam GSEA parameter, same as for ‘fgsea()’

Value

Named list with two elements: ‘mainPathways’ containing IDs of pathways not reducable to each other, and ‘parentPathways’ with vector describing for all the pathways to which ones they can be reduced. For pathways from ‘mainPathways’ vector ‘parentPathways’ contains ‘NA’ values.

Examples

data(examplePathways)
data(exampleRanks)
fgseaRes <- fgsea(examplePathways, exampleRanks, nperm=10000, maxSize=500)
collapsedPathways <- collapsePathways(fgseaRes[order(pval)][padj < 0.01], examplePathways, exampleRanks)
mainPathways <- fgseaRes[pathway %in% collapsedPathways$mainPathways][order(-NES), pathway]

examplePathways Example list of mouse Reactome pathways.

Description

The list was obtained by selecting all the pathways from ‘reactome.db’ package that contain mouse genes. The exact script is available as system.file("gen_reactome_pathways.R", package="fgsea")

eexampleRanks Example vector of gene-level statistics obtained for Th1 polarization.

Description

The data were obtained by doing differential expression between Naive and Th1-activated states for GEO dataset GSE14308. The exact script is available as system.file("gen_gene_ranks.R", package="fgsea")
fgsea

Runs preranked gene set enrichment analysis.

Description

The function takes about $O(nk^{3/2})$ time, where n is number of permutations and k is a maximal size of the pathways. That means that setting 'maxSize' parameter with a value of ~500 is strongly recommended.

Usage

```r
fgsea(pathways, stats, nperm, minSize = 1, maxSize = Inf, nproc = 0, gseaParam = 1, BPPARAM = NULL)
```

Arguments

- `pathways` List of gene sets to check.
- `stats` Named vector of gene-level stats. Names should be the same as in 'pathways'
- `nperm` Number of permutations to do. Minimal possible nominal p-value is about $1/nperm$
- `minSize` Minimal size of a gene set to test. All pathways below the threshold are excluded.
- `maxSize` Maximal size of a gene set to test. All pathways above the threshold are excluded.
- `nproc` If not equal to zero sets BPPARAM to use nproc workers (default = 0).
- `gseaParam` GSEA parameter value, all gene-level statis are raised to the power of 'gseaParam' before calculation of GSEA enrichment scores.
- `BPPARAM` Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting 'nproc' default value 'bpparam()' is used.

Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- `pathway` – name of the pathway as in 'names(pathway)';
- `pval` – an enrichment p-value;
- `padj` – a BH-adjusted p-value;
- `ES` – enrichment score, same as in Broad GSEA implementation;
- `NES` – enrichment score normalized to mean enrichment of random samples of the same size;
- `nMoreExtreme` – a number of times a random gene set had a more extreme enrichment score value;
- `size` – size of the pathway after removing genes not present in 'names(stats)'.
fgseaLabel

Examples

```r
data(examplePathways)
data(exampleRanks)
fgseaRes <- fgsea(examplePathways, exampleRanks, nperm=10000, maxSize=500)
# Testing only one pathway is implemented in a more efficient manner
fgseaRes1 <- fgsea(examplePathways[1], exampleRanks, nperm=10000)
```

fgseaLabel

Runs label-permuring gene set enrichment analysis.

Description

Runs label-permuring gene set enrichment analysis.

Usage

```r
fgseaLabel(pathways, mat, labels, nperm, minSize = 1, maxSize = Inf, nproc = 0, gseaParam = 1, BPPARAM = NULL)
```

Arguments

- `pathways` List of gene sets to check.
- `mat` Gene expression matrix. Row name should be the same as in `pathways`.
- `labels` Numeric vector of labels for the correlation score of the same length as the number of columns in `mat`.
- `nperm` Number of permutations to do. Minimal possible nominal p-value is about 1/nperm.
- `minSize` Minimal size of a gene set to test. All pathways below the threshold are excluded.
- `maxSize` Maximal size of a gene set to test. All pathways above the threshold are excluded.
- `nproc` If not equal to zero sets BPPARAM to use nproc workers (default = 0).
- `gseaParam` GSEA parameter value, all gene-level stats are raised to the power of `gseaParam` before calculation of GSEA enrichment scores.
- `BPPARAM` Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting `nproc` default value `bpparam()` is used.

Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- pathway – name of the pathway as in `names(pathway)`;
- pval – an enrichment p-value;
- padj – a BH-adjusted p-value;
- ES – enrichment score, same as in Broad GSEA implementation;
- NES – enrichment score normalized to mean enrichment of random samples of the same size;
fgseaMultilevel

- nMoreExtreme – a number of times a random gene set had a more extreme enrichment score value;
- size – size of the pathway after removing genes not present in `names(stats)`;
- leadingEdge – vector with indexes of leading edge genes that drive the enrichment, see http://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm#_Running_a_Leading.

Examples

```r
library(limma)
library(GEOquery)
es <- getGEO("GSE19429", AnnotGPL = TRUE)[[1]]
exprs(es) <- normalizeBetweenArrays(log2(exprs(es)+1), method="quantile")
es <- es[!grepl("///", fData(es)$Gene ID), ]
es <- es[fData(es)$Gene ID !="", ]
es <- es[order(apply(exprs(es), 1, mean), decreasing=TRUE), ]
es <- es[!duplicated(fData(es)$Gene ID), ]
rownames(es) <- fData(es)$Gene ID

pathways <- reactomePathways(rownames(es))
mat <- exprs(es)
labels <- as.numeric(as.factor(gsub(" .*", "", es$title)))
fgseaRes <- fgseaLabel(pathways, mat, labels, nperm = 1000, minSize = 15, maxSize = 500)
```

fgseaMultilevel

Runs preranked gene set enrichment analysis.

Description

This feature is based on the adaptive multilevel splitting Monte Carlo approach. This allows us to exceed the results of simple sampling and calculate arbitrarily small P-values.

Usage

```r
fgseaMultilevel(pathways, stats, sampleSize = 101, minSize = 1,
maxSize = Inf, absEps = 0, nproc = 0, BPPARAM = NULL)
```

Arguments

- pathways: List of gene sets to check.
- stats: Named vector of gene-level stats. Names should be the same as in `pathways`.
- sampleSize: The size of a random set of genes which in turn has size = pathwaySize.
- minSize: Minimal size of a gene set to test. All pathways below the threshold are excluded.
- maxSize: Maximal size of a gene set to test. All pathways above the threshold are excluded.
- absEps: This parameter sets the boundary for calculating the p value.
- nproc: If not equal to zero sets BPPARAM to use nproc workers (default = 0).
- BPPARAM: Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting `nproc` default value `bpparam()` is used.
Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- **pathway** – name of the pathway as in `names(pathway)`;
- **pval** – an enrichment p-value;
- **padj** – a BH-adjusted p-value;
- **log2err** – the expected error for the standard deviation of the P-value logarithm.
- **ES** – enrichment score, same as in Broad GSEA implementation;
- **NES** – enrichment score normalized to mean enrichment of random samples of the same size;
- **size** – size of the pathway after removing genes not present in `names(stats)`;

Examples

```r
data(examplePathways)
data(exampleRanks)
fgseaMultilevelRes <- fgseaMultilevel(examplePathways, exampleRanks, maxSize=500)
```

Description

Runs preranked gene set enrichment analysis for preprocessed input data.

Usage

```r
fgseaSimpleImpl(pathwayScores, pathwaysSizes, pathwaysFiltered, leadingEdges, permPerProc, seeds, toKeepLength, stats, BPPARAM)
```

Arguments

- `pathwayScores` Vector with enrichment scores for the `pathways`.
- `pathwaysSizes` Vector of path sizes.
- `pathwaysFiltered` Filtered pathways.
- `leadingEdges` Leading edge genes.
- `permPerProc` Parallelization parameter for permutations.
- `seeds` Seed vector
- `toKeepLength` Number of `pathways` that meet the condition for `minSize` and `maxSize`.
- `stats` Named vector of gene-level stats. Names should be the same as in `pathways`.
- `BPPARAM` Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting `nproc` default value `bpparam()` is used.
Value

A table with GSEA results. Each row corresponds to a tested pathway. The columns are the following:

- pathway – name of the pathway as in ‘names(pathway)’;
- pval – an enrichment p-value;
- padj – a BH-adjusted p-value;
- ES – enrichment score, same as in Broad GSEA implementation;
- NES – enrichment score normalized to mean enrichment of random samples of the same size;
- nMoreExtreme’ – a number of times a random gene set had a more extreme enrichment score value;
- size – size of the pathway after removing genes not present in ‘names(stats)’.
- leadingEdge – vector with indexes of leading edge genes that drive the enrichment, see http://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm#_Running_a_Leading.

Description

Returns a list of pathways from a GMT file.

Usage

gmtPathways(gmt.file)

Arguments

gmt.file Path to a GMT file.

Value

A list of vectors with gene sets.

Examples

pathways <- gmtPathways(system.file("extdata", "mouse.reactome.gmt", package="fgsea"))
multilevelError Calculates the expected error for the standard deviation of the P-value logarithm.

Description
Calculates the expected error for the standard deviation of the P-value logarithm.

Usage
multilevelError(pval, sampleSize)

Arguments
pval P-value
sampleSize equivalent to sampleSize in fgseaMultilevel

Value
The value of the expected error

Examples
expectedError <- multilevelError(pval=1e-10, sampleSize=1001)

multilevelImpl Calculates P-values for preprocessed data.

Description
Calculates P-values for preprocessed data.

Usage
multilevelImpl(multilevelPathwaysList, stats, sampleSize, seed, absEps,
 sign = FALSE, BPPARAM = NULL)

Arguments
multilevelPathwaysList List of pathways for which P-values will be calculated.
stats Named vector of gene-level stats. Names should be the same as in 'pathways'
sampleSize The size of a random set of genes which in turn has size = pathwaySize
seed 'seed' parameter from 'fgseaMultilevel'
absEps This parameter sets the boundary for calculating the p value.
sign This option will be used in future implementations.
BPPARAM Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting 'nproc' default value 'bpparam()' is used.
plotEnrichment

Value

List of P-values.

plotEnrichment
Plots GSEA enrichment plot.

Description

Plots GSEA enrichment plot.

Usage

```r
plotEnrichment(pathway, stats, gseaParam = 1, ticksSize = 0.2)
```

Arguments

- `pathway`: Gene set to plot.
- `stats`: Gene-level statistics.
- `gseaParam`: GSEA parameter.
- `ticksSize`: width of vertical line corresponding to a gene (default: 0.2)

Value

ggplot object with the enrichment plot.

Examples

```r
data(examplePathways)
data(exampleRanks)
## Not run:
plotEnrichment(examplePathways[["5991130_Programmed_Cell_Death"]], exampleRanks)
## End(Not run)
```

plotGseaTable
Plots table of enrichment graphs using ggplot and gridExtra.

Description

Plots table of enrichment graphs using ggplot and gridExtra.

Usage

```r
plotGseaTable(pathways, stats, fgseaRes, gseaParam = 1, colwidths = c(5, 3, 0.8, 1.2, 1.2), render = TRUE)
```
reactomePathways

Arguments

pathways Pathways to plot table, as in 'fgsea' function.
stats Gene-level stats, as in 'fgsea' function.
fgseaRes Table with fgsea results.
gseaParam GSEA-like parameter. Adjusts displayed statistic values, values closer to 0 flatten plots. Default = 1, value of 0.5 is a good choice too.
colwidths Vector of five elements corresponding to column width for grid.arrange. If column width is set to zero, the column is not drawn.
render If true, the plot is rendered to the current device. Otherwise, the grob is returned. Default is true.

Value

TableGrob object returned by grid.arrange.

Examples

data(examplePathways)
data(exampleRanks)
fgseaRes <- fgsea(examplePathways, exampleRanks, nperm=1000, minSize=15, maxSize=100)
topPathways <- fgseaRes[head(order(pval), n=15)][order(NES), pathway]
Not run:
plotGseaTable(examplePathways[topPathways], exampleRanks, fgseaRes, gseaParam=0.5)
End(Not run)

reactomePathways Returns a list of Reactome pathways for given Entrez gene IDs

Description

Returns a list of Reactome pathways for given Entrez gene IDs

Usage

reactomePathways(genes)

Arguments

genes Entrez IDs of query genes.

Value

A list of vectors with gene sets.

Examples

data(exampleRanks)
pathways <- reactomePathways(names(exampleRanks))
Index

calcGseaStat, 2
calcGseaStatBatchCpp, 3
collapsePathways, 3

dexamplePathways, 4
dexampleRanks, 4

fgsea, 5
gseaLabel, 6
gseaMultilevel, 7
gseaSimpleImpl, 8

gmtPathways, 9

multilevelError, 10
multilevelImpl, 10

plotEnrichment, 11
plotGseaTable, 11

reactomePathways, 12