Package ‘epiNEM’

March 20, 2024

Type Package
Title epiNEM
Version 1.26.0
Author Madeline Diekmann & Martin Pirkl
Maintainer Martin Pirkl <martinpirkl@yahoo.de>
Description epiNEM is an extension of the original Nested Effects Models (NEM). EpiNEM is able to take into account double knockouts and infer more complex network signalling pathways. It is tailored towards large scale double knock-out screens.
Depends R (>= 4.1)
License GPL-3
Encoding UTF-8
LazyData true
biocViews Pathways, SystemsBiology, NetworkInference, Network
RoxygenNote 7.2.3
Imports BoolNet, e1071, gtools, stats, igraph, utils, lattice, latticeExtra, RColorBrewer, pcalg, minet, grDevices, graph, mnem, latex2exp
VignetteBuilder knitr
Suggests knitr, RUnit, BiocGenerics, STRINGdb, devtools, rmarkdown, GOSemSim, AnnotationHub, org.Sc.sgd.db, BiocStyle
BugReports https://github.com/cbg-ethz/epiNEM/issues
URL https://github.com/cbg-ethz/epiNEM/
git_url https://git.bioconductor.org/packages/epiNEM
git_branch RELEASE_3_18
git_last_commit b9081ed
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-20
AddLogicGates

Description

extend model with node representing logic gate

Usage

AddLogicGates(child, logic, model)

Arguments

- child: define the child
- logic: define the logical gate
- model: normal model
CreateExtendedAdjacency

Value

model list with additional logic gate

Examples

```r
model <- CreateRandomGraph(c("Ikk1", "Ikk2", "RelA"))
model2 <- AddLogicGates("RelA", "OR", model)
```

CreateExtendedAdjacency

Create an extended adjacency matrix

Description

extend adjacency matrices taking cycles and logics into account. For every given start state, the final state is computed using BoolNet.

Usage

CreateExtendedAdjacency(network, mutants, experiments)

Arguments

- `network`: network created by BoolNet from file
- `mutants`: vector of single knockouts
- `experiments`: vector of all knockouts

Value

extended adjacency matrix

Examples

```r
library(BoolNet)
data(cellcycle)
extModel <- CreateExtendedAdjacency(cellcycle, c(cellcycle$genes, "CycD.Rb"), cellcycle$genes)
```
CreateRandomGraph
Create a random graph

Description
Returns a model graph with randomly sampled edges. Every possible edge has a probability to exist in the graph.

Usage
CreateRandomGraph(pathwayGenes, edgeProb = 0.5)

Arguments
pathwayGenes vector of genes in the pathway
edgeProb probability of random edge

Value
adjacency matrix

Examples
graph <- CreateRandomGraph(c("Ikk1", "Ikk2", "RelA"))

CreateTopology
Create Topology.

Description
Create topology for a randomly generated pathway topology

Usage
CreateTopology(single, double, force = TRUE)

Arguments
single number of single knockouts
double number of double knockouts
force if true the random model will have a sophisticated logical gate

Value
adjacency matrix
Examples

```r
model <- CreateTopology(3, 1)
```

Description

Plots logical gate data annotation. The 8 heatmaps visualize what perfect data would look like in respective to each logical gate. Perfect data is equivalent to Boolean truth tables.

Usage

```r
epiAnno()
```

Value

plot of heatmaps showing the silencing scheme (=expected data, truth tables)

Author(s)

Martin Pirkl

References

Examples

```r
epiAnno()
```

Description

This function contains the inference algorithm to learn logical networks from knock-down data including double knock-downs.
Usage

epiNEM(
 filename = "random",
 method = "greedy",
 nIterations = 10,
 nModels = 0,
 random = list(single = 4, double = 1, reporters = 10, FPrate = 0.1, FNrate = 0.1,
 replicates = 1),
 ltype = "marginal",
 para = c(0.13, 0.05),
 init = NULL
)

Arguments

filename A binary, tab-delimited matrix. Columns: single and double knockdowns. Rows:
genesis showing effect or not? Default: random; artificial data is generated to
'random' specifications

method greedy or exhaustive search. Default: greedy

nIterations number of iterations. Default: 10

nModels number of Models. Default: 0

random list specifying how the data should be generated: no. of single mutants, no. of
double mutants, no. of reporterGenes, FP-rate, FN-rate, no. of replicates

ltype likelihood either "marginal" or "maximum"

para false positive and false negative rates

init adjacency matrix to initialise the greedy search

Value

List object with an adjacency matrix denoting the network, the model of the silencing scheme (rows
are knock-downs, columns are signalling genes), a string with the inferred logical gates, a column
indices denoting position of logical gates, the log transformed likelihood and the effect reporter
distribution (rows are the signalling genes including the null node).

Author(s)

Madeline Diekmann

See Also

nem

Examples

data <- matrix(sample(c(0,1), 100*4, replace = TRUE), 100, 4)
colnames(data) <- c("A", "A.B", "B", "C")
rownames(data) <- paste("E", 1:100, sep = ",")
epiScreen

Analyse large double knock-out screen.

Description

This function is used to analyse knock-out screens with multiple double and single knock-outs combined in one data set.

Usage

epiScreen(data, ...)

Arguments

data data matrix containing multiple single and double knock-downs in columns and effect reporters in the rows

... additional parameters, e.g. for the main epiNEM function

Value

list object with vectors of double knock-downs, single knock-downs and two matrices with doubles in the columns and singles in the rows. The first matrix denotes the respective logical gate for the triple and the second matrix the log-likelihood

Author(s)

Martin Pirkl

Examples

data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
rownames(data) <- paste("E", 1:100, sep = ".")
res <- epiScreen(data)
GenerateData

Generate data from extended model.

Description

Given a model created from CreateTopology and ExtendTopology, this function creates a corresponding artificial data matrix, which is used as a ground truth for simulation studies.

Usage

```r
GenerateData(model, extTopology, FPrate, FNRate, replicates)
```

ExtendTopology
Extending topology of normal "nem"

Description

Extending topology of normal "nem"

Usage

```r
ExtendTopology(topology, nReporters)
```

Arguments

- **topology**: model of a topology from CreateTopology
- **nReporters**: number of effects reporters

Value

extended topology in which reporters are linked to pathway genes

Author(s)

Madeline Diekmann

See Also

CreateTopology

Examples

```r
topology <- CreateTopology(3, 1, force = TRUE)
topology <- unlist(unique(topology), recursive = FALSE)
extTopology <- ExtendTopology(topology$model, 100)
```
Arguments

model model of a topology from CreateTopology
extTopology extended topology
FPrate false positive rate
FNrate false negative rate
replicates number of replicates

Value

data matrix with effect reporters as rows and knock-downs (including double knock-downs) as columns.

Author(s)

Madeline Diekmann

See Also

CreateTopology

Examples

topology <-
CreateTopology(3, 1, force = TRUE)
topology <-
unlist(unique(topology), recursive = FALSE)
extTopology <-
ExtendTopology(topology$model, 100)
sortedData <-
GenerateData(topology$model, extTopology, 0.05, 0.13, 3)

HeatmapOP

Description

Heatmap function based on the lattice package more information: ?xyplot

Usage

HeatmapOP(
 x,
 col = "RdYlGn",
 colNA = "grey",
 coln = 11,
 bordercol = "grey",
 borderwidth = 0.1,
breaks = "sym",
main = "",
sub = "",
dendrogram = "none",
colorkey = "right",
Colv = TRUE,
Rowv = TRUE,
xrot = 90,
yrot = 0,
shrink = c(1, 1),
cexCol = 1,
cexRow = 1,
cexMain = 1,
cexSub = 1,
colSideColors = NULL,
aspect = "fill",
contour = FALSE,
useRaster = FALSE,
xlab = NULL,
ylab = NULL,
colSideColorsPos = "top",
clust = NULL,
clusterx = NULL,
axis.padding = 0.5,
...)

Arguments

x Matrix.
col Color. See brewer.pal.info for all available color schemes. Alternatively, any number of colors, which are then used to create a color gradient. E.g., c('blue','red') produces a color scheme with a gradient from blue to red.
colNA color for NAs; default is grey
coln Number of colors.
bordercol Border color.
borderwidth Border width.
brakes Defines the breaks in the color range. "sym" makes the breaks symmetric around 0.
main Main title.
sub Subtitle.
dendrogram Draw dendrogram with "both", "col" or "row", or do not draw with "none".
colorkey Draw colorkey "left", "right" (default), "top", "bottom" or NULL for no colorkey. See ?lattice::levelplot for more complex colorkey options.
Colv Cluster columns (TRUE) or not (FALSE).
HeatmapOP

Rowv
Cluster rows (TRUE) or not (FALSE).

xrot
Rotate the column names by degree.

yrot
Rotate the row names by degree.

shrink
c(x,y) defines a range of size for the data boxes from low to high.

cexCol
Font size of column names.

cexRow
Font size of row names.

cexMain
Font size of main title.

cexSub
Font size of subtitle.

colSideColors
 Defines a numeric vector to annotate columns with different colors.

aspect
"iso" for quadratic boxes or "fill" for streched boxes.

contour
TRUE adds a contour plot.

useRaster
TRUE to add raster visuals

xlab
Label for the x-axis.

ylab
Label for the y-axis.

colSideColorsPos
Place colSideColors at the "top" or "bottom".

clust
p, s, or k for correlation clustering

clusterx
Optional data matrix y with the same dimensions as x. x’s columns or rows are sorted by the cluster information of y. Col- and rownames of y must be in the same order as in x.

axis.padding
padding around the heatmap (0.5 is no padding, default)

... Optional arguments.

Value

lattice object/matrix

Author(s)

Martin Pirkl & Oscar Perpinan at http://oscarperpinan.github.io/rastervis/

Examples

x <- matrix(rnorm(50), 10, 5)
HeatmapOP(x, dendrogram = "both", aspect = "iso", xrot = 45)
Mll

Evaluation of graphs

Description

Computes marginal log-likelihood for model Phi given observed data matrix D1

Usage

```r
def Mll(Phi, D1, D0, ltype = "marginal", para = c(0.13, 0.05))
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>model to be evaluated</td>
</tr>
<tr>
<td>D1</td>
<td>observed data matrix</td>
</tr>
<tr>
<td>D0</td>
<td>complementary D1</td>
</tr>
<tr>
<td>ltype</td>
<td>likelihood type either "marginal" or "maximum"</td>
</tr>
<tr>
<td>para</td>
<td>false positive and false negative rates</td>
</tr>
</tbody>
</table>

Value

list with likelihood poster probability, egene positions

Examples

```r
Phi <- matrix(sample(c(0,1), 9, replace = TRUE), 3, 3)
data <- matrix(sample(c(0,1), 3*10, replace = TRUE), 10, 3)
rownames(Phi) <- colnames(Phi) <- colnames(data) <- c("Ikk1", "Ikk2", "RelA")
score <- Mll(Phi, D1 <- data, D0 <- 1 - data)
```

perm.rank.test

AUC permutation test

Description

computes the area under the rank enrichment score curve and does a permutation test to compute the p-value

Usage

```r
perm.rank.test(
  x,
  y = NULL,
  alternative = c("two.sided", "less", "greater"),
  iter = 1000
)
```
Arguments

- **x**: numeric vector of ranks
- **y**: numeric vector of the superset of x
- **alternative**: character for test type: 'less', 'greater', 'two.sided'
- **iter**: integer number of iterations

Value

p-value

Author(s)

Martin Pirkl

Examples

```r
x <- 1:10
y <- 1:100
perm.rank.test(x, y, alternative = 'less')
perm.rank.test(x, y, alternative = 'greater')
```

S3 method for class 'epiNEM'

```r
plot(x, 
```

Description

Plots the winning pathway structure

Usage

```r
## S3 method for class 'epiNEM'
plot(x, 
```

Arguments

- **x**: object of class epiNEM
- **...**: other arguments

Value

plot of the logical network

Examples

```r
data <- matrix(sample(c(0,1), 100*4, replace = TRUE), 100, 4)
colnames(data) <- c("A", "A.B", "B", "C")
rownames(data) <- paste("E", 1:100, sep = ",")
res <- epiNEM(data, method = "exhaustive")
plot(res)
```
Description

Plots the results of a systematic knock-out screen

Usage

```r
## S3 method for class 'epiScreen'
plot(
  x,
  global = TRUE,
  ind = NULL,
  colorkey = TRUE,
  cexGene = 1,
  off = 0.05,
  cexLegend = 1,
  ...
)
```

Arguments

- `x`: object of class epiScreen
- `global`: plot global distribution or for each pair (FALSE)
- `ind`: index of pairs to plot
- `colorkey`: if TRUE prints colorkey
- `cexGene`: size of modulator annotation
- `off`: relative distance from the gene names to the respective likelihoods
- `cexLegend`: font size of the legend
- `...`: other arguments

Value

plot(s) of an epiNEM screen analysis

Examples

```r
data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
rownames(data) <- paste("E", 1:100, sep = "_")
res <- epiScreen(data)
plot(res)
plot(res, global = FALSE, ind = 1:3)
```
plot.epiSim

Plot simulations.

Description

Plots the simulation results

Usage

```r
## S3 method for class 'epiSim'
plot(x, ...)
```

Arguments

- `x`: object of class epiSim
- `...`: other arguments

Value

plot(s) of an epiNEM simulation analysis

Examples

```r
res <- SimEpiNEM(runs = 1)
plot(res)
```

rank.enrichment

Rank enrichment

Description

Infers a signalling pathway from perturbation experiments.

Usage

```r
rank.enrichment(
  data,
  list,
  list2 = NULL,
  n = 1000,
  main = NULL,
  col1 = "RdBu",
  col2 = rgb(1, 0, 0, 0.75),
  col3 = rgb(0, 0, 1, 0.75),
  blim = NULL,
  p = NULL,
)```
lwd = 3,  
test = wilcox.test,  
vis = "matrix",  
verbose = FALSE,  
...  
)

Arguments

data  m times l matrix with m observed genes and l variables with numeric values to rank the genes
list  list of vectors of genes
list2  optional list with same length as list
n  length of the gradient (maximum: m)
main  character string for main header; if NULL uses the column names of data by default
col1  color of the gradient
col2  color of the first list
col3  color of the second list2
blim  numeric vector of length two with the lower and upper bounds for the gradient
p  numeric adjustment (length four) of the left side of the gradient (low means more to the left, high more to the right) the right side of the enrichment lines and the top positions of the additional matrices in case of vis='matrices'
lwd  line width of the enrichment lines
test  test function for the enrichment p-value; must have input argument and output values same as perm.rank.test; e.g., wilcox.test or ks.test (here 'less' and 'greater' are switched!)
vis  method for visualisation: 'matrix' uses one matrix heatmap for; 'matrices' uses several matrices (experimental), 'colside' uses the colSideColors argument for the ticks of genes in list/list2 (can use a lot of memory; experimental)
verbose  if TRUE gives prints additional output
...  additional arguments for epiNEM::HeatmapOP

Value

transitively closed matrix or graphNEL

Author(s)

Martin Pirkl
**Examples**

```r
data <- matrix(rnorm(100*2),100,2)
rownames(data) <- 1:100
colnames(data) <- LETTERS[1:2]
list <- list(first = as.character(sample(1:100, 10)), second = as.character(sample(1:100, 20))
rank.enrichment(data,list)
```

---

**sameith_GO**

*graph-based GO similarity scores, string GO annotations for Sameith et al., 2015 data*

---

**Description**

The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

**Examples**

```r
data(sameith_GO)
```

---

**sameith_string**

*sig. of string interaction scores for Sameith et al., 2015 data*

---

**Description**

The data consists of a list including vectors of pairs (for interactions) and a corresponding list of interaction scores derived from the string database. For details see the vignette.

**Examples**

```r
data(sameith_string)
```

---

**samscreen**

*Example data: epiNEM results for the Sameith et al., 2015 knock-out screen*

---

**Description**

The result of the epiNEM analysis of the data from "http://www.holstegelab.nl/publications/sv/signaling_redundancy/downloads/DataS1.txt". The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

**Examples**

```r
data(samscreen)
```
Description

Contains simulation results. How they were acquired is explained in the vignette. The data consists of a list of data matrices holding sensitivity and specificity (spec, sens) of network edges for the various methods compared to the ground truth, sensitivity and specificity (sens2, spec2) of the expected data for epINEM and Boolean NEMs and accuracy of the inferred logics for both. The different methods are in the rows and the columns denote the different independent simulation runs.

Examples

data(sim)

SimEpiNEM

Description

Compares different network reconstruction algorithm on simulated data.

Usage

SimEpiNEM(
  runs = 10,
  do = c("n", "e"),
  random = list(FPrate = 0.1, FNrate = c(0.1, 0.5), single = 3, double = 1, reporters = 10, replicates = 2),
  maxTime = FALSE,
  forcelogic = TRUE,
  epinemsearch = "greedy",
  bnemsearch = "genetic",
  ...
)

Arguments

  runs   number simulation runs
  do     string vector of algorithms to compare: e (epiNEM), n (Nested Effects Models), b (B-NEM), p (PC algorithm), a (Aracne), e.g. c("e", "n", "p")
  random list of false positive rate FPrate, false negative rates FNrate, number of single knock-downs single, number of double knock-downs double, number of effect reporters reporters and number of replicates replicates
maxTime: TRUE if the algorithms are bound to a maximum running time in respect to epiNEM.
forcelogic: if TRUE the randomly sampled ground truth network includes a complex logic with probability 1.
epinemsearch: greedy or exhaustive search for epiNEM.
bnemsearch: genetic or greedy search for B-NEM.

Value
returns list of specificity and sensitivity of inferred edges (spec, sens) and inferred expected data (spec2, sens2) and accuracy of logics (logics) and running time (time).

Author(s)
Martin Pirkl

Examples
res <- SimEpiNEM(runs = 1)

wageningen_GO

graph-based GO similarity scores, string GO annotations for van Wageningen et al., 2015 data

description
The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

Examples
data(wageningen.GO)

wageningen_string

sig. of string interaction scores for van Wageningen et al., 2010 data

Description
The data consists of a list including a vectors of pairs (for interactions) and a corresponding list of interaction scores derived from the string database. For details see the vignette.

Examples
data(wageningen_string)
Example data: epiNEM results for the Wageningen et al., 2010 knock-out screen "http://www.holstegelab.nl/publications/GSTF_geneticinteractions/downloads/del_mutants_limma.txt"

Description

The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

Examples

data(wagscreen)
Index

AddLogicGates, 2
CreateExtendedAdjacency, 3
CreateRandomGraph, 4
CreateTopology, 4
epiAnno, 5
epiNEM, 5
epiScreen, 7
ExtendTopology, 8
GenerateData, 8
HeatmapOP, 9
Mll, 12
perm.rank.test, 12
plot.epiNEM, 13
plot.epiScreen, 14
plot.epiSim, 15
rank.enrichment, 15
sameith_GO, 17
sameith_string, 17
samscreen, 17
sim, 18
SimEpiNEM, 18
wageningen_GO, 19
wageningen_string, 19
wagscreen, 20