Package ‘diffUTR’

May 7, 2024

Type Package

Title diffUTR: Streamlining differential exon and 3' UTR usage

Version 1.12.0

Depends R (>= 4.0)

Description The diffUTR package provides a uniform interface and plotting functions for limma/edgeR/DEXSeq -powered differential bin/exon usage. It includes in addition an improved version of the limma::diffSplice method. Most importantly, diffUTR further extends the application of these frameworks to differential UTR usage analysis using poly-A site databases.

Imports S4Vectors, SummarizedExperiment, limma, edgeR, DEXSeq, GenomicRanges, Rsubeftread, ggplot2, rtracklayer, ComplexHeatmap, ggrepel, stringi, methods, stats, GenomeInfoDb, dplyr, matrixStats, IRanges, ensembldb, viridisLite

Suggests BiocStyle, knitr, rmarkdown

biocViews GeneExpression

BugReports https://github.com/ETHZ-INS/diffUTR

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/diffUTR

git_branch RELEASE_3_19

git_last_commit 312971f

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-07

Author Pierre-Luc Germain [cre, aut] (<https://orcid.org/0000-0003-3418-4218>), Stefan Gerber [aut]

Maintainer Pierre-Luc Germain <pierre-luc.germain@hest.ethz.ch>
Contents

- addNormalizedAssays ... 2
- countFeatures .. 3
- deuBinPlot ... 4
- diffSplice2 .. 5
- diffSpliceDGEWrapper .. 6
- example_bin_se ... 7
- example_gene_annotation ... 8
- geneBinHeatmap ... 8
- geneLevelStats .. 9
- plotTopGenes ... 11
- prepareBins ... 12
- rn6_PAS ... 13
- simesAggregation ... 13

Index 14

Description

addNormalizedAssays

Usage

```
addNormalizedAssays(se, readLength = 50L)
```

Arguments

- `se` A bin-wise `SummarizedExperiment` as produced by `countFeatures`
- `readLength` Used as a minimum width to estimate read density (default 50).

Value

The `se` object with populated `logcpm` and `logNormDensity` assays.

Examples

```r
data(example_bin_se)
example_bin_se <- addNormalizedAssays(example_bin_se)
```
countFeatures

Description
countFeatures

Usage
countFeatures(
 bamfiles,
 bins,
 strandSpecific = 0,
 readLength = 50L,
 allowMultiOverlap = TRUE,
 inclNormalized = TRUE,
 tmpDir = tempdir(),
 ...
)

Arguments

bamfiles A vector of paths to bam files
bins A GRanges of bins in which to count reads (or path to a rds file containing such an object
strandSpecific Passed to `Rsubread::featureCounts`
readLength Used as a minimum width to estimate read density.
allowMultiOverlap Passed to `Rsubread::featureCounts`
inclNormalized Logical; whether to include normalized assays (needed for plotting)
tmpDir Passed to `Rsubread::featureCounts`
...

Value
A RangedSummarizedExperiment-class

Examples
data("example_gene_annotation", package="diffUTR")
bins <- prepareBins(example_gene_annotation)
bam_files <- list.files(system.file("extdata", package="diffUTR"), pattern="bam$", full=TRUE)
not run
se <- countFeatures(bam_files, bins, verbose=FALSE)
deuBinPlot

Description

deuBinPlot

Usage

deuBinPlot(
 se,
 gene,
 type = c("summary", "condition", "sample"),
 intronSize = 2,
 exonSize = c("sqrt", "linear", "log"),
 y = NULL,
 condition = NULL,
 size = "type",
 lineSize = 1,
 colour = NULL,
 alpha = NULL,
 removeAmbiguous = TRUE,
 minDensityRatio = 0.1
)

Arguments

- **se**: A bin-wise SummarizedExperiment as produced by `countFeatures` and including bin-level tests (i.e., having been passed through one of the DEU wrappers such as `diffSpliceWrapper` or `DEXSeqWrapper`)
- **gene**: The gene of interest
- **type**: Either 'summary' (plot DEU summary), 'sample' (plot sample-wise data), or 'condition' (plot data aggregate by condition)
- **intronSize**: Intron plot size. If <=3, intron size will be this fraction of the mean exon size. If >3, each intron will have the given size.
- **exonSize**: Scaling for exon sizes, either 'sqrt', 'log', or 'linear'.
- **y**: Value to plot on the y-axis. If 'type="summary"', this should be a column of 'rowData(se)', otherwise should be an assay name of 'se'.
- **condition**: The colData column containing the samples’ condition.
- **size**: rowData variable to use to determine the thickness of the bins.
- **lineSize**: Size of the line connecting the bins. Use ‘lineSize=0’ to omit the line.
- **colour**: rowData variable to use to determine the colour of the bins. If 'type="condition"', can also be "condition"; if ’type="sample"' can be any colData column.
- **alpha**: Alpha level, passed to ggplot.
diffSplice2

removeAmbiguous
Logical; whether to remove bins that are gene-ambiguous (i.e. overlap multiple genes).

minDensityRatio
Minimum ratio of read density (with respect to the gene’s average) for a bin to be plotted.

Value
A ggplot object

Examples

data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
deuBinPlot(se, "Jund")

Description
This is a small improvement to the **diffSplice** function written by Gordon Smyth and Charity Law.

Usage
diffSplice2(fit, geneid, exonid = NULL, robust = FALSE, verbose = TRUE)

Arguments

fit an **MArrayLM-class** fitted model object produced by `lmFit` or ‘contrasts.fit’, with rows corresponding to exons.
geneid gene identifiers (as in **diffSplice**) exonid exon identifiers (as in **diffSplice**) robust logical, should the estimation of the empirical Bayes prior parameters be robustified against outlier sample variances? verbose logical, if TRUE will output some diagnostic information

Value
An **MArrayLM-class** object containing both exon level and gene level tests. Results are sorted by geneid and by exonid within gene.
Examples

```r
library(SummarizedExperiment)
library(edgeR)
data(example_bin_se)
se <- example_bin_se
design <- model.matrix(~condition, data=as.data.frame(colData(se))
.dds <- calcNormFactors(DGEList(assays(se)$counts))
.dds <- voom(dds, design)
.dds <- lmFit(dds, design)
res <- diffSplice2(dds, geneid=rowData(se)$gene, exonid=row.names(se))
topSplice(res)
```

diffSpliceDGEWrapper

DiffSpliceDGEWrapper *DEUwrappers*

Description

Wrappers around commonly-used DEU methods (diffSpliceDGE, DEXSeq and an improved version of diffSplice

Usage

```r
diffSpliceDGEWrapper(
  se,
  design,
  coef = NULL,
  QLF = TRUE,
  robust = TRUE,
  countFilter = TRUE,
  excludeTypes = NULL
)
```

```r
diffSpliceWrapper(
  se,
  design,
  coef = NULL,
  robust = TRUE,
  improved = TRUE,
  countFilter = TRUE,
  excludeTypes = NULL
)
```

```r
DEXSeqWrapper(
  se,
  design = ~sample + exon + condition:exon,
  reducedModel = ~sample + exon,
  excludeTypes = NULL,
)```
Arguments

- **se**: A bin-wise SummarizedExperiment as produced by `countFeatures`
- **design**: A formula (using columns of `colData(se)`) or (for `diffSpliceWrapper` or `diffSpliceDGEWrapper` only) a model.matrix.
- **coef**: The coefficient to be tested (ignored for `DEXSeqWrapper`).
- **QLF**: Logical; whether to use edgeR’s quasi-likelihood negative binomial (applicable only to `diffSpliceDGEWrapper`).
- **robust**: Logical; whether to use robust fitting for the dispersion trend (ignored for `DEXSeqWrapper`).
- **countFilter**: Logical; whether to filter out low-count bins (ignored for `DEXSeqWrapper`).
- **excludeTypes**: A vector of bin types to ignore for testing. To test for any kind of differential usage, leave empty. To test for differential UTR usage, use `excludeTypes=c("CDS","non-coding")` (or see `geneLevelStats` for more options).
- **improved**: Logical; whether to use `diffSplice2` instead of the original `diffSplice` (default TRUE).
- **reducedModel**: A reduced formula (applicable only to `DEXSeqWrapper`).
- **...**: Further arguments (passed to `testForDEU` and `estimateExonFoldChanges`) of `DEXSeq`. Can for instance be used to enable multithreading, by passing `BPPARAM=BiocParallel::MulticoreParam(ncores)`.

Value

The `se` object with additional rowData columns contain bin (i.e. exon) -level statistics, and a metadata slot containing gene level p-values.

Examples

```r
library(SummarizedExperiment)
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
head(rowData(se))
```

example_bin_se

Example bin-level `RangedSummarizedExperiment`

Description

An object produced by `countFeatures` containing small subset of genes from mouse hippocampal slices undergoing Forskolin-induced long-term potentiation (GSE84643).
Value

a ‘RangedSummarizedExperiment’

References

https://www.nature.com/articles/s41598-017-17407-w

---

element_gene_annotation

Example gene annotation

---

Description

An example gene annotation containing only a small subset of mouse genes.

Value

a ‘GRanges’ object

---

geneBinHeatmap
geneBinHeatmap

Description

A wrapper around ‘ComplexHeatmap’.

Usage

geneBinHeatmap(
  se, 
  gene, 
  what = NULL, 
  anno_rows = c("type", "logWidth", "meanLogDensity", "log10PValue", "geneAmbiguous"), 
  anno_columns = c(), 
  anno_colors = list(), 
  removeAmbiguous = FALSE, 
  merge_legends = TRUE, 
  cluster_columns = FALSE, 
  minDensityRatio = 0.1, 
  left_annotation = NULL, 
  top_annotation = NULL, 
  ... 
)
**geneLevelStats**

**Arguments**

- **se**
  A bin-wise SummarizedExperiment as produced by `countFeatures`

- **gene**
  The gene of interest

- **what**
  Type of values (i.e. assay) to plot

- **anno_rows**
  Row annotation columns (i.e. columns of `rowData(se)`) to plot

- **anno_columns**
  Column annotation columns (i.e. columns of `colData(se)`) to plot

- **anno_colors**
  Annotation colors, as a list named with the row/column annotations, see `SingleAnnotation` for details. Ignored if ‘left_annotation’ and/or ‘top_annotation’ are given directly.

- **removeAmbiguous**
  Logical; whether to remove bins that are gene-ambiguous (i.e. overlap multiple genes).

- **merge_legends**
  Logical; whether to merge legends. This effectively calls ‘draw(..., merge_legends=TRUE)’ around the heatmap.

- **cluster_columns**
  Logical; whether to cluster columns (passed to `Heatmap`)

- **minDensityRatio**
  Minimum ratio of read density (with respect to the gene’s average) for a bin to be plotted.

- **left_annotation**
  Passed to `Heatmap`, overrides ‘anno_rows’.

- **top_annotation**
  Passed to `Heatmap`, overrides ‘anno_columns’.

- ... Passed to ‘ComplexHeatmap’ (see `Heatmap`)

**Value**

A `Heatmap`

**Examples**

```r
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
geneBinHeatmap(se, "Jund")
```

**Description**

Aggregates bin-level statistics to the gene-level
geneLevelStats

Usage

geneLevelStats(
  se,
  coef = NULL,
  excludeTypes = NULL,
  includeTypes = NULL,
  returnSE = TRUE,
  minDensityRatio = 0.1,
  minWidth = 20,
  excludeGeneAmbiguous = TRUE
)

Arguments

se A ‘RangedSummarizedExperiment’ containing the results of one of the DEU wrappers.

coeff The coefficients tested (if the model included more than one term).

excludeTypes Vector of bin types to exclude.

includeTypes Vector of bin types to include (overrides ‘excludeTypes‘)

returnSE Logical; whether to return the updated ‘se‘ object (default), or the gene-level table.

minDensityRatio Minimum ratio of read density (with respect to the gene’s average) for a bin to be included.

minWidth Minimum bin width to include

excludeGeneAmbiguous Logical; whether to exclude bins which are ambiguous (i.e. can be from different genes)

Value

If ‘returnSE=TRUE‘ (default), returns the ‘se‘ object with an updated ‘metadata(se)$geneLevel‘ slot, otherwise returns the gene-level data.frame.

Examples

library(SummarizedExperiment)
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
se <- geneLevelStats(se, includeTypes="3UTR")
head(metadata(se)$geneLevel)
plotTopGenes

Description

plotTopGenes

Usage

plotTopGenes(se, n = 10, FDR = 0.05, diffUTR = FALSE, alpha = 1, ...)

Arguments

se A bin-wise SummarizedExperiment as produced by countFeatures and including bin-level tests (i.e. having been passed through one of the DEU wrappers such as diffSpliceWrapper or DEXSeqWrapper)
n The maximum number of genes for which to plot labels
FDR The FDR threshold above which to plot labels
diffUTR Logical; if FALSE, uses absolute coefficients (appropriate for normal differential exon usage); if TRUE, uses non-absolute (ie changes should be in the same direction across significant bins) and width-weighted scores (i.e. larger bins have more weight) – this is relevant only when testing UTR usage.
alpha Points transparency
...
Passed to geom_label_repel; this can for instance be used to increase ‘max.overlaps’ when not all desired gene labels are displayed)

Value

A ggplot

Examples

data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
plotTopGenes(se)
prepareBins

Description

prepareBins

Usage

prepareBins(
  g,
  APA = NULL,
  onlyMainChr = TRUE,
  removeAntisense = TRUE,
  chrStyle = NULL,
  maxUTRbinSize = 15000,
  codingOnly = FALSE,
  genewise = FALSE,
  stranded = FALSE,
  verbose = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>A GRanges (or path to RDS file containing a GRanges) or path to a gtf file</td>
</tr>
<tr>
<td></td>
<td>or EnsDb object containing the gene annotation.</td>
</tr>
<tr>
<td>APA</td>
<td>A GRanges (or path to a GRanges in RDS format) or bed file containing the</td>
</tr>
<tr>
<td></td>
<td>alternative poly-A site database</td>
</tr>
<tr>
<td>onlyMainChr</td>
<td>Logical; whether to keep only main chromosomes</td>
</tr>
<tr>
<td>removeAntisense</td>
<td>Logical; whether to remove antisense APA sites</td>
</tr>
<tr>
<td>chrStyle</td>
<td>Chromosome notation to convert to (default no conversion)</td>
</tr>
<tr>
<td>maxUTRbinSize</td>
<td>Max width of new alternative UTR bins</td>
</tr>
<tr>
<td>codingOnly</td>
<td>Logical, whether to keep only coding transcripts</td>
</tr>
<tr>
<td>genewise</td>
<td>Logical, whether annotation should be flattened genewise</td>
</tr>
<tr>
<td>stranded</td>
<td>Logical, whether to perform disjoin in a stranded fashion.</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical, whether to print run information</td>
</tr>
</tbody>
</table>

Details

See the vignette for more details.

Value

A ‘GRanges’ object.
rn6_PAS

Author(s)

Stefan Greber

Examples

data(example_gene_annotation)
bins <- prepareBins(example_gene_annotation)

---

rn6_PAS  Poly-A sites compendium for Rattus Norvegicus (Rno6)

Description

These are the sites from polyA_DB release 3.2, downloaded from https://exon.apps.wistar.org/PolyA_DB/v3/download/3.2/rat_pas.zip, and lifted over to Rno6.

Value

a ‘GRanges’ object

---

simesAggregation

Description

Simes p-value correction and aggregation, adapted from link[limma]{diffSplice}

Usage

simesAggregation(p.value, geneid)

Arguments

p.value  A vector of p-values
geneid  A vector of group labels such as gene identifiers

Value

A named vector of aggregated p-values

Examples

p <- runif(50)
genes <- sample(LETTERS, 50, replace=TRUE)
simesAggregation(p, genes)
Index

addNormalizedAssays, 2

countFeatures, 2, 3, 4, 7, 9, 11

deuBinPlot, 4
DEXSeq, 6
DEXSeqWrapper, 4, 11
DEXSeqWrapper (diffSpliceDGEWrapper), 6
diffSplice, 5–7
diffSplice2, 5, 7
diffSpliceDGE, 6
diffSpliceDGEWrapper, 6
diffSpliceWrapper, 4, 11
diffSpliceWrapper (diffSpliceDGEWrapper), 6

eexample_bin_se, 7
eexample_gene_annotation, 8

geneBinHeatmap, 8
geneLevelStats, 7, 9
gem_label_repel, 11

Heatmap, 9

lmFit, 5

plotTopGenes, 11
prepareBins, 12

RangedSummarizedExperiment-class, 3
rn6_PAS, 13

simesAggregation, 13
SingleAnnotation, 9