Package ‘cypress’

May 29, 2024

Type Package
Title Cell-Type-Specific Power Assessment
Version 1.0.0
Date 2024-04-23
License GPL-2 | GPL-3
Depends R(>= 4.4.0)
Imports stats, abind, sirt, MASS, TOAST, tibble, parallel, preprocessCore, SummarizedExperiment, TCA, PROPER, methods, dplyr, utils, RColorBrewer, graphics, edgeR, BiocParallel, checkmate, mvtnorm, DESeq2, rlang, e1071
Suggests knitr, rmarkdown, MatrixGenerics, htmltools, RUnit, BiocGenerics, BiocManager, BiocStyle, Biobase
biocViews Software, GeneExpression, DataImport, RNASeq, Sequencing
Description CYPRESS is a cell-type-specific power tool. This package aims to perform power analysis for the cell-type-specific data. It calculates FDR, FDC, and power, under various study design parameters, including but not limited to sample size, and effect size. It takes the input of a SummarizeExperimental(SE) object with observed mixture data (feature by sample matrix), and the cell-type mixture proportions (sample by cell-type matrix). It can solve the cell-type mixture proportions from the reference free panel from TOAST and conduct tests to identify cell-type-specific differential expression (csDE) genes.
Encoding UTF-8
LazyData FALSE
VignetteBuilder knitr
URL https://github.com/renlyly/cypress
BugReports https://github.com/renlyly/cypress/issues
The `cypress` package is specifically designed to perform comprehensive cell-type-specific power assessment for differential expression using RNA-sequencing experiments. It accepts real Bulk RNASeq data as input for parameter estimation and simulation. The tool provides flexibility by allowing users to customize sample sizes, number of cell types, and log2 fold change values. Additionally, it computes statistical power, true discovery rate (TDR), and false discovery cost (FDC) under different scenarios as results.
Details

cypress is the first statistical tool to evaluate the power in cell-type-specific Differentially Expressed (csDE) genes detection experiments from a prospective way by letting researchers be flexible in tuning sample sizes, effect sizes, csDE genes percentage, total number of genetic features, type I error control, etc.

Value

cypress offers 3 functions for simulation and power evaluation: simFromData(), simFromParam() and quickPower(). If users have their own bulk RNA-seq count data, they can use the simFromData() function, otherwise, they can use simFromParam() estimating parameters from 3 existing studies to perform power evaluation on customized the simulation settings. If users prefer to quickly examine the power evaluation results using the built-in datasets, they can use the quickPower() function. The output of these 3 functions is a S4 object with a list of power measurements under various experimental settings, such as Statistical Power, TDR, and FDC.

Once users have obtained an S4 object with a list of power measurements using either simFromData(), simFromParam() or quickPower(), they can use the following functions to generate basic line plots: plotPower(), plotTDR() and plotFDC().

Author(s)

Shilin Yu <sy597@georgetown.edu> Guanqun Meng <gxm324@case.edu> Wen Tang <wxt175@case.edu>

Description

pre-calculated power evaluation results from ASD datasets. The obtained results can be used to create plots from plot functions.

Usage

data('quickPowerASD')

Format

A S4 object.

- ct_TDR_bio_smry A data frame related to cell type specific target TDR.
- TDR_bio_smry A data frame related to target TDR.
- ct_PWR_bio_smry A data frame related to cell type specific target power.
- PWR_bio_smry A data frame related to target power.
- PWR_strata_bio_smry A data frame related to target power by gene expression stratification.
- PWR_strata_ct_bio_smry A data frame related to cell type specific target power by gene expression stratification.
- ct_FDC_bio_smry A data frame related to cell type specific target FDC.
- FDC_bio_smry A data frame related to target FDC.
Value

One S4 object.

Examples

data('quickPowerASD')

Description

An S4 object that stores parameter estimates associated with the IBD dataset. This object contains a variety of numerical vectors and matrices representing different statistical parameters used in the simulation.

Usage

data('quickParaASD')

Format

Parameter estimate results from ASD for simFromParam function

health_lm_mean A numeric vector of the log mean parameter estimates for healthy samples.

health_lm_mean_d A matrix containing the variance-covariance estimates for the healthy sample means.

lod_m A numeric vector of log-dispersion parameter estimates.

lod_d A numeric vector includes the variance-covariance estimates for the dispersion parameters.

health_alpha A numeric vector for the alpha parameter estimates associated with healthy samples.

health_alpha A numeric vector for the alpha parameter estimates associated with case samples.

Value

One S4 object.

Examples

data('quickParaASD')
ASD_prop

SimFromData example raw input data

Description

ASD_prop contains a SummarizedExperiment object containing the following elements:

- counts: A gene expression value dataset from ASD, in the form of raw read counts, 29674 genes by 48 samples, with 24 cases and 24 controls.
- colData: Sample meta-data. The first column is the group status (i.e. case/ctrl), the second column is the subject ID. The remaining are the cell type proportions of all samples.

Usage

data(ASD_prop_se)

Format

SE object.

Value

One SE object.

Examples

data(ASD_prop_se)

cypress-class

Classes for cypress Package

Description

The cypress_out and est_out classes are custom S4 classes in the cypress package. Both classes are designed as a comprehensive container for various types of analysis results.

Value

Class for cypress.
cypress_out

Description: The cypress_out class is a S4 class in the cypress package. This class is customized to better present results and use for cypress plot functions.

Slots:

- ct_TDR_bio_smry Cell type specific target TDR
- TDR_bio_smry Target TDR
- ct_PWR_bio_smry Cell type specific target power
- PWR_bio_smry Target power
- PWR_strata_bio_smry Target power by gene expression stratification
- PWR_strata_ct_bio_smry Cell type specific target power by gene expression stratification
- ct_FDC_bio_smry Cell type specific target FDC
- FDC_bio_smry Target FDC.

est_out

Description: The est_out class is designed to output the parameter estimated results, providing a structured representation of results.

Slots:

- health_alpha Control group proportion simulation parameter.
- case_alpha Case group proportion simulation parameter.
- health_lmean_m Mean of genetic distribution mean for each cell.
- health_lmean_d Var/cov of genetic distribution mean among cell types
- lod_m Mean of genetic distribution dispersion for each cell.
- lod_d Var/cov of genetic distribution dispersion among cell types.
- sample_CT_prop Matrix of sample Cell type proportions.
- genename Gene Name.
- samplename Sample Name.
- CName Cell type names.
- dimensions_Z_hat_ary dimensions for the Z hat array.

Author(s)

Shilin Yu <sy597@georgetown.edu>

Examples

data(quickParaGSE60424)
cypress-methods

Get a slot from cypress output

Description

Accessor function for getting or replace slots. Show methods for cypress object.

Usage

```r
getcypress(object, name) 
setcypress(object, name, value)
```

Arguments

- **object**
 - object from cypress.
- **name**
 - name of the slot in cypress object.
- **value**
 - value of the slot in cypress object.

Value

Methods for cypress.

Examples

```r
data(quickPowerIBD)
getcypress(ibd_propPower, "ct_TDR_bio_smry")
```

GSE60424Power

Power calculation results from GSE60424 data

Description

pre-calculated power evaluation results from GSE60424 datasets. The patients were drawn from subjects with a range of immune-related diseases. The obtained results can be used to create plots from plot functions.

Usage

```r
data('quickPowerGSE60424')
```
Format

A S4 object.

ct_TDR_bio_smry A data frame related to cell type specific target TDR.
TDR_bio_smry A data frame related to target TDR.
ct_PWR_bio_smry A data frame related to cell type specific target power.
PWR_bio_smry A data frame related to target power.
PWR_strata_bio_smry A data frame related to target power by gene expression stratification.
PWR_strata_ct_bio_smry A data frame related to cell type specific target power by gene expression stratification.
ct_FDC_bio_smry A data frame related to cell type specific target FDC.
FDC_bio_smry A data frame related to target FDC.

Value

One S4 object.

Examples

data('quickPowerGSE60424')

GSE60424_param Parameter estimate results from GSE60424

Description

An S4 object that stores parameter estimates associated with the GSE60424 dataset. This object contains a variety of numerical vectors and matrices representing different statistical parameters used in the simulation. The patients were drawn from subjects with a range of immune-related diseases.

Usage

data('quickParaGSE60424')

Format

Parameter estimate results from GSE60424 for simFromParam function

health_lm_mean A numeric vector of the log mean parameter estimates for healthy samples.
health_lm_mean_d A matrix containing the variance-covariance estimates for the healthy sample means.
log_m A numeric vector of log-dispersion parameter estimates.
log_d A numeric matrix includes the variance-covariance estimates for the dispersion parameters.
health_alpha A numeric vector for the alpha parameter estimates associated with healthy samples.
health_alpha A numeric vector for the alpha parameter estimates associated with case samples.
Value
One S4 object.

Examples

```r
data('quickParaGSE60424')
```

Description

pre-calculated power evaluation results from IBD datasets. The obtained results can be used to create plots from plot functions.

Usage

```r
data('quickPowerIBD')
```

Format

A S4 object.

- `ct_TDR_bio_smry` A data frame related to cell type specific target TDR.
- `TDR_bio_smry` A data frame related to target TDR.
- `ct_PWR_bio_smry` A data frame related to cell type specific target power.
- `PWR_bio_smry` A data frame related to target power.
- `PWR_strata_bio_smry` A data frame related to target power by gene expression stratification.
- `PWR_strata_ct_bio_smry` A data frame related to cell type specific target power by gene expression stratification.
- `ct_FDC_bio_smry` A data frame related to cell type specific target FDC.
- `FDC_bio_smry` A data frame related to target FDC.

Value
One S4 object.

Examples

```r
data('quickPowerIBD')
```
ibd_prop_param

Parameter estimate results from IBD data with cell type proportion

Description

An S4 object that stores parameter estimates associated with the IBD dataset. This object contains a variety of numerical vectors and matrices representing different statistical parameters used in the simulation.

Usage

data('quickParaIBD')

Format

Parameter estimate results from IBD for the simFromParam function

health_lm_mean A numeric vector of the log mean parameter estimates for healthy samples.
health_lm_mean_d A matrix containing the variance-covariance estimates for the healthy sample means.
lod_m A numeric vector of log-dispersion parameter estimates.
lod_d A numeric matrix includes the variance-covariance estimates for the dispersion parameters.
health_alpha A numeric vector for the alpha parameter estimates associated with healthy samples.
health_alpha A numeric vector for the alpha parameter estimates associated with case samples.

Value

One S4 object.

Examples

data('quickParaIBD')
plotFDC

plotFDC: Generate FDC results figure

Description

Plot false discovery cost results. This function plots false discovery cost results in a 2x1 panel. The illustration of each plot from left to right:

1: False discovery cost (FDC) by effect size, each line represents cell type. Sample size to be fixed at 10 if sample_size=10.

2: False discovery cost (FDC) by top effect size, each line represents sample size. FDC was the average value across cell types.

Arguments

- **simulation_results**
 A list of results produced by power evaluation functions.

- **sample_size**
 A numerical value indicating which sample size to be fixed. For example, 10 means when plotting the relationship between FDC and effect size, we fixed the scenario of sample size at 10. Default is 10.

Value

This function does not return a value. It generates a two-panel plot visualizing the false discovery cost (FDC) results. The first panel shows the FDC by effect size for each cell type at a fixed sample size (default is 10). The second panel illustrates the FDC by the top effect sizes, with each line representing a different sample size, averaged across cell types.

Author(s)

Wen Tang <wxt175@case.edu> Shilin Yu <sy597@georgetown.edu>

Examples

```r
data(quickPowerGSE60424)
### Plot power results
plotFDC(GSE60424Power,sample_size=10)
```
plotPower

plotPower: Generate statistical power results figure

Description
This function plots all statistical power measurements in a 2x3 panel. The illustration of each plot from left to right and from up to bottom is as follows:

1: Statistical power by effect size, each line represents sample size. Statistical power was the average value across cell types.

2: Statistical power by effect size, each line represents cell type. Sample size is fixed at 10 if sample_size=10.

3: Statistical power by sample size, each line represents cell type. Effect size is fixed at 1 if effect.size=1.

4: Statistical power by strata, each line represents cell type. Sample size is fixed at 10 and effect size is fixed at 1 if sample_size=10 and effect.size=1.

5: Statistical power by strata, each line represents sample size. Statistical power was the average value across cell types and effect size is fixed at 1 if effect.size=1.

6: Statistical power by strata, each line represents effect size. Statistical power was the average value across cell types and sample size is fixed at 10 if sample_size=10.

Arguments

- **simulation_results**
 A list of results produced by power evaluation functions.

- **effect.size**
 A numerical value indicating which effect size is to be fixed. For example, 1 means when plotting the relationship between power and strata, we fixed the scenario of log fold change at 1. The default is 1.

- **sample_size**
 A numerical value indicating which sample size to be fixed. For example, 10 means when plotting the relationship between power and strata, we fixed the scenario of sample size at 10. The default is 10.

Value
This function generates a 2x3 panel plot visualizing various statistical power measurements, but does not return a programmable value. Each panel displays power metrics under different conditions such as effect size, sample size, and stratification, with lines representing either sample size, cell type, or effect size.

Author(s)

Wen Tang <wxt175@case.edu> Shilin Yu <sy597@georgetown.edu>
Examples

```r
data(quickPowerGSE60424)
### Plot power results
plotPower(GSE60424Power,effect.size=1,sample_size=10)
```

plotTDR

plotTDR: Generate TDR results figure

Description

This function plots all true discovery rate measurements in a 2x2 panel. The illustration of each plot is as follows:

1. True discovery rate (TDR) by top-rank genes, each line represents cell type. Sample size to be fixed at 10 and effect size to be fixed at 1 if `sample_size=10` and `effect.size=1`.
2. True discovery rate (TDR) by top rank genes, each line represents effect size. TDR was the average value across cell types and sample size is fixed at 10 if `sample_size=10`.
3. True discovery rate (TDR) by top rank genes, each line represents sample size. TDR was the average value across cell types and effect size is fixed at 1 if `effect.size=1`.
4. True discovery rate (TDR) by effect size, each line represents sample size. TDR was calculated under the scenario of top rank gene equals 350.

Arguments

- `simulation_results`
 A list of results produced by power evaluation functions.
- `effect.size`
 A numerical value indicating which effect size is to be fixed. For example, 1 means when plotting the relationship between TDR and top rank genes for cell types or sample size, we fixed the scenario of log2 fold change at 1. The default is 1.
- `sample_size`
 A numerical value indicating which sample size to be fixed. For example, 10 means when plotting the relationship between TDR and top rank genes for cell types or effect size, we fixed the scenario of sample size at 10. The default is 10.

Value

This function creates a 2x2 panel plot showcasing various true discovery rate (TDR) measurements but does not return any values for further programmatic use. Each panel displays TDR analyses based on top rank genes, with lines representing different cell types, effect sizes, or sample sizes under specific conditions.

Author(s)

Wen Tang <wxt175@case.edu> Shilin Yu <sy597@georgetown.edu>
quickPower

Examples

data(quickPowerGSE60424)
Plot power results
plotTDR(GSE60424Power,effect.size=1,sample_size=10)

quickPower

Obtain pre-calculated results from three available datasets

Description

This function quickly outputs pre-calculated power evaluation results from three datasets: (IAD, IBD, and ASD). The obtained results can be used to create plots from plot functions.

Usage

quickPower(data = "IAD")

Arguments

data: A character string specifying the dataset to be retrieved. Options are 'IAD', 'IBD', and 'ASD'.

Details

- IAD: Whole transcriptome signatures of 6 immune cell subsets. The patients were drawn from subjects with a range of immune-related diseases.
- IBD: Inflammatory Bowel Disease

Value

cTDR_bio_smry: A data frame related to cell type specific target TDR.
TDR_bio_smry: A data frame related to target TDR.
cPWR_bio_smry: A data frame related to cell type specific target power.
PWR_bio_smry: A data frame related to target power.
PWR_strata_bio_smry: A data frame related to target power by gene expression stratification.
PWR_strata_CT_bio_smry: A data frame related to cell type specific target power by gene expression stratification.
cFDC_bio_smry: A data frame related to cell type specific target FDC.
FDC_bio_smry: A data frame related to target FDC.
simFromData

Author(s)
Shilin Yu <sy597@georgetown.edu> Guanqun Meng <gxm324@case.edu>

Examples

```r
# library(cypress)
Quick_power <- quickPower(data = "IAD")
```

simFromData
Power calculation results on input data

Description

This function conducts simulations with various user-defined study design parameters. Users will need to provide SE object bulk data for parameter estimation purposes.

Usage

```
simFromData(INPUTdata = NULL, CT_index = NULL, CT_unk = FALSE,  
n_sim = 3, n_gene = 30000, DE_pct = 0.05,  
ss_group_set = c(10, 20, 50, 100),  
lfc_set = c(0, 0.5, 1, 1.5, 2),  
lfc_target = 0.5, fdr_thred = 0.1,  
DEmethod = "TOAST", BPPARAM = bpparam())
```

Arguments

- **INPUTdata**
The input SE (SummarizedExperiment) object should contain a count matrix, study design, and an optional cell type proportion matrix. The study design should have a column named ‘disease’, where the control by 1 and the case is indicated by 2. If provided, the cell type proportion matrix should sum to 1 for each sample. The cell type proportion matrix is optional, the CT_unk should be True if the user did not provide this matrix.

- **CT_index**
Column index for cell types proportion matrix in Coldata, the input can be a single number (>3) when the CT_unk is T.

- **CT_unk**
Logical flag indicating whether unknown cell types are present. Defaults to FALSE.

- **n_sim**
Total number of iterations users wish to conduct. Default to 3

- **n_gene**
Total number of genetic features users wish to conduct. Default to 30000. Must be greater than or equal to 1000.

- **DE_pct**
Percentage of DEG on each cell type. Default to 0.05.

- **ss_group_set**
Sample sizes per group users wish to simulate. The length should be less than or equal to 5. Default to 10, 20, 50.

- **lfc_set**
Effect sizes users wish to simulate. The length should be less than or equal to 5. Default to 0, 0.5, 1, 1.5.
simFromData

lfc_target Target effect size, should be greater than or equal to 0. The absolute LFC lower than this values will be treated as None-DEGs. Default to 0.5

fdr_thred Adjusted p value threshold, should not below 0 or exceed 1. Default to 0.1

DEmethod Differential expression (DE) methods available include 'TOAST', 'DESeq2', and 'CeDAR'. The default method is 'TOAST'

BPPARAM An instance of BiocParallelParam class, e.g. MulticoreParam, SnowParam, SerialParam, to facilitate parallel computing. If using Unix, MulticoreParam is recommended. Customized options within BiocParallelParam class is allowed. If not specified, the default back-end is retrieve.

Details

One SummarizedExperiment object containing the following elements:

- **counts** A gene expression value dataset
- **colData** Sample meta-data. The first column is the group status (i.e. case/ctrl) named as 'disease', and the second column is the subject ID. The remaining are the cell type proportions of all samples. The user could also input the Column index for cell types proportion matrix in Coldata. Example: CT_index= 3:8

Value

- **ct_TDR_bio_smry** A data frame related to cell type specific target TDR.
- **TDR_bio_smry** A data frame related to target TDR.
- **ct_PWR_bio_smry** A data frame related to cell type specific target power.
- **PWR_bio_smry** A data frame related to target power.
- **PWR_strata_bio_smry** A data frame related to target power by gene expression stratification.
- **PWR_strata_ct_bio_smry** A data frame related to cell type specific target power by gene expression stratification.
- **ct_FDC_bio_smry** A data frame related to cell type specific target FDC.
- **FDC_bio_smry** A data frame related to target FDC.

Author(s)

Shilin Yu <sy597@georgetown.edu> Guanqun Meng <gxm324@case.edu>

Examples

data(ASD_prop_se)
result <- simFromData(INPUTdata = ASD_prop, CT_index = (seq_len(6) + 2),
CT_unk = FALSE, n_sim = 2, n_gene = 1000, DE_pct = 0.05,
ss_group_set = c(8,10), lfc_set = c(1, 1.5))
simFromParam

Power calculation results on pre-calculated parameters

Description

This function conducts simulations with various user-defined study design parameters, including but not limited to sample size, and log fold change.

Usage

```r
simFromParam(n_sim = 3, n_gene = 30000, DE_pct = 0.05,
               ss_group_set = c(10, 20, 50, 100),
               lfc_set = c(0, 0.5, 1, 1.5, 2),
               sim_param = "IAD",
               lfc_target = 0.5, fdr_thred = 0.1,
               DEmethod = "TOAST", BPPARAM=bpparam())
```

Arguments

- **n_sim** Total number of iterations users wish to conduct. Default to 3
- **n_gene** Total number of genetic features users wish to conduct. Default to 30000. Must be greater than or equal to 1000.
- **DE_pct** Percentage of DEG on each cell type. Default to 0.05.
- **ss_group_set** Sample sizes per group users wish to simulate. The length should be less than or equal to 5. Default to 10, 20, 50.
- **lfc_set** Effect sizes users wish to simulate. The length should be less than or equal to 5. Default to 0, 0.5, 1, 1.5.
- **sim_param** Users specify which embedded simulation parameters they wish to use. Default set to 'GSE60424_param', which is a cell line specific data. Other options include 'IBD' data, and 'ASD' data
- **lfc_target** Target effect size, should be greater than or equal to 0. The absolute LFC lower than this value will be treated as None-DEGs. Default to 0.5
- **fdr_thred** Adjusted p value threshold, should not be below 0 or exceed 1. Default to 0.1
- **DEmethod** Differential expression (DE) methods available include 'TOAST', 'DESeq2', and 'CeDAR'. The default method is 'TOAST'
- **BPPARAM** An instance of BiocParallelParam class, e.g. MulticoreParam, SnowParam, SerialParam, to facilitate parallel computing. If using Unix, MulticoreParam is recommended. Customized options within BiocParallelParam class is allowed. If not specified, the default back-end is retrieve.

Details

- **GSE60424**: Whole transcriptome signatures of 6 immune cell subsets. The patients were drawn from subjects with a range of immune-related diseases.
- **IBD**: Inflammatory Bowel Disease
- **ASD**: Autism Spectrum Disorder.
Value

cT_TDR_bio_smry A data frame related to cell type specific target TDR.
TDR_bio_smry A data frame related to target TDR.
ct_PWR_bio_smry A data frame related to cell type specific target power.
PWR_bio_smry A data frame related to target power.
PWR_strata_bio_smry A data frame related to target power by gene expression stratification.
PWR_strata_ct_bio_smry A data frame related to cell type specific target power by gene expression stratification.
ct_FDC_bio_smry A data frame related to cell type specific target FDC.
FDC_bio_smry A data frame related to target FDC.

Author(s)

Shilin Yu <sy597@georgetown.edu> Guanqun Meng <gxm324@case.edu>

Examples

data(quickParaGSE60424)
result <- simFromParam(sim_param="IAD", n_sim = 2, DE_pct = 0.05, n_gene = 1000,
 ss_group_set = c(8, 10),
 lfc_set = c(1, 1.5),
 lfc_target = 0.5, fdr_thred = 0.1)
Index

* datasets
 asd_noprop_param, 4
 asd_nopropPower, 3
 ASD_prop, 5
 GSE60424_param, 8
 GSE60424Power, 7
 ibd_prop_param, 10
 ibd_propPower, 9
* package
 cypress-package, 2
 AllClasses (cypress-class), 5
 asd_noprop_param, 4
 asd_nopropPower, 3
 asd_prop (asd_noprop_param), 4
 ASD_prop, 5
 ASD_prop_se (ASD_prop), 5
 asdPower (asd_nopropPower), 3
 cypress (cypress-package), 2
 cypress-class, 5
 cypress-methods, 7
 cypress-package, 2
 cypress_out-class (cypress-class), 5
 est_out-class (cypress-class), 5
 getcypress (cypress-methods), 7
 getcypress, cypress_out-method (cypress-methods), 7
 getcypress, design_in-method (cypress-methods), 7
 getcypress, est_out-method (cypress-methods), 7
 GSE60424_param, 8
 GSE60424Power, 7
 ibd_param (ibd_prop_param), 10
 ibd_prop_param, 10
 ibd_propPower, 9
 ibdPower (ibd_propPower), 9
 plotFDC, 11
 plotPower, 12
 plotTDR, 13
 quickParaASD (asd_noprop_param), 4
 quickParaGSE60424 (GSE60424_param), 8
 quickParaIBD (ibd_prop_param), 10
 quickPower, 14
 quickPowerASD (asd_nopropPower), 3
 quickPowerGSE60424 (GSE60424Power), 7
 quickPowerIBD (ibd_propPower), 9
 setcypress (cypress-methods), 7
 setcypress, cypress_out-method (cypress-methods), 7
 setcypress, design_in-method (cypress-methods), 7
 setcypress, est_out-method (cypress-methods), 7
 show, cypress_out-method (cypress-methods), 7
 show, est_out-method (cypress-methods), 7
 simFromData, 15
 simFromParam, 17